JPS59165456A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59165456A
JPS59165456A JP4021683A JP4021683A JPS59165456A JP S59165456 A JPS59165456 A JP S59165456A JP 4021683 A JP4021683 A JP 4021683A JP 4021683 A JP4021683 A JP 4021683A JP S59165456 A JPS59165456 A JP S59165456A
Authority
JP
Japan
Prior art keywords
region
film
base
emitter
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4021683A
Other languages
Japanese (ja)
Inventor
Hideaki Sadamatsu
定松 英明
Akihiro Kanda
神田 彰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4021683A priority Critical patent/JPS59165456A/en
Publication of JPS59165456A publication Critical patent/JPS59165456A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To accelerate the velocity and to enhance the accuracy of a semiconductor device by forming regions to become active base and emitter by implanting impurity ions from the same window, and connecting a region to become an inactive region and the region to become the active region by diffusing an impurity. CONSTITUTION:An SiO2 insulating film 102 and a hole 103 are formed on an n type Si substrate 101, and an Si3N4 film 104 is accumulated. After the film 104 is etched with a resist 106 as a mask, B ions are implanted, thereby forming an inactive base 107. At this time, a defective layer becomes as designated by a broken line 108. Then, the resist 106 is removed, with the film 104 as a mask, a thermally oxidized film 111 is formed, B ions are implanted, and a heat treatment is executed, thereby forming an active base region 112 and an emitter region 113. The defective layer becomes as designated by a broken line 114, and becomes a structure isolated from the layer 108. Subsequently, the film 104 is removed, a contacting window is opened on the region 107, and an emitter electrode 115 and a base electrode 116 are then formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置、特に高密度・高速度・高精度な半
導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device, and particularly to a method for manufacturing a semiconductor device with high density, high speed, and high precision.

従来例の構成とその問題点 半導体装置は近年ますます高速・高密度化される傾向に
あり、セルファライン化した− hFE(電流増加率)
のバラツキの少ないトランジスタが必要となってきてい
る。この要求を満足するため、エミッタ部を耐酸化性膜
を用いてセルファジイン化するとともにエミ・・夕及び
ベースをイオン注入により形成する方法があり、第1図
にこの方法の各工程における断面図を示す。以下第1図
により説明するcn形Si基板1の主表面に例えば酸化
法により5102膜2を約4000人形成し、ベース領
域となる部分に開孔部を設ける(第1図A)。
Conventional configurations and their problems In recent years, semiconductor devices have become increasingly faster and more dense, and self-alignment has been introduced.- hFE (current increase rate)
There is a growing need for transistors with less variation in In order to meet this requirement, there is a method in which the emitter section is made into a cellulose diamide using an oxidation-resistant film, and the emitter, emitter, and base are formed by ion implantation. Figure 1 shows a cross-sectional view of each step of this method. show. Approximately 4,000 5102 films 2 are formed on the main surface of a CN type Si substrate 1, which will be explained below with reference to FIG. 1, by, for example, an oxidation method, and an opening is provided in a portion that will become a base region (FIG. 1A).

次にポリシリコン3を2000八堆積するとともに13
0KnVの加速エネルギー+7×1015ions/7
でAsをイオン注入するにの条件ではポリシリコン3中
にAsがイオン注入される(第1図B)。
Next, 20008 layers of polysilicon 3 are deposited and 13
Acceleration energy of 0KnV + 7×1015ions/7
Under the conditions for ion-implanting As, As is ion-implanted into the polysilicon 3 (FIG. 1B).

この後、Si3N4膜4を約600人堆積する(第1図
C)。
After this, about 600 Si3N4 films 4 are deposited (FIG. 1C).

