JPS62290720A - Epoxy resin molding material for sealing electronic component - Google Patents

Epoxy resin molding material for sealing electronic component

Info

Publication number
JPS62290720A
JPS62290720A JP13559986A JP13559986A JPS62290720A JP S62290720 A JPS62290720 A JP S62290720A JP 13559986 A JP13559986 A JP 13559986A JP 13559986 A JP13559986 A JP 13559986A JP S62290720 A JPS62290720 A JP S62290720A
Authority
JP
Japan
Prior art keywords
epoxy resin
component
molding material
resin molding
electronic components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13559986A
Other languages
Japanese (ja)
Inventor
Shinsuke Hagiwara
伸介 萩原
Etsuji Kubo
久保 悦司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP13559986A priority Critical patent/JPS62290720A/en
Publication of JPS62290720A publication Critical patent/JPS62290720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain the title material for sealing electronic components, which is excellent in flow and gel time and can give a molding excellent in heat resistance, by mixing a specified epoxy resin with a phenolic hydroxyl group- containing compound. CONSTITUTION:A condensate of a phenol (a) with hydroxybenzaldehyde (e.g., phenol/salicylaldehyde novolak resin) is epoxidized to obtain an epoxy resin (A) represented by the formula (wherein R is H or an alkyl such as methyl, propyl or t-butyl and n>=0) and having, on the average, 4-10 benzene nuclei derived from component (a) and component (b) and a hydrolyzable chlorine content <=500ppm. Component A is mixed with 0.6-1.3, preferably, 0.9-1.1 (in terms of a ratio of the number of hydroxyl equivalents of component B to the number of epoxy equivalents of component A) of a compound (B) having at least two phenolic hydroxyl groups in the molecule (e.g., novolak phenolic resin) and, optionally, an epoxy resin other than component A, a cure accelerator, an inorganic filler, a mold release, a colorant, a coupling agent, etc.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は耐熱性に優れた電子部品封止用エポキシ樹脂成
形材料に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an epoxy resin molding material for encapsulating electronic components with excellent heat resistance.

〔従来の技術〕[Conventional technology]

従来、コイル、コンデンサ、トランジスタ、■Cなどの
電子部品封止用としては、エポキシ樹脂成形材料が広く
用いられている。特にガラス転移温度が高く、すなわち
耐熱性の優れた組成としては、フェノール類とホルムア
ルデヒドのノボラックをエポキシ化したエポキシ樹脂が
用いられており、その硬化剤としてはフェノール・ホル
ムアルデヒドノボラック樹脂が用いられている。
Conventionally, epoxy resin molding materials have been widely used for encapsulating electronic components such as coils, capacitors, transistors, and C. In particular, epoxy resins with a high glass transition temperature, that is, excellent heat resistance, are used as epoxidized novolacs of phenols and formaldehyde, and phenol/formaldehyde novolac resins are used as the curing agent. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

トランジスタ、ICなどの電子部品には素子の発熱によ
り、素子温度が高くなるものがある。また、配線基板へ
の実装時に半田ディプ、半田リフローなどの加熱工程が
あり、電子部品のスクリーニング時に高温動作試験を行
うものもある。このような状況を考慮すると、電子部品
封止用成形材料には十分高いガラス転移温度(以下Tg
と略す)が必要になる。すなわち、Tgを境に成形材料
の物性が大きく変化し、例えば線膨張係数はTg以上で
3倍前後になるため、素子と成形材料間には大きな歪み
が発生する。この歪みを小さくするには成形材料のTg
を向上させる必要があり、従来の成形材料の組成では不
十分である。
BACKGROUND ART Some electronic components such as transistors and ICs have an element temperature that increases due to the heat generated by the element. Additionally, there are heating processes such as solder dipping and solder reflow when mounted on a wiring board, and there are also products that perform high-temperature operation tests when screening electronic components. Considering this situation, molding materials for encapsulating electronic components must have a sufficiently high glass transition temperature (hereinafter referred to as Tg).
) is required. That is, the physical properties of the molding material change significantly after Tg, and for example, the coefficient of linear expansion becomes about three times as high as Tg or higher, resulting in large distortion between the element and the molding material. To reduce this distortion, the Tg of the molding material
There is a need to improve this, and the compositions of conventional molding materials are insufficient.

