JPS6068646A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6068646A
JPS6068646A JP17734283A JP17734283A JPS6068646A JP S6068646 A JPS6068646 A JP S6068646A JP 17734283 A JP17734283 A JP 17734283A JP 17734283 A JP17734283 A JP 17734283A JP S6068646 A JPS6068646 A JP S6068646A
Authority
JP
Japan
Prior art keywords
film
region
si3n4
mask
emitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17734283A
Other languages
Japanese (ja)
Inventor
Hideaki Sadamatsu
定松 英明
Akihiro Kanda
神田 彰弘
Michihiro Inoue
道弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17734283A priority Critical patent/JPS6068646A/en
Publication of JPS6068646A publication Critical patent/JPS6068646A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To enable to form an accurate semiconductor device with less irregularity of side etching and current amplification factor by reducing the number of oxidizing steps, thereby enabling to flattening simultaneously upon forming of a thin oxidized film. CONSTITUTION:After N type buried regions 2a, 2b, N type epitaxial layer 3, an Si3N4 film, an oxidized film 7, an N type high density collector region 8 are formed on an N type silicon substrate 1, the Si3N4 film is removed, the Si3N4 films 109a-109c are again formed, diffused with a BSG film, and a region 110 to become a graft base and high resistance diffused region 111 are formed. With the resist 112 as a mask boron ions are implanted to form a high resistance layer 113, the resist 112 and the Si3N4 films 109a, 109c are removed, with the film 109b as a mask an oxidized film 114 is selectively formed, boron is further implanted to form an active base 115, and an emitter 116. A contacting hole is opened, and the film 109b is removed, thereby forming electrodes 117-119 of the base and emitter, and electrodes 120, 120' of high resistance portions.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置、特に高密度、高速度かつ高精度な
半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device, and particularly to a method for manufacturing a semiconductor device with high density, high speed, and high precision.

、従来例の構成とその問題点 半導体装置は近年ますます高速、高密度化されるととも
に、低消費電力化の傾向にあり、絶縁分離をおこなった
セルファラインドコンタクト方式を用い、hFE(電流
増幅率)のバラツキの少ないトランジスタ及び高抵抗が
必要となってきている、この要求を満足するため、エミ
ッタ部を耐酸化性膜を用いて選択酸化するとともにこの
選択酸化膜をマスクとして活性ベース及びエミッタをイ
オン注入により形成するとともに、高抵抗部をイオン注
入により形成する方法があり、第1図にこの方法の各工
程における断面図を示す。以下第1図により説明する。
, Conventional configurations and their problems In recent years, semiconductor devices have become faster and more dense, and there is a trend towards lower power consumption. ), and to satisfy this demand, the emitter part is selectively oxidized using an oxidation-resistant film, and the active base and emitter are selectively oxidized using this selective oxide film as a mask. There is a method of forming by ion implantation and also forming a high resistance part by ion implantation, and FIG. 1 shows cross-sectional views at each step of this method. This will be explained below with reference to FIG.

P形Si基板1の主表面にn形埋込領域2a。An n-type buried region 2 a is formed on the main surface of the P-type Si substrate 1 .