そして、エミッタ形成部にレジスト6を形成するととも
にレジスト5をマスクとして5i3N4゜ポリシリコン
3を除去し、レジスト5及び酸化膜2をマスクとして基
板1の表面を約0.2μm程度エツチングする。この時
、Asを含んだポリシリコン3はエツチング速度が速い
ためSi3N4膜4下のポリシリコンは斜めエッチされ
る(第1図D4次にレジスト5を除去するとともにSi
2N4膜4をマスクに酸化を行ない、酸化膜6を約15
00八形成する。この時Si3N4膜4とポリシリコン
3の境界には酸化膜は形成されなめ。この陵、加速エネ
ルギー60 KeVの加速エネルギー、1.2×101
5i0ns/7のボロンをイオン注入し、熱処理を90
0’C3o分程度行なうことにより、活性ベース7及び
グラフトベース8を形成する。この熱処理により。
Then, a resist 6 is formed on the emitter formation portion, and the 5i3N4° polysilicon 3 is removed using the resist 5 as a mask, and the surface of the substrate 1 is etched by about 0.2 μm using the resist 5 and the oxide film 2 as a mask. At this time, since the polysilicon 3 containing As has a high etching speed, the polysilicon under the Si3N4 film 4 is obliquely etched (D4 in FIG. 1) Next, the resist 5 is removed and the Si
Oxidation is performed using the 2N4 film 4 as a mask, and the oxide film 6 is approximately 15
Form 008. At this time, no oxide film is formed on the boundary between the Si3N4 film 4 and the polysilicon 3. This mausoleum has an acceleration energy of 60 KeV, an acceleration energy of 1.2×101
Boron ions were implanted at a rate of 5i0ns/7, and heat treatment was performed at 90°C.
The active base 7 and the graft base 8 are formed by carrying out the process for about 0'C3o minutes. Due to this heat treatment.

ポリシリコン3中のAsが拡散され基板1中にもn形エ
ミッタ領域9が形成される(第1図E)。
As in the polysilicon 3 is diffused, an n-type emitter region 9 is also formed in the substrate 1 (FIG. 1E).

この時、ボロンのイオン注入により誘起される欠陥が基
板1及びポリシリコン3の破線1oに示す領域に発生す
る。この後Si3N4膜4を除去するとともにグラフト
ベース8上の一部を開孔し、エミッタ電極11.ベース
電極12を形成する(第1図F)。
At this time, defects induced by the boron ion implantation occur in the region of the substrate 1 and polysilicon 3 shown by the broken line 1o. Thereafter, the Si3N4 film 4 is removed and a hole is opened in a part of the graft base 8, and the emitter electrode 11. A base electrode 12 is formed (FIG. 1F).

この様にし−C作成したトランジスタにおいては次の様
な利点がある。
The transistor fabricated in this way has the following advantages.

(1)エミッタとエミッタコンタクトのセルファライン
による高密度化。
(1) High density emitter and emitter contact with self-line.

(2ン 高周波化・・・・・・エミッタ側面にpnn分
会なく曲面接置効果(ベース・エミッタが曲面接合して
いると、ベース走行時間が長くなる効果)がなりだめ。
(2nd high frequency... There is no pnn branch on the side of the emitter, and the curved surface mounting effect (if the base and emitter are in curved surface contact, the effect that the base travel time becomes longer) is no longer possible.

(3)グラフトベースの最高濃度の所に活性ベースが接
続されるためベース抵抗が小さめ。
(3) Base resistance is small because the active base is connected to the highest concentration of the graft base.

しかしながら、上記の例ではポリシリコン3中にAs不
純物が含まれており、このポリシリコン3及び基板1を
エツチングする際、第1図りに示す如く、Si3N4膜
4下部が斜めになる。従って、酸化膜6の形成後にボロ
ンをイオン注入するとイオン注入による欠陥が破線1o
に示ず如くなシ、エミッターベース接合を欠陥が横切る
ためエミッタース間にリーク電流が発生する。このリー
ク電流のためhFEがバラツキ、高精度のトランジスタ
が得られない。
However, in the above example, the polysilicon 3 contains As impurities, and when the polysilicon 3 and the substrate 1 are etched, the lower part of the Si3N4 film 4 becomes oblique as shown in the first diagram. Therefore, if boron ions are implanted after the oxide film 6 is formed, defects due to the ion implantation will occur as shown in the broken line 1o.
As shown in Figure 2, a leakage current occurs between the emitters because the defect crosses the emitter-base junction. Due to this leakage current, hFE varies and a highly accurate transistor cannot be obtained.