本発明は、上記問題点を解決し、Tgが高く、耐熱性に
優れた電子部品封止用エポキシ樹脂成形材料を提供せん
として為されたものである。
The present invention was made to solve the above-mentioned problems and provide an epoxy resin molding material for encapsulating electronic components that has a high Tg and excellent heat resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電子部品封止用エポキシ樹脂成形材料は、 (A)フェノール類とヒドロキシベンズアルデヒドとの
縮合物をエポキシ化して得られるエポキシ樹脂および (B)1分子中に2個以上のフェノール性水酸基を有す
る化合物 を必須成分として成ることを特徴とする。
The epoxy resin molding material for encapsulating electronic components of the present invention includes (A) an epoxy resin obtained by epoxidizing a condensate of phenols and hydroxybenzaldehyde; and (B) an epoxy resin having two or more phenolic hydroxyl groups in one molecule. It is characterized in that it consists of a compound having as an essential component.

本発明における(A)のエポキシ樹脂としては、フェノ
ール、クレゾールをはじめ、プロピル基、tert−ブ
チル基などのアルキル基を有するm個フエノール類とサ
リチルアルデヒドなどヒドロキシベンズアルデヒドとの
酸触媒下における縮合物を原料とし、エピクロルヒドリ
ンなどによりエポキシ化した化合物が挙げられるが、フ
ェノール類、ヒドロキシベンズアルデヒドの種類につい
ては特に限定するものではなく、縮合およびエポキシ化
の方法についても特に限定するものではない。
The epoxy resin (A) in the present invention is a condensation product of m phenols having alkyl groups such as phenol, cresol, propyl group and tert-butyl group and hydroxybenzaldehyde such as salicylaldehyde under acid catalyst. Examples include compounds epoxidized with epichlorohydrin or the like as a raw material, but there are no particular limitations on the types of phenols or hydroxybenzaldehyde, and there are no particular limitations on the condensation and epoxidation methods.

本発明の(A)のエポキシ樹脂の代表的な構造式は (式中、RはH1メチル、プロピル、terL−ブチル
などのアルキル基であり、nはOまたは正の整数を表す
。)で示される。
A typical structural formula of the epoxy resin (A) of the present invention is shown by (wherein, R is an alkyl group such as H1 methyl, propyl, terL-butyl, etc., and n represents O or a positive integer). It will be done.

厳密には、上式の構造の他にnが大きな場合、枝分かれ
した多種の技分かれ構造が考えられる。
Strictly speaking, in addition to the structure of the above formula, when n is large, various types of branched technique division structures are possible.

上式中のn=0の場合、ベンゼン核の積数は3となり、
すなわち3核体(3官能エポキシ樹脂)のみとなるが、
nが大きくなるに従い、フェノール類とヒドロキシベン
ズアルデヒドから発生するベンゼン積数は3+2nの割
合で多くなり、実際のエポキシ樹脂はこれらの集合体で
ある。本発明の(A)のエポキシ樹脂において、フェノ
ール類とヒドロキシベンズアルデヒドから発生するベン
ゼン核の平均積数は大きくなる程、Tg回向上効果のあ
ることが、本発明に係る検討の結果明らかになっている
。しかし、ベンゼン核の平均積数が大きくなるに伴い、
エポキシ樹脂の軟化点が高くなり、成形材料としての流
動性を低下させる欠点がある。従って、本発明の特徴を
十分に発揮するためには、ベンゼン核の平均積数は4以
上、10以下が好ましい。この場合のベンゼン核の平均
積数はGPC(ゲルパーミェーションクロマトグラフィ
)法で測定した分子量分布から求めることができる。本
発明で使用したGPCは東洋曹達製HLC801型、カ
ラムは同社製TSK−Get(G−3000H,1本、
G−2000H63本)であり、溶媒はテトラヒドロフ
ランを用い、流速1.6 ml/min 、試料濃度0
.2〜0.3g/10m1の条件で測定を行った。分子
量分布からベンゼン核の平均積数を求める方法としては
参考文献(柘植、外;日本化学会誌、No、4、P2O
3,1972年)に記述がある。
When n=0 in the above formula, the product number of benzene nuclei is 3,
In other words, there is only a trinuclear body (trifunctional epoxy resin), but
As n increases, the number of benzene products generated from phenols and hydroxybenzaldehyde increases at a ratio of 3+2n, and the actual epoxy resin is an aggregate of these. As a result of studies related to the present invention, it has become clear that in the epoxy resin (A) of the present invention, the larger the average number of benzene nuclei generated from phenols and hydroxybenzaldehyde, the more effective the Tg cycle is. There is. However, as the average product number of benzene nuclei increases,
This has the disadvantage that the softening point of the epoxy resin becomes high and the fluidity as a molding material decreases. Therefore, in order to fully exhibit the features of the present invention, the average number of benzene nuclei is preferably 4 or more and 10 or less. In this case, the average number of benzene nuclei can be determined from the molecular weight distribution measured by GPC (gel permeation chromatography). The GPC used in the present invention was Toyo Soda HLC801 model, and the column was TSK-Get (G-3000H, 1 column,
G-2000H (63 bottles), the solvent used was tetrahydrofuran, the flow rate was 1.6 ml/min, and the sample concentration was 0.
.. The measurement was carried out under the conditions of 2 to 0.3 g/10 m1. References (Tsuge, et al.; Journal of the Chemical Society of Japan, No. 4, P2O
3, 1972).