2bを形成し、n形エピタキシャル層3を0.69−α
程度で約2μm形成した後、S 13N a膜4を約1
500人堆積した後、フォトリン工程によりレジスト6
を形成し、レジスト6をマスクとしてSi3N4膜4及
びエピタキシャル層3の一部をエツチングする八。レジ
スト5を除去するとともに、減圧CVD等により全面に
Si3N4膜を約1500人堆積するとともにドライエ
ッチ等による異方性エッチにより、側面にSi3N4膜
6を形成するの)。Si3N4膜4及び6をマスクに高
圧酸化法等により厚い酸化膜Tを形成する。この時、側
面のS 13N a膜により横方向の酸化をおさえ、そ
の結果バーズビークが発生せず、高密度化が可能となる
。その後、トランジスタを形成する島領域の513N4
膜4の一部を除去するとともにn形高濃度コレクタ領域
8を形成するq。Si3N4膜4及び6を除去し、熱酸
化膜9を形成し、一部を除去するとともにトランジスタ
島領域のエミッタになる領域に513N4膜10を約5
00人形成し。
2b and the n-type epitaxial layer 3 at 0.69-α
After forming the S 13Na film 4 with a thickness of approximately 2 μm, the thickness of the S 13Na film 4 is approximately 1 μm.
After 500 resists are deposited, resist 6 is deposited using a photorin process.
8. Then, using the resist 6 as a mask, the Si3N4 film 4 and a part of the epitaxial layer 3 are etched. While removing the resist 5, a Si3N4 film is deposited on the entire surface by low pressure CVD or the like, and an Si3N4 film 6 is formed on the side surfaces by anisotropic etching using dry etching or the like). Using the Si3N4 films 4 and 6 as masks, a thick oxide film T is formed by high pressure oxidation or the like. At this time, the S 13N a film on the side surfaces suppresses oxidation in the lateral direction, and as a result, bird's beaks do not occur and high density can be achieved. After that, 513N4 of the island region where the transistor is formed
A part of the film 4 is removed and an n-type high concentration collector region 8 is formed q. The Si3N4 films 4 and 6 are removed, a thermal oxide film 9 is formed, a portion of which is removed, and a 513N4 film 10 is deposited approximately 5 times in the region that will become the emitter of the transistor island region.
Formed 00 people.

熱酸化膜9及びS l s N 4膜10をマスクにし
てBSG膜(ボロンを含ンタCV D S i Oa 
膜) fc ヨり拡散を行ない、グラフトベースとなる
領域11及び高抵抗のコンタクト拡散領域12を形成す
るp)。
Using the thermal oxide film 9 and the SlSN4 film 10 as a mask, a BSG film (boron-containing
(film) p) Performs fc diffusion to form a region 11 that will become a graft base and a high resistance contact diffusion region 12.

Si3N4膜1oをマスクとして選択酸化膜13を約3
000’人形成し、この選択酸化膜13をマス、りとし
てボo7を40 KeV I X 10 ”(yB−2
,Asを7 X 1015□−2程度イオン注入し、1
000℃16分程度の熱処理を行なって活性ベース14
.エミッタ16を形成する。この時同じ窓から活性ベー
ス及びエミッタのイオン注入を行なうため、イオン注入
誘起欠陥は図中破線16に示す様に工Z ’7り内にと
りこまれ、ベース〜エミyり接合を横切らない。
Using the Si3N4 film 1o as a mask, the selective oxide film 13 is
This selective oxide film 13 is used as a mask to form a film of 40 KeV I X 10'' (yB-2
, As was ion-implanted to the order of 7 x 1015□-2.
After heat treatment at 000℃ for about 16 minutes, active base 14
.. Emitter 16 is formed. At this time, since the active base and emitter ions are implanted from the same window, the ion implantation-induced defects are incorporated into the trench Z'7, as shown by the broken line 16 in the figure, and do not cross the base-emitter junction.

コノ後、レジスト1了をマスクとして酸化月莫9及び1
3を除去するとともにレジスト1了をマスクにボロンを
60KeV、1.5X103Crn−2程度のイオン注
入を行ない、高抵抗層18を形成する(E)。
After this, using resist 1 as a mask, oxide moon mo 9 and 1
At the same time, using the resist 1 as a mask, boron ions are implanted at 60 KeV and about 1.5×10 3 Crn-2 to form a high resistance layer 18 (E).

Si N 膜10をマスクに熱酸化を行ない酸イし膜 
4 19を約2000人形成するとともにコレクタ、ベース
及び高抵抗部のコンタクトを開孔し、さらにS 13N
 4膜1oを除去し、コレクタ、ベース。
Thermal oxidation is performed using the SiN film 10 as a mask to form an oxidized film.
Approximately 2,000 S13N holes were formed, and contacts for the collector, base and high resistance parts were formed, and then S13N was formed.
4 Remove film 1o, collector and base.