発明の目的 本発明はこの様な従来の問題に鑑みン高速化に加えて、
高精度化に適した半導体装置の製造方法を提供すること
を目的とする。
Purpose of the Invention In view of these conventional problems, the present invention not only improves speed, but also
An object of the present invention is to provide a method for manufacturing a semiconductor device suitable for high precision.

発明の構成 本発明は、選択酸化法によるたとえばエミッタとなる領
域とエミッタコンタクトとなる領域のセルファライン化
に加え、高濃度不活性ベースとなる領域をイオン注入に
より形成し、活性ベース及びエミッタとなる領域を同−
窓より不純物のイオン注入により形成するとともに不活
性ベースとなる領域と活性ベースとなる領域を不純物の
拡散により接続することにより電流が少なく−hFEの
バラツキの少ない高精度素子を製造可能とするものであ
る。
Structure of the Invention The present invention involves forming a region that will become an emitter and a region that will become an emitter contact by selective oxidation, for example, and forming a region that will become an active base and an emitter by ion implantation, as well as forming a region that will become a highly concentrated inactive base by ion implantation. same area
By forming the impurity ion implantation through the window and connecting the region that will become the inactive base and the region that will become the active base by diffusion of impurities, it is possible to manufacture high-precision devices with low current and little variation in hFE. be.

実施例の説明 第2図に本発明の第1の実施例における各工程断面図を
示す。以下第2図により説明する。n形シリコン基板1
01の主表面に例えば酸化法によって8102絶縁膜1
02を約4000人形成し、ベース領域に開孔部103
を設ける(第2図A)。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows cross-sectional views of each process in the first embodiment of the present invention. This will be explained below with reference to FIG. n-type silicon substrate 1
8102 insulation film 1 is formed on the main surface of 01 by, for example, an oxidation method.
Approximately 4,000 holes 103 are formed in the base area.
(Figure 2A).

次ニS z s N4膜(窒化膜)1o4を約1500
人堆積する(第2図B)。
Next, S z s N4 film (nitride film) 1o4 about 1500
People accumulate (Figure 2B).

その後、開孔部103内にマスク用被膜となるレジスト
106を形成し、このレジスト106をマスクに513
N4膜104をエツチングする。この時レジスト106
がS 13N 4膜104に対してひさしが形成される
様にサイドエッチを行なう。
After that, a resist 106 is formed in the opening 103 to serve as a mask film, and the resist 106 is used as a mask to form a mask 513.
The N4 film 104 is etched. At this time, resist 106
Side etching is performed on the S 13N 4 film 104 so that a canopy is formed.

さらにレジス)106及びSi○2絶縁膜102をマス
クにボロンを80KeVで1×101510nS/cd
程度イオン注入して、不活性ベース107を形成する。
Further, using the resist) 106 and Si○2 insulating film 102 as a mask, apply boron at 80KeV at 1×101510nS/cd.
An inert base 107 is formed by ion implantation.

この時イオン注入により励起される欠陥層は破線108
のようになる(第2図C)。次にレジスト106を除去
し、Si3N3膜104をマスクとして熱酸化膜111
を形成する(第2図D)。
At this time, the defect layer excited by ion implantation is indicated by the broken line 108.
(Figure 2C). Next, the resist 106 is removed, and the thermal oxide film 111 is formed using the Si3N3 film 104 as a mask.
(Fig. 2D).