本発明の(A)のエポキシ樹脂の純度、特に加水分解製
塩素量はICなど素子上のアルミ配線腐食に係るため少
ない法がよく、耐湿性の優れた電子部品封土用エポキシ
樹脂成形材料を得るためには、500ppm以下である
ことが好ましい。本発明において、加水分解製塩素量と
は、試料1gをジオキサン30i1に溶解し、IN−K
OHメタノール溶液5m5奢l加して300分間リフラ
ックスた後、電位差滴定により求めた測定値をいう。
The purity of the epoxy resin (A) of the present invention, especially the amount of chlorine produced by hydrolysis, is better as it is related to corrosion of aluminum wiring on elements such as ICs, and an epoxy resin molding material for electronic component enclosures with excellent moisture resistance is obtained. Therefore, it is preferably 500 ppm or less. In the present invention, the amount of hydrolyzed chlorine refers to the amount of chlorine obtained by dissolving 1 g of sample in dioxane 30i1 and
This refers to the measured value determined by potentiometric titration after adding 5ml of OH methanol solution and refluxing for 300 minutes.

本発明においては、(A)のエポキシ樹脂以外のエポキ
シ樹脂を併用してもよい。例えば、通称エビ−ビス型と
呼ばれるビスフェノールA1ビスフエノールF1ビスフ
エノールSなどのジグリシジルエーテル、フェノール類
とホルムアルデヒドとのノボラック樹脂をエポキシ化し
たもの、オレフィン結合のエポキシ化により誘導される
脂環型エポキシ樹脂などがあり、特に限定されるもので
ない。また、これらを適宜何種類でも併用することがで
きる。
In the present invention, epoxy resins other than the epoxy resin (A) may be used in combination. For example, diglycidyl ethers such as bisphenol A1, bisphenol F1, and bisphenol S, which are commonly called shrimp type, epoxidized novolac resins of phenols and formaldehyde, and alicyclic epoxies derived by epoxidation of olefin bonds. There are resins and the like, but there are no particular limitations. Moreover, any number of these can be used in combination as appropriate.