エミyりの電極20,21.22及び高抵抗部電極23
.23’を形成する(F)。なお工程Bではエピタキシ
ャル層3上に直接Si3N4膜4,6を形成しているが
、エピタキシャル層とSi3N4膜の間にS s O2
膜を形成しても良い。
Emitter electrodes 20, 21, 22 and high resistance part electrode 23
.. 23' (F). Note that in step B, the Si3N4 films 4 and 6 are formed directly on the epitaxial layer 3, but S s O2 is formed between the epitaxial layer and the Si3N4 film.
A film may also be formed.

この様に形成した半導体装置は次の様な利点を有してい
る。
The semiconductor device formed in this manner has the following advantages.

(1)セルファラインドコンタクトによる高密度φ高速
化 (2)高精度化 (イ)電流増幅率のバラツキが少ない・・・・活性ベー
ス・エミッタをイオン注入により形成している。
(1) High density and high speed with self-aligned contacts (2) High precision (a) Less variation in current amplification factor...The active base and emitter are formed by ion implantation.

(ロ) リーク電流が少ない・・−・・イオン注入時に
励起される欠陥が第1図Eの波線16の如くエミyり内
にとりこまれ、ベース・エミッタ接合を横切らないため
(b) Low leakage current: Defects excited during ion implantation are trapped within the emitter, as indicated by the dotted line 16 in FIG. 1E, and do not cross the base-emitter junction.

しかしながら、酸化膜形成工程が工程りの酸イヒ膜9、
工程Eの酸化膜13、工程Fの酸イヒ膜19と3図の工
程を必要とするだめ、断差が(L来るとともに酸化膜9
では厚い酸化膜となる。その結果、次の欠点がある。
However, the oxide film 9 whose oxide film formation process is a step,
The steps shown in Figure 3, including the oxide film 13 in step E and the oxide film 19 in step F, are required, but as the difference (L comes), the oxide film 9
This results in a thick oxide film. As a result, there are the following drawbacks.

(1)高抵抗の精度が低くなる・・・・・・酸化膜9力
;厚いためエツチング時にサイドエ、ソチ量が増力11
するため (2)コンタクト開孔が行ないにくい・・・j阜い酸化
膜のためコンタクト開孔時の工・ソチンダ量力玉増加し
、サイドエッチが起こりやすくなる。
(1) Accuracy of high resistance decreases... Oxide film 9 force; Due to the thickness, side etching and sore amount increase 11 during etching.
Therefore, (2) it is difficult to form contact holes...Due to the thick oxide film, the amount of etching and drilling required when forming contact holes increases, making side etching more likely to occur.

発明の目的 本発明はこの様な従来の問題を鑑み、高精度・高速で高
精度化に適した半導体装置の製造方法を提供することを
目的とする。
OBJECTS OF THE INVENTION In view of these conventional problems, it is an object of the present invention to provide a method for manufacturing a semiconductor device with high precision, high speed, and suitable for high precision.

発明の構成 本発明は耐酸化性膜をマスクとしてグラフトベースとな
る領域及び高抵抗のコンタクト拡散領域を拡散により形
成した後、レジストをマスクに上記耐酸化性膜を通して
高抵抗層を形成し、エミノ夕部以外の耐酸化性膜を除去
し、エミッタ部の耐酸化性膜をマスクとして選択酸化膜
を形成し、この選択酸化膜をマスクとして活性ベース・
エミッタをイオン注入により形成することにより、酸化
工程数を減らすことにより薄い酸化膜形成と同時に平担
化を可能とするものである。
Structure of the Invention The present invention involves forming a graft base region and a high-resistance contact diffusion region by diffusion using an oxidation-resistant film as a mask, and then forming a high-resistance layer through the oxidation-resistant film using a resist as a mask. The oxidation-resistant film in areas other than the emitter area is removed, a selective oxide film is formed using the oxidation-resistant film in the emitter area as a mask, and the active base film is formed using this selective oxide film as a mask.
By forming the emitter by ion implantation, the number of oxidation steps can be reduced, thereby making it possible to form a thin oxide film and flatten it at the same time.