次にこの酸化膜111及びSi○2絶縁膜102をマス
クとしてBイオンを40KeVの加速電圧で3X101
4ionsAnj 、As イオンを180Kevの加
速電圧で7X1015ionsAi それぞれイオン注
入を行なう。この後1000′C程度の温度のN2雰囲
気中で約60分の熱処理を施すことにより、イオン注入
されだB及び八8が拡散して活性ベース領域112及び
エミッタ領域113が形成される。
Next, using the oxide film 111 and the Si○2 insulating film 102 as a mask, B ions are irradiated 3×101 at an accelerating voltage of 40 KeV.
4 ions Anj and 7×10 15 ions Ai of As ions are implanted at an acceleration voltage of 180 Kev. Thereafter, heat treatment is performed for about 60 minutes in an N2 atmosphere at a temperature of about 1000'C, whereby the implanted ions B and 88 are diffused to form an active base region 112 and an emitter region 113.

この時イオン注入により誘起された欠陥層は破線114
に示す如くなり、欠陥層108とは分離された構造とな
る(第2図E)。
At this time, the defect layer induced by ion implantation is indicated by the broken line 114.
As shown in FIG. 2, the structure is separated from the defect layer 108 (FIG. 2E).

次にエミツタ領域113上部のS 13N 4膜104
を除去するとともに不活性ベース9域107上にコンタ
クト窓を開孔した後、エミッタ電極115゜ベース電極
116を形成する(第2図F)。
Next, the S 13N 4 film 104 above the emitter region 113
After removing and forming a contact window on the inactive base region 107, an emitter electrode 115° and a base electrode 116 are formed (FIG. 2F).

第2図の方法では前記活性ベースとエミッタ形成時の熱
処理によυ、同時に活性ベース112と不活性ベース1
07を接触させて電気的に接続しており、イオン注入に
よる欠陥108及び114がエミッタ113とベース1
12のpnn接合横切らない。また、接続用のp型拡散
領域110は活性ベース112と同等又は浅く形成する
のが望ましい。こうすることにより、h上Eのエミじり
面積依存性が少なくなる。
In the method shown in FIG. 2, the active base 112 and the inactive base 1 are simultaneously
07 are brought into contact and electrically connected, and defects 108 and 114 due to ion implantation are caused by emitter 113 and base 1.
12 pnn junctions are not crossed. Further, it is desirable that the p-type diffusion region 110 for connection be formed to be equal to or shallower than the active base 112. By doing this, the dependence of E on h on the emitter area is reduced.

次に第3図に本発明の第2の実施例における各工程断面
図を示す。以下第3図により説明する。
Next, FIG. 3 shows sectional views of each process in the second embodiment of the present invention. This will be explained below with reference to FIG.

n形シリコン基板101の主表面に例えば酸化法によっ
てSi○2絶縁膜102を約4000人形成し、ベース
領域に開孔部1o3を設ける(第3図A)。
Approximately 4,000 Si2 insulating films 102 are formed on the main surface of an n-type silicon substrate 101 by, for example, an oxidation method, and openings 1o3 are provided in the base region (FIG. 3A).

次にSi3N4膜104を約150o人堆積する(第3
図B)。その後、開孔部IQ3内にレジストIC)6を
形成し、このレジスト1o6をマスクにSi3N4膜1
04をエツチングする。この時レジス)106にひさし
が形成される様、サイドエッチを行なう。さらにレジス
ト106及び3102絶縁膜102をマスクにボロンを
80KeVでI X 10 1ons//Ci程度イオ
ン注入して、不活性ベース(グラフトベース)107を
形成する。この時イオン注入によシ励起される欠陥層u
 10 sの如くなる(第3図C)。
Next, approximately 150 layers of Si3N4 film 104 is deposited (third layer).
Figure B). Thereafter, a resist IC) 6 is formed in the opening IQ3, and using this resist 1o6 as a mask, the Si3N4 film 1
Etching 04. At this time, side etching is performed so that an eave is formed on the resist 106. Further, using the resist 106 and the 3102 insulating film 102 as a mask, boron ions are implanted at 80 KeV to about I x 10 1 ons//Ci to form an inert base (graft base) 107. At this time, the defect layer u excited by ion implantation
10 seconds (Figure 3C).