本発明において、(B)の1分子中に2個以上のフェノ
ール性水酸基を有する化合物としては、フェノール、ク
レゾール、キシレノール、レゾルシン、カテコール、ビ
スフェノールA1ビスフエノールFなどのフェノール類
とホルムアルデヒドとを酸性触媒化で縮合反応させて得
られるノボラック型フェノール樹脂、ビスフェノールA
1ビスフエノールF2ポリパラビニルフエノール樹脂、
レゾルシン、カテコール、ハイドロキノンなどの多価フ
ェノールなどがあり、単独または2種類以上併用しても
よい。また、(A)と(B)の配合割合は(A)のエポ
キシ樹脂との当量比((B)の水酸基当量/(A)のエ
ポキシ当量)を0.6〜1.3、さらに好ましくは0.
9〜1.1とすることが好ましい。
In the present invention, as a compound having two or more phenolic hydroxyl groups in one molecule of (B), phenols such as phenol, cresol, xylenol, resorcinol, catechol, bisphenol A1 and bisphenol F, and formaldehyde are combined with an acidic catalyst. Novolac type phenol resin, bisphenol A, obtained by condensation reaction with
1 bisphenol F2 polyparavinylphenol resin,
Examples include polyhydric phenols such as resorcinol, catechol, and hydroquinone, which may be used alone or in combination of two or more. In addition, the blending ratio of (A) and (B) is such that the equivalent ratio of (A) to the epoxy resin (hydroxyl equivalent of (B)/epoxy equivalent of (A)) is 0.6 to 1.3, more preferably 0.
It is preferable to set it as 9-1.1.

また、本発明の電子部品封止用エポキシ樹脂成形材料に
は、エポキシ樹脂とフェノール性水酸基を有する化合物
の硬化反応を促進する硬化促進剤を配合することができ
る。この硬化促進剤としては、例えば、トリエチレンジ
アミン、ベンジルジメチルアミン、トリエタノールアミ
ン、ジメチルアミノエタノール、トリス(ジメチルアミ
ノメチル)フェノールなどの三級アミン類、2−メチル
イミダゾール、2−フェニルイミダゾール、2−フェニ
ル−4−メチルイミダゾール、2−ヘプタデシルイミダ
ゾールなどのイミダゾール類、トリブチルホスフィン、
メチルジフェニルホスフィン、トリフェニルホスフィン
、ジフェニルホスフィン、フェニルホスフィンなどの有
機ホスフィン類、テトラフェニルホスホニウムテトラフ
ェニルボレート、トリフェニルホスフィンテトラフェニ
ルボレート、2−エチル−4−メチルイミダゾールテト
ラフェニルボレート、N−メチルモルホリンテトラフェ
ニルボレートなどのテトラフェニルボロン塩などがある
Furthermore, the epoxy resin molding material for encapsulating electronic components of the present invention may contain a curing accelerator that promotes the curing reaction between the epoxy resin and the compound having a phenolic hydroxyl group. Examples of the curing accelerator include tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, and tris(dimethylaminomethyl)phenol, 2-methylimidazole, 2-phenylimidazole, 2- Imidazoles such as phenyl-4-methylimidazole and 2-heptadecylimidazole, tributylphosphine,
Organic phosphines such as methyldiphenylphosphine, triphenylphosphine, diphenylphosphine, phenylphosphine, tetraphenylphosphonium tetraphenylborate, triphenylphosphine tetraphenylborate, 2-ethyl-4-methylimidazole tetraphenylborate, N-methylmorpholine tetra Examples include tetraphenylboron salts such as phenylborate.

また、本発明の電子部品封止用エポキシ樹脂成形材料に
は、無機質充填剤として、結晶シリカ、溶融シリカ、ア
ルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、
炭化珪素、窒化珪素、窒化ホウ素、ベリリア、マグネシ
ア、ジルコニア、ジルコン、フォーステライト、ステア
タイト、スピネル、ムライト、チタニアなどの粉体、お
よびチタン酸カリウム、炭化珪素、窒化珪素、アルミナ
などの単結晶繊維、ガラス繊維などを1種類以上配合す
ることができる。無機質充填剤の配合量としては、特に
限定するものではないが、40〜70容量%が好ましい
In addition, the epoxy resin molding material for encapsulating electronic components of the present invention includes crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate,
Powders such as silicon carbide, silicon nitride, boron nitride, beryllia, magnesia, zirconia, zircon, forsterite, steatite, spinel, mullite, titania, etc., and single crystal fibers such as potassium titanate, silicon carbide, silicon nitride, alumina, etc. , glass fiber, etc., may be blended. The amount of the inorganic filler blended is not particularly limited, but is preferably 40 to 70% by volume.