実施例の説明 第2図に本発明の実施例における各工程断面図を示す。Description of examples FIG. 2 shows cross-sectional views of each process in an embodiment of the present invention.

以下第2図により説明する。This will be explained below with reference to FIG.

従来例第1図工程A、B、Cの如くn形シリコン基板1
上にn形埋込領域2a、2b、n形エピタキンヤル層3
、Si3N4膜4及び6、酸化膜7、n形高濃度コレク
タ領域8を形成した後、Si3N4膜4及び6を除去し
、再度Si3N4膜109a。
Conventional example As shown in steps A, B, and C in Fig. 1, an n-type silicon substrate 1
On top are n-type buried regions 2a, 2b and an n-type epitaxial layer 3.
After forming the Si3N4 films 4 and 6, the oxide film 7, and the n-type high concentration collector region 8, the Si3N4 films 4 and 6 are removed, and the Si3N4 film 109a is formed again.

109b、109Cを形成し、Si3N4膜109a。109b and 109C are formed, and a Si3N4 film 109a is formed.

109b 、109cをマスクにBSG膜(ボロンを含
んだCV D S 102膜)により拡散を行ない、グ
ラフトベースとなる領域110及び高抵抗のコンタクト
拡散領域111を形成する(A)。レジスト112をマ
スクとしてSi3N4膜109 Cを通して、ホロンを
80KeV、1.5×1016cm−2程度のイオン注
入を行なって高抵抗層113を形成するの)。レジスト
112を除去し、Si3N4膜109a。
Using 109b and 109c as masks, diffusion is performed using a BSG film (CVD S 102 film containing boron) to form a region 110 that will become a graft base and a high-resistance contact diffusion region 111 (A). Using the resist 112 as a mask, holon ions are implanted at 80 KeV and about 1.5 x 1016 cm-2 through the Si3N4 film 109C to form a high-resistance layer 113). The resist 112 is removed and the Si3N4 film 109a is formed.

109Cを除去するとともにSi3N4膜109bをマ
スクとして選択的に酸化膜114を約3000人形成し
、さらに酸化膜114をマスクにSi3N4膜109b
を通しテホロンを40 KeV I Xl 0”cm−
2゜A、Bを7×1015α−2程度のイオン注入を行
ない、窒素雰囲気中で熱処理を1000℃30程度行な
って活性ベース115、エミッタ116を形成するq0
コレクタ、ベース及び高抵抗のコンタクトを開孔すると
ともにSi3N4膜109bを除去して、コレクタ、ベ
ース、エミッタの電極117゜118.119及び高抵
抗部の電極120.120’を形成する。この場合には
コレクタ8、グラフトベース110、高抵抗コンタクト
拡散領域111および高抵抗113上のそれぞれの酸化
膜厚が等しくなる。
At the same time as removing the 109C, using the Si3N4 film 109b as a mask, approximately 3000 oxide films 114 are selectively formed.
40 KeV I Xl 0”cm-
2°A, B are ion-implanted at a rate of about 7×1015α-2, and heat treatment is performed at 1000°C for about 30 minutes in a nitrogen atmosphere to form an active base 115 and an emitter 116q0
Collector, base, and high-resistance contacts are opened and the Si3N4 film 109b is removed to form collector, base, and emitter electrodes 117°, 118, and 119, and high-resistance portion electrodes 120 and 120'. In this case, the respective oxide film thicknesses on collector 8, graft base 110, high resistance contact diffusion region 111, and high resistance 113 are equal.

以上のことから本発明の方法によれば次の様な特長を有
する。
From the above, the method of the present invention has the following features.

(1)高抵抗の精度が高い。・・・ 高抵抗パターンが
レジストで形成されるため、サイドエッチの問題がない
(1) High accuracy of high resistance. ... Since the high-resistance pattern is formed with resist, there is no problem with side etching.