次にレジスト106を除去し、ボロンを含む酸化膜10
9を拡散源としてp形不純物領域110を形成する(第
3図D)。ボロンを含む酸化膜109を除去するととも
に、 S l a N 4膜104をマスクとして熱酸
化膜111を形成する。
Next, the resist 106 is removed, and the oxide film 10 containing boron is removed.
A p-type impurity region 110 is formed using 9 as a diffusion source (FIG. 3D). The oxide film 109 containing boron is removed, and a thermal oxide film 111 is formed using the SlaN4 film 104 as a mask.

次に酸化膜111及び5102絶縁膜102をマスクと
してBイオンを40KeVの加速電圧で3x1o  t
onsA4 + Asイオンを180KeVの加速電圧
で−r x 1o  1ons/cJそれぞれイオン注
入を行なう。この後1000℃程度の温度のN2雰囲気
中で約60分の熱処理を施すことにより、イオン注入さ
れたB及びAsが拡散して活性ベース領域112及びエ
ミッタ領域113が形成される。
Next, using the oxide film 111 and the 5102 insulating film 102 as masks, B ions were added at an acceleration voltage of 40 KeV at 3×10 t.
OnsA4 + As ions are implanted at an acceleration voltage of 180 KeV at a rate of -r x 1o 1ons/cJ. Thereafter, heat treatment is performed for about 60 minutes in an N2 atmosphere at a temperature of about 1000° C., whereby the implanted B and As ions are diffused to form an active base region 112 and an emitter region 113.

この時イオン注入により誘起された欠陥層は破線114
に示す如くなる(第3図E)。次にエミッタ9域111
上部のSi3N4膜1.04を除去するとともに不活性
ベース領域1oγ上にコンタクト窓を開孔した後、エミ
ッタ電極116.ベース電極116を形成する(第3図
Fン。
At this time, the defect layer induced by ion implantation is indicated by the broken line 114.
It becomes as shown in (Fig. 3E). Next, emitter 9 area 111
After removing the upper Si3N4 film 1.04 and opening a contact window on the inactive base region 1oγ, the emitter electrode 116. A base electrode 116 is formed (FIG. 3F).

この第3図の方法では拡散によるp形不純物領域110
により活性ベース112と不活性ベース107を電気的
に接続しておシ、イオン注入により励起される欠陥10
7及び114がエミッタ13とベース112のpn接合
を横切らなり0又第1の実施例と異なシ熱処理の影響を
受けずに不活性ベース107と活性ベース112を確実
に接続できる。
In the method shown in FIG. 3, the p-type impurity region 110 is formed by diffusion.
The active base 112 and the inactive base 107 are electrically connected to each other, and the defects 10 excited by ion implantation are
7 and 114 cross the pn junction between the emitter 13 and the base 112, and the inactive base 107 and the active base 112 can be reliably connected without being affected by heat treatment different from the first embodiment.

さらに第4図に本発明の第3の実施例における各工程断
面図を示す。以下第4図により説明する。
Further, FIG. 4 shows cross-sectional views of each process in the third embodiment of the present invention. This will be explained below with reference to FIG.

n形シリコン基板101の主表面に例えば酸化法によっ
て8102絶縁膜102を約400Q人形成し。
On the main surface of the n-type silicon substrate 101, an 8102 insulating film 102 having a thickness of approximately 400 nm is formed by, for example, an oxidation method.

ベース領域に開口部103を設ける(第4図A)。An opening 103 is provided in the base region (FIG. 4A).

次に513N4膜104を約500人、CvD′Sio
2膜105を約2000人堆積する(第4図B)。その
後、開孔部103内にレジスト106を形成し、このレ
ジスト106をマスクにCV D S 102膜IQ5
をエツチングする。この時レジスト106にひさしが形
成される様、サイドエッチを行なう。
Next, about 500 people applied 513N4 membrane 104 to CvD'Sio.
2 films 105 are deposited by about 2,000 people (FIG. 4B). After that, a resist 106 is formed in the opening 103, and a CV D S 102 film IQ5 is formed using this resist 106 as a mask.
etching. At this time, side etching is performed so that a canopy is formed in the resist 106.