また、本発明の電子部品封土用エポキシ樹脂成形材料に
は、高級脂肪酸、高級脂肪酸金属塩、エステル系ワック
スなどの離型剤、カーボンブランクなどの着色剤、エポ
キシシラン、アミノシラン、ビニルシラン、アルキルシ
ラン、有機チタネート、アルミニウムアルコレートなど
のカップリング剤を使用することができる。
In addition, the epoxy resin molding material for electronic components of the present invention includes higher fatty acids, higher fatty acid metal salts, mold release agents such as ester waxes, colorants such as carbon blanks, epoxy silanes, aminosilanes, vinylsilanes, alkylsilanes, Coupling agents such as organic titanates, aluminum alcoholates, etc. can be used.

以上のような原材料を用いて電子部品封止用エポキシ樹
脂成形材料を作成する一般的な方法としては、所定の配
合量の原材料混合物をミキサー等によって充分混合した
後、熱ロール、押出機等によって混練し、冷却、粉砕す
ることによって、成形材料を得ることができる。本発明
で得られる成形材料を用いて電子部品を封止する方法と
しては、低圧トランスファ成形法が最も一般的であるが
、インジェクション成形、圧縮成形、注形などの方法に
よっても可能である。
A general method for creating an epoxy resin molding material for electronic component encapsulation using the above raw materials is to thoroughly mix the raw material mixture in a predetermined amount using a mixer, etc., and then heat it using a hot roll, extruder, etc. A molding material can be obtained by kneading, cooling, and pulverizing. The most common method for sealing electronic components using the molding material obtained in the present invention is low-pressure transfer molding, but methods such as injection molding, compression molding, and casting can also be used.

〔作用〕[Effect]

本発明でTgが高く、すなわち耐熱性の良好な電子部品
封止用エポキシ樹脂成形材料が得られる理由は、(A)
のエポキシ樹脂の構造によるものである。従来、高Tg
化に有利な多官能エポキシ樹脂としては、一般式 で示されるノボラック型エポキシ樹脂が広く用いられて
いる〔mは正の整数〕。この構造と本発明の(A)のエ
ポキシ樹脂の構造を比較すると、本発明のエポキシ樹脂
では、上式中のメチレンの炭素原子にさらにグリシドキ
シフェニル基が付加した構造であるため、架橋密度が高
くなり、Tgが高くなる。さらには、ベンゼン核の平均
積数を大きくすることで、エポキシ樹脂(プレポリマー
)の分子量が大きくなり、硬化後のTgがさらに高(な
ると考えられる。
The reason why the present invention provides an epoxy resin molding material for encapsulating electronic components with a high Tg, that is, with good heat resistance, is due to (A)
This is due to the structure of the epoxy resin. Conventionally, high Tg
Novolac type epoxy resins represented by the general formula are widely used as polyfunctional epoxy resins that are advantageous for chemical conversion [m is a positive integer]. Comparing this structure with the structure of the epoxy resin (A) of the present invention, the epoxy resin of the present invention has a structure in which a glycidoxyphenyl group is further added to the methylene carbon atom in the above formula, so the crosslinking density is becomes higher, and Tg becomes higher. Furthermore, by increasing the average number of benzene nuclei, the molecular weight of the epoxy resin (prepolymer) increases, and it is thought that the Tg after curing becomes even higher.

〔実施例〕〔Example〕

以下、実施例により本発明を説明するが、本発明の範囲
はこれらの実施例に限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the scope of the present invention is not limited to these Examples.

実施例1 フェノール−サリチルアルデヒドノボラック樹脂をエポ
キシ化した、エポキシ当量160、軟化点80℃、ベン
ゼン平均積数6.2、加水分解性塩素量300ppmの
、代表的な構造式 で示されるエポキシ樹脂(1)80重量部、エポキシ当
量375、軟化点80℃、臭素含量40重量%の臭素化
ビスフェノールA型エポキシ樹脂20重量部、水酸基当
量106、軟化点83℃のフェノールホルムアルデヒド
ノボラック樹脂59重量部、トリフェニルホスフィン1
.5重量部、カルナバワックス2重量部、三酸化アンチ
モン8重量部、カーボンブラック1.5重量部、T−グ
リシドキシプロピルトリメトキシシラン3重量部、石英
ガラス粉400重量部を配合し、10インチ径の加熱ロ
ールを使用して、混練温度80〜90℃、混練時間7〜
10分の条件で混練した。その後、朋来式粉砕機を用い
て粉砕し、エポキシ樹脂成形材料を作成した。
Example 1 An epoxy resin represented by a typical structural formula ( 1) 80 parts by weight, 20 parts by weight of brominated bisphenol A epoxy resin with an epoxy equivalent of 375, a softening point of 80°C, and a bromine content of 40% by weight, 59 parts by weight of a phenol formaldehyde novolak resin with a hydroxyl equivalent of 106 and a softening point of 83°C, Phenylphosphine 1
.. 5 parts by weight, carnauba wax 2 parts by weight, antimony trioxide 8 parts by weight, carbon black 1.5 parts by weight, T-glycidoxypropyltrimethoxysilane 3 parts by weight, and quartz glass powder 400 parts by weight. Using a heating roll with a diameter of 80 to 90℃, kneading time to
The mixture was kneaded for 10 minutes. Thereafter, it was crushed using a conventional crusher to create an epoxy resin molding material.