シ) コンタクト開孔が容易・・・・・・薄くて均一な
酸化膜をエツチングするため、本発明においては次の利
点が付加される、 (3)電流増幅率のバラツキが少ない。・・・・活性ベ
ース・エミッタのイオン注入形成をした後、酸化工程が
不要なため電流増幅率のバラツキは少ない。第3図に電
流増幅率のバラツキを示す。
(c) Easy contact opening: Since a thin and uniform oxide film is etched, the present invention has the following advantages: (3) There is little variation in current amplification factor. ...Since there is no need for an oxidation process after ion implantation of the active base/emitter, there is little variation in current amplification factor. Figure 3 shows the variation in current amplification factor.

第3図Aは従来法の混合、第3図Bは本発明により形成
した場合を示す。この図より明らかに電流増幅率が小さ
くなっていることがわかる。
FIG. 3A shows a case formed by a conventional method, and FIG. 3B shows a case formed according to the present invention. It can be seen from this figure that the current amplification factor is clearly smaller.

(4)電極間ショートが少ない・山・絶縁酸化分離を行
なった場合には第1図り工程において酸化膜9の開孔を
行なう時、絶縁酸化領域に深い溝部24a 、2Jb 
、24cが形成され、この溝部がF工程まで残りAtエ
ツチング時にこの溝部にAtが残るため、電極間ショー
トが起こる。
(4) Less short circuit between electrodes・Mountains・When insulation oxidation separation is performed, deep grooves 24a, 2Jb are formed in the insulation oxidation region when opening holes in the oxide film 9 in the first drawing step.
, 24c are formed, and this groove remains until the F step and At remains in this groove during At etching, causing a short between the electrodes.

これに対し、本発明においてはこの溝部は形成されない
ため、電極間ショートは発生しない。
On the other hand, in the present invention, since this groove is not formed, no short circuit occurs between the electrodes.

発明の効果 以上の様に本発明は、酸化工程が減少し、サイドエッチ
、電流増幅率のバラツキ等も少なく高精度・高速で高密
度の半導体装置の提供に寄与するものである。
As described above, the present invention contributes to the provision of a high-precision, high-speed, high-density semiconductor device with fewer oxidation steps, less side etching, less variation in current amplification factor, etc.

【図面の簡単な説明】[Brief explanation of drawings]