さらにレジス)106及びSio2絶縁膜102をマス
クに5laN4膜を通してボロンを80KeVで1X 
1015i onsAi程度イオン注入し石、不活性ベ
ース107を形成する。この時イオン注入により、励起
される欠陥層は108の如くなる(第4図C)、。
Furthermore, boron is applied at 1X at 80 KeV through the 5laN4 film using the resist) 106 and Sio2 insulating film 102 as a mask.
An inert base 107 is formed by implanting ions of about 1015 ionsAi. At this time, the defect layer excited by the ion implantation becomes like 108 (FIG. 4C).

次にレジスト106を除去し’ CV D S i02
膜105をマスクにしてS l s N 4膜104の
除去し、ボロンを含む酸化膜109を拡散源としてp形
不純物領域110を形成する(第4図D)。ボロンを含
む酸化膜109及びCV D S 102105を除去
するとともに、Si3N4膜104をマスクとして熱酸
化膜111を゛形成する。
Next, remove the resist 106' CV D S i02
Using the film 105 as a mask, the S l s N 4 film 104 is removed, and a p-type impurity region 110 is formed using the oxide film 109 containing boron as a diffusion source (FIG. 4D). The oxide film 109 containing boron and the CVD S 102105 are removed, and a thermal oxide film 111 is formed using the Si3N4 film 104 as a mask.

次に酸化膜111及びS iO2絶縁膜103をマスク
としてBイオンを40KeVの加速電圧で3 X 10
14i ons、/cm、 A sイオンを180Ke
Vの加速電圧で7 X 1015ionfl/cmそれ
ぞれイオン注入を行なう。この後1000″C程度の温
度のN2雰囲気中で約60分の熱処理を施すことによシ
、イオン注入されたB及びA8が拡散して活性ベース領
域112及びエミッタ領域113が形成される。
Next, using the oxide film 111 and the SiO2 insulating film 103 as masks, B ions are irradiated with 3×10 B ions at an acceleration voltage of 40 KeV.
14ions,/cm, A s ions at 180Ke
Ion implantation is performed at an acceleration voltage of V at 7×10 15 ion fl/cm. Thereafter, heat treatment is performed for about 60 minutes in an N2 atmosphere at a temperature of about 1000''C, whereby the implanted B and A8 ions are diffused to form an active base region 112 and an emitter region 113.

この時イオン注入により誘起された欠陥層は破線114
に示す如くなる(第4図E)。次にエミツタ領域111
上部のSi3N4膜104を除去するとともに不活性ベ
ース領域107上にコンタクト窓を開孔した後、エミッ
タ電極115.ベース電極116を形成する(第4図F
)。
At this time, the defect layer induced by ion implantation is indicated by the broken line 114.
It becomes as shown in (Fig. 4E). Next, the emitter area 111
After removing the upper Si3N4 film 104 and opening a contact window on the inactive base region 107, the emitter electrode 115. Forming the base electrode 116 (FIG. 4F)
).

この第4図の方法も、第2の実施例と同様にイオン注入
によシ励起される欠陥がpn接合を横切らない。又、不
活性ベース10−7形成時、Si3N4膜104を通し
てイオン注入するだめ、汚染が少ないと−う特長がある
Similarly to the second embodiment, in the method shown in FIG. 4, defects excited by ion implantation do not cross the pn junction. Furthermore, since ions are implanted through the Si3N4 film 104 when forming the inert base 10-7, there is less contamination.

なお1以上の説明はnpnトランジスタであるが、本発
明はpnl))ランジスタにも適用でき。
It should be noted that although the above description refers to npn transistors, the present invention is also applicable to pnl)) transistors.

かつ不純物の種類も種々のものを用いることができる。Moreover, various kinds of impurities can be used.

発明の効果 以上のことから本発明は次の様な特長を有する。Effect of the invention Based on the above, the present invention has the following features.

(1)エミッタとなる領域周辺に酸化膜を形成し。(1) Form an oxide film around the region that will become the emitter.