実施例2 オルソクレゾール−サリチルアルデヒドノボラック樹脂
をエポキシ化した、エポキシ当量172、軟化点84℃
、ベンゼン平均積数6.4、加水分解性塩素量200p
pmの代表的な構造式で示されるエポキシ樹脂(n)を
実施例1のエポキシ樹脂(1)に代えて用い、フェノー
ルホルムアルデヒドノボラック樹脂量を55重量部に変
えた以外は実施例1と同条件で成形材料を作成した。
Example 2 Epoxidized orthocresol-salicylaldehyde novolak resin, epoxy equivalent: 172, softening point: 84°C
, benzene average product number 6.4, hydrolyzable chlorine amount 200p
Same conditions as Example 1 except that epoxy resin (n) represented by the typical structural formula of pm was used in place of epoxy resin (1) in Example 1, and the amount of phenol formaldehyde novolak resin was changed to 55 parts by weight. A molding material was created.

比較例1 エポキシ当ff1l 80.軟化点75℃の代表的な構
造式 で示される従来のフェノールノボラック型エポキシ樹脂
を実施例1のエポキシ樹脂CI)に代えて使用し、フェ
ノールホルムアルデヒドノボラック樹脂量を53重量部
に変えた以外は実施例1と同条件で成形材料を作成した
Comparative Example 1 Epoxy ff1l 80. Except that a conventional phenol novolak type epoxy resin represented by a typical structural formula with a softening point of 75°C was used in place of the epoxy resin CI) of Example 1, and the amount of phenol formaldehyde novolac resin was changed to 53 parts by weight. A molding material was prepared under the same conditions as in Example 1.

比較例2 エポキシ当量220、軟化点80℃の代表的な構造式 で示される従来のクレゾールノボラック型エポキシ樹脂
を実施例1のエポキシ樹脂(1)に代えて使用し、フェ
ノールホルムアルデヒドノボラック樹脂量を44重量部
に変えた以外は実施例1と同条件で成形材料を作成した
Comparative Example 2 A conventional cresol novolac type epoxy resin having a typical structural formula with an epoxy equivalent of 220 and a softening point of 80°C was used in place of the epoxy resin (1) of Example 1, and the amount of phenol formaldehyde novolac resin was 44. A molding material was prepared under the same conditions as in Example 1 except that the parts by weight were changed.

表1に上記実施例および比較例の成形材料の特性を示す
。また、上記成形材料を用い、70kg/−の圧力下で
180℃、90秒の条件で成形品を作製し、さらに18
0℃で5時間アフタキュアし、各成形品のTgを測定し
た。その結果を表Jに示す。
Table 1 shows the properties of the molding materials of the above examples and comparative examples. Further, using the above molding material, a molded product was produced under the conditions of 180°C and 90 seconds under a pressure of 70 kg/-, and
After curing was carried out at 0° C. for 5 hours, and the Tg of each molded article was measured. The results are shown in Table J.

以下余白 表1 スパイラルフロー:EMMI  1−66に準じ、金型
温度180’C1圧カフ0kg/cnlの条件で測定。
Margin Table 1 below Spiral flow: Measured according to EMMI 1-66 under conditions of mold temperature 180'C, pressure cuff 0 kg/cnl.