、第1図A〜Fは従来法による酸化膜分離を行なったn
pnトランジスタ及び高抵抗を持つ半導体装置の製造工
程断面図、第2図へ〜Dは本発明の一実施例にかかる酸
化膜分離を行なったnpnトランジスタ及び高抵抗を持
つ半導体製造工程断面図、第3図Aは従来法により形成
したnpnトランジスタの電率増幅率のバラッM3図B
は本発明による方法により形成したnpnトランジスタ
の電流増幅率のバラツキを示す図である。 1・・・・・シリコン基板、2a、2b・・・・n形埋
込領域、3・・・・・・エピタキシャル層、109a。 1o9b 、109G・・・・・Si3N4膜、114
・酸化膜、110・・・・・グラフトベース、111−
・高抵抗コンタクト拡散領域、115− 活性ベース、
116・・・−・・エミッタ、117,118,119
゜120 、12 ot−−電極。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 @1図 第2図 第2図
, FIGS. 1A to 1F show the oxide film separated by the conventional method.
Figure 2 is a cross-sectional view of the manufacturing process of a pn transistor and a semiconductor device with high resistance; Figure 3A shows the variation of the current amplification factor of the npn transistor formed by the conventional method.
FIG. 2 is a diagram showing variations in current amplification factors of npn transistors formed by the method according to the present invention. 1...Silicon substrate, 2a, 2b...N-type buried region, 3...Epitaxial layer, 109a. 1o9b, 109G...Si3N4 film, 114
・Oxide film, 110...Graft base, 111-
- High resistance contact diffusion region, 115- active base,
116...--Emitter, 117, 118, 119
°120, 12 ot--electrode. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure @ Figure 1 Figure 2 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)一方導電形基板上に、他方導電形の第1.第2島
領域を形成する工程、上記基板上及び上記第1、第2島
領域の第1領域に耐酸化性膜を形成し、上記耐酸化性膜
をマスクにして拡散により上記第1、第2島領域内にそ
れぞれ一方導電形第2.第3領域を形成する工程、マス
ク層を用いて、第2島領域内の上記耐酸化性膜下に上記
第3領域と電気的に接続するよう一方導電形第4領域を
イオン注入形成する工程、上記第1島領域上の面・1酸
化性膜を所望領域を残して除去し、上記所望領域の耐酸
化性膜をマスクに選択酸化する工程、上記酸化膜をマス
クにイオン注入により活性ベースとなる一方導電形の第
5領域、エミッタとなる他方導電形の第6領域を形成す
る工程を少なくとも含む半導体装置の製造方法。
(1) On one conductivity type substrate, the first conductivity type substrate is placed on the other conductivity type substrate. forming a second island region, forming an oxidation-resistant film on the substrate and on the first regions of the first and second island regions, and diffusing the first and second island regions using the oxidation-resistant film as a mask; One conductivity type second. a step of forming a third region; a step of ion-implanting a fourth region of one conductivity type under the oxidation-resistant film in the second island region so as to be electrically connected to the third region using a mask layer; , a step of removing the surface-first oxide film on the first island region except for a desired region, and selectively oxidizing the oxidation-resistant film in the desired region using the oxidation-resistant film as a mask; forming an active base by ion implantation using the oxide film as a mask; A method for manufacturing a semiconductor device including at least the step of forming a fifth region of one conductivity type to serve as an emitter, and a sixth region of the other conductivity type to serve as an emitter.
(2)第1.第2の島領域の側面を絶縁物により分離を
行なう工程を含むことを特徴とする特許請求の範囲第1
項記載の半導体装置の製造方法。
(2) First. Claim 1, characterized in that it includes a step of isolating the side surfaces of the second island region with an insulator.
A method for manufacturing a semiconductor device according to section 1.
JP17734283A 1983-09-26 1983-09-26 Manufacture of semiconductor device Pending JPS6068646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17734283A JPS6068646A (en) 1983-09-26 1983-09-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17734283A JPS6068646A (en) 1983-09-26 1983-09-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6068646A true JPS6068646A (en) 1985-04-19

Family

ID=16029285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17734283A Pending JPS6068646A (en) 1983-09-26 1983-09-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6068646A (en)

Similar Documents

Publication Publication Date Title
JPH05347383A (en) Manufacture of integrated circuit
JPS6068646A (en) Manufacture of semiconductor device
JPH0128507B2 (en)
JP2633411B2 (en) Method for manufacturing semiconductor device
JPS6037614B2 (en) Manufacturing method of semiconductor device
JPH0744183B2 (en) Method for manufacturing semiconductor device
JP2820284B2 (en) Method for manufacturing semiconductor device
JPS59165456A (en) Manufacture of semiconductor device
JPS62281367A (en) Manufacture of semiconductor device
JPS5886768A (en) Manufacture of semiconductor device
JPS61154073A (en) Manufacture of semiconductor device
JPH0132669B2 (en)
JPS59960A (en) Manufacture of semiconductor device
JPS6297364A (en) Manufacture of semiconductor device
JPS59147457A (en) Manufacture of semiconductor device
JPS6147661A (en) Manufacture of semiconductor device
JPS5987858A (en) Manufacture of semiconductor device
JPS63199462A (en) Manufacture of semiconductor device
JPH01189159A (en) Manufacture of semiconductor integrated circuit device
JPH04162631A (en) Manufacture of semiconductor device
JPH0245329B2 (en)
JPS63115373A (en) Semiconductor device
JPH0548937B2 (en)
JPS61102777A (en) Manufacture of semiconductor device
JPS59147455A (en) Manufacture of semiconductor device