活性ベース・エミッタを同窓からイオン注入することに
より、イオン注入の誘起欠陥をエミッタとなる傾城内に
とりこむことによりpn接合でのリーク電流を小さくす
る。
By implanting ions into the active base emitter from the same window, defects induced by the ion implantation are incorporated into the sloped wall that becomes the emitter, thereby reducing leakage current at the pn junction.

(2)高周波・低雑音化・・・・・・不活性ベースをイ
オン注入で形成し、最大濃度域を半導体基板内部で形成
できるため、後の酸化工程でシート抵抗を小さくおさえ
られ、ベース抵抗が小さく出来、高周波・低雑音化をは
かることができる。
(2) High frequency and low noise...The inert base is formed by ion implantation, and the maximum concentration region can be formed inside the semiconductor substrate, so the sheet resistance can be kept low in the subsequent oxidation process, and the base resistance can be made small and can achieve high frequency and low noise.

(3)  不活性ベースをイオン注入で形成するため。(3) To form an inert base by ion implantation.

接合深さを浅く出来、高密度化がはかれる。The junction depth can be made shallow, allowing for higher density.

以上の様に本発明は高速、高密度、高精度の半導体装置
を提供に寄与するものである。
As described above, the present invention contributes to providing a high-speed, high-density, and high-precision semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A−Fは従来のnpn)ランジスタの製造工程断
面図、第2図A−Fは本発明の一実施例にかかる2重イ
オン注入によるnpnトランジスタの製造工程断面図、
第3図A−F、第4図A〜Fは本発明の他の実施例にか
かるトランジスタの製造工程断面図である。 101・・・・・・シリコン基板、102・・・・・・
S 102膜。 1o4・・・・・・窒化膜、105・・・・・・CvD
SiO2,106・・・・レジストマスク、107・・
・・・・不活性ベース、109・・・・・・ボロンを含
む酸化膜、110・・・・・・拡散領域、112・・・
・・・活性ベース、113・・印・エミッタ領域。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1 第1図 第2図 イ03 (Q’l  Iυど −12図 第3図 fO’l  fOtJ 第3図 1f2      10’/ @4図 03 tθ7  tuσ @4図
FIGS. 1A-F are cross-sectional views of the manufacturing process of a conventional npn transistor, and FIGS. 2A-F are cross-sectional views of the manufacturing process of an npn transistor using double ion implantation according to an embodiment of the present invention.
3A-3F and FIGS. 4A-4F are cross-sectional views showing the manufacturing process of a transistor according to another embodiment of the present invention. 101...Silicon substrate, 102...
S102 membrane. 1o4...Nitride film, 105...CvD
SiO2, 106...Resist mask, 107...
... Inert base, 109 ... Oxide film containing boron, 110 ... Diffusion region, 112 ...
...Active base, 113...mark/emitter region. Name of agent Patent attorney Toshi Nakao Haga 1 Figure 1 Figure 2 I03 (Q'l Iυdo-12 Figure 3 fO'l fOtJ Figure 3 1f2 10'/ @Figure 4 03 tθ7 tuσ @4 diagram

Claims (2)