ゲルタイム: J r S−に−5909ニ阜し、18
0”C18珠旧0.5gで演1定。
Gel time: J r S-ni-5909, 18
0” C18 beads old 0.5g for 1 performance.

Tg    :理学電機製TMA装置を用い、成形品の
7m変−線膨張量曲線から、その屈曲点の温度をTgと
した。渭淀温度範囲ば室温〜250℃。
Tg: Using a TMA device manufactured by Rigaku Denki, the temperature at the bending point of the 7 m linear expansion curve of the molded product was determined as Tg. The temperature range is room temperature to 250℃.

この結果、エポキシ樹脂(1)を使用した実施例1と従
来のフェノールノポラフク型エポキシ樹脂を使用した比
較例1を比較すると、実施例1では成形品のTgが30
℃高くなり、また、成形材料の流動性(スパイラルフロ
ー)も十分である。
As a result, when comparing Example 1, which used epoxy resin (1), and Comparative Example 1, which used conventional phenol-nopo-fuku type epoxy resin, it was found that in Example 1, the Tg of the molded product was 30.
℃, and the fluidity (spiral flow) of the molding material is also sufficient.

同様に、本発明のエポキシ樹脂(n)を使用した実施例
2と従来のクレゾールノボラック型エポキシ樹脂を使用
した比較例2を比較すると、実施例2では成形品のTg
が40゛C高くなり、また成形材料の流動性も十分であ
る。また、ゲルタイムを比較しても、実施例1および2
の成形材料ならびに比較例1および2の成形材料共に同
等である。
Similarly, when comparing Example 2 using the epoxy resin (n) of the present invention and Comparative Example 2 using a conventional cresol novolak type epoxy resin, it is found that in Example 2, the Tg of the molded product
The temperature is 40°C higher, and the fluidity of the molding material is also sufficient. Also, even when comparing the gel time, Examples 1 and 2
The molding materials of Comparative Examples 1 and 2 are the same.

このように、本発明で得られる電子部品封止用エポキシ
樹脂成形材料は従来組成の成形材料と比較して格段に高
いTgを示し、流動性の低下またはゲルタイムの長期化
をもたらすこともない。
As described above, the epoxy resin molding material for electronic component sealing obtained by the present invention exhibits a much higher Tg than molding materials of conventional compositions, and does not cause a decrease in fluidity or a prolonged gel time.

〔発明の効果〕〔Effect of the invention〕

本発明による電子部品封止用エポキシ樹脂成形材料は流
動性およびゲルタイム共に良好であり、この電子部品封
止用エポキシ樹脂成形材料を用いて製作した成形品はT
gが高く、その結果耐熱性に優れた成形品を得ることが
でき、その工業的価値は大である。
The epoxy resin molding material for encapsulating electronic components according to the present invention has good fluidity and gel time, and molded products manufactured using this epoxy resin molding material for encapsulating electronic components have T.
g is high, and as a result, molded products with excellent heat resistance can be obtained, and their industrial value is great.

Claims (1)

【特許請求の範囲】 1、(A)フェノール類とヒドロキシベンズアルデヒド
との縮合物をエポキシ化して得られるエポキシ樹脂およ
び (B)1分子中に2個以上のフェノール性水酸基を有す
る化合物 を必須成分として成ることを特徴とする電子部品封止用
エポキシ樹脂成形材料。 2、(A)のエポキシ樹脂におけるフェノール類とヒド
ロキシベンズアルデヒドから発生するベンゼン核の平均
核数が4核以上10核以下である特許請求の範囲第1項
記載の電子部品封止用エポキシ樹脂成形材料。 3、(A)のエポキシ樹脂の加水分解性塩素量が50p
pm以下である特許請求の範囲第1項または第2項記載
の電子部品封止用エポキシ樹脂成形材料。
[Claims] 1. (A) an epoxy resin obtained by epoxidizing a condensate of phenols and hydroxybenzaldehyde; and (B) a compound having two or more phenolic hydroxyl groups in one molecule as essential components. An epoxy resin molding material for encapsulating electronic components. 2. The epoxy resin molding material for encapsulating electronic components according to claim 1, wherein the average number of benzene nuclei generated from phenols and hydroxybenzaldehyde in the epoxy resin (A) is 4 or more and 10 or less. . 3. The amount of hydrolyzable chlorine in the epoxy resin (A) is 50p
pm or less, the epoxy resin molding material for electronic component sealing according to claim 1 or 2.
JP13559986A 1986-06-11 1986-06-11 Epoxy resin molding material for sealing electronic component Pending JPS62290720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13559986A JPS62290720A (en) 1986-06-11 1986-06-11 Epoxy resin molding material for sealing electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13559986A JPS62290720A (en) 1986-06-11 1986-06-11 Epoxy resin molding material for sealing electronic component