【特許請求の範囲】[Claims] (1)一方導電型の半導体基板上に絶縁膜を形成すると
ともに所望領域の上記絶縁膜を除去する工程、耐酸化性
膜を形成し、上記所望領域内の一部にマスク用被膜を形
成し、上記被膜をマスクとして。 上記耐酸化性膜を上記被膜がひさ【7状に形成される様
に上記耐酸化性膜を除去する工程、上記被膜及び上記絶
縁膜をマスクとして、イオン注入により上記半導体基板
上に他方導電型の第1飴域を形成する工程、上記被膜を
除去し、上記耐酸化性膜をマスクとして熱酸化膜を形成
する工程、上記熱酸化膜、上記絶縁膜をマスクとして他
方導電型の第2領域及び上記第2領域内に一方導電型の
第3領域を形成するとともに上記第2領域と上記第1領
域を電気的に接続する工程を含む半導体装置の製造方法
(1) A step of forming an insulating film on a semiconductor substrate of one conductivity type and removing the insulating film in a desired region, forming an oxidation-resistant film, and forming a masking film in a part of the desired region. , using the above film as a mask. a step of removing the oxidation-resistant film so that the film is formed in a 7-shape shape; using the film and the insulating film as a mask, ions are implanted onto the semiconductor substrate of the other conductivity type; a step of removing the coating film and forming a thermal oxide film using the oxidation-resistant film as a mask; a second region of the other conductivity type using the thermal oxide film and the insulating film as a mask; and a method for manufacturing a semiconductor device, including the steps of forming a third region of one conductivity type in the second region and electrically connecting the second region and the first region.
(2)他方導電型の第1領域を形成した後、耐酸化性膜
及び絶縁膜をマスクとして拡散により上記第1領域と接
する他方導電型の第4領域を形成し。 上記第4領域を他方導電型の第2領域と電気的に接続す
ることを特徴とする特許請求の範囲第1項記載の半導体
装置の製造方法。 @)第4領域の接合深さが第2領域の接合深さより同等
又は浅く形成することを特徴とする特許請求の範囲第2
項記載の半導体装置の製造方法0(4)被膜と耐酸化性
膜間に酸化膜を形成し、耐酸化性膜を通してイオン注入
を行って第1領域を形成し、被膜除去後上記酸化膜をマ
スクとして上記耐酸化性膜を除去することを特徴とする
特許請求の範囲第1項に記載の半導体装置の製造方法。
(2) After forming the first region of the other conductivity type, a fourth region of the other conductivity type in contact with the first region is formed by diffusion using the oxidation-resistant film and the insulating film as masks. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the fourth region is electrically connected to the second region of the other conductivity type. @) Claim 2, characterized in that the junction depth of the fourth region is equal to or shallower than the junction depth of the second region.
0 (4) Forming an oxide film between the film and the oxidation-resistant film, forming a first region by implanting ions through the oxidation-resistant film, and removing the film, removing the oxide film. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the oxidation-resistant film is removed as a mask.
JP4021683A 1983-03-10 1983-03-10 Manufacture of semiconductor device Pending JPS59165456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4021683A JPS59165456A (en) 1983-03-10 1983-03-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4021683A JPS59165456A (en) 1983-03-10 1983-03-10 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59165456A true JPS59165456A (en) 1984-09-18

Family

ID=12574577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4021683A Pending JPS59165456A (en) 1983-03-10 1983-03-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59165456A (en)

Similar Documents

Publication Publication Date Title
JPH05347383A (en) Manufacture of integrated circuit
JPH0340501B2 (en)
JPS59165456A (en) Manufacture of semiconductor device
JP2890509B2 (en) Method for manufacturing semiconductor device
JP2890550B2 (en) Method for manufacturing semiconductor device
JPS61251163A (en) Manufacture of bi-mis integrated circuit
JP2633411B2 (en) Method for manufacturing semiconductor device
JPS61251165A (en) Manufacture of bi-mis integrated circuit
JPS6129539B2 (en)
JPH04116933A (en) Manufacture of semiconductor device
JPH0271526A (en) Semiconductor integrated circuit and manufacture thereof
JPS5987858A (en) Manufacture of semiconductor device
JPH0744183B2 (en) Method for manufacturing semiconductor device
JPS59147457A (en) Manufacture of semiconductor device
JPS6068646A (en) Manufacture of semiconductor device
JPH0132669B2 (en)
JPH02113534A (en) Manufacture of semiconductor device
JPS59147455A (en) Manufacture of semiconductor device
JPS5918674A (en) Manufacture of semiconductor device
JPS6038873A (en) Manufacture of semiconductor device
JPH05145025A (en) Manufacture of semiconductor device
JPS5987859A (en) Manufacture of semiconductor device
JPS6381853A (en) Manufacture of semiconductor device
JPH05243249A (en) Manufacture of bipolar transistor
JPS5846674A (en) Preparation of semiconductor device