Publications (1)

Publication Number Publication Date
JPS62290720A true JPS62290720A (en) 1987-12-17

Family

ID=15155585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13559986A Pending JPS62290720A (en) 1986-06-11 1986-06-11 Epoxy resin molding material for sealing electronic component

Country Status (1)

Country Link
JP (1) JPS62290720A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268713A (en) * 1988-04-20 1989-10-26 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor
JPH01275626A (en) * 1988-04-28 1989-11-06 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing
JPH0232115A (en) * 1988-07-22 1990-02-01 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor
JPH0280424A (en) * 1988-09-16 1990-03-20 Toshiba Corp Epoxy resin composition and resin-sealed semiconductor device
JPH0294654A (en) * 1988-09-30 1990-04-05 Nitto Denko Corp Semiconductor device
EP0372983A2 (en) * 1988-12-08 1990-06-13 Sumitomo Bakelite Company Limited Epoxy resin composition for semiconductor sealing
JPH02208314A (en) * 1989-02-07 1990-08-17 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH039919A (en) * 1989-06-08 1991-01-17 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH0324115A (en) * 1989-06-22 1991-02-01 Nippon Kayaku Co Ltd Epoxy resin composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626926A (en) * 1979-08-10 1981-03-16 Toshiba Corp Epoxy resin molding material for sealing electronic part
JPS57141419A (en) * 1981-02-27 1982-09-01 Mitsubishi Petrochem Co Ltd Production of polyepoxide
JPS57212224A (en) * 1981-06-24 1982-12-27 Nitto Electric Ind Co Ltd Epoxy resin composition for encapsulation of semiconductor
JPS6142530A (en) * 1984-08-06 1986-03-01 Sumitomo Bakelite Co Ltd Epoxy resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626926A (en) * 1979-08-10 1981-03-16 Toshiba Corp Epoxy resin molding material for sealing electronic part
JPS57141419A (en) * 1981-02-27 1982-09-01 Mitsubishi Petrochem Co Ltd Production of polyepoxide
JPS57212224A (en) * 1981-06-24 1982-12-27 Nitto Electric Ind Co Ltd Epoxy resin composition for encapsulation of semiconductor
JPS6142530A (en) * 1984-08-06 1986-03-01 Sumitomo Bakelite Co Ltd Epoxy resin composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268713A (en) * 1988-04-20 1989-10-26 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor
JPH01275626A (en) * 1988-04-28 1989-11-06 Sumitomo Bakelite Co Ltd Epoxy resin composition for semiconductor sealing
JPH0232115A (en) * 1988-07-22 1990-02-01 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing semiconductor
JPH0280424A (en) * 1988-09-16 1990-03-20 Toshiba Corp Epoxy resin composition and resin-sealed semiconductor device
JPH0294654A (en) * 1988-09-30 1990-04-05 Nitto Denko Corp Semiconductor device
EP0372983A2 (en) * 1988-12-08 1990-06-13 Sumitomo Bakelite Company Limited Epoxy resin composition for semiconductor sealing
JPH02208314A (en) * 1989-02-07 1990-08-17 Sumitomo Bakelite Co Ltd Epoxy resin composition
JPH039919A (en) * 1989-06-08 1991-01-17 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JPH0324115A (en) * 1989-06-22 1991-02-01 Nippon Kayaku Co Ltd Epoxy resin composition

Similar Documents

Publication Publication Date Title
JPH04328121A (en) Epoxy resin composition for sealing semiconductor
JPS62290720A (en) Epoxy resin molding material for sealing electronic component
JPH10298405A (en) Epoxy resin composition and cured product composite
JPS62254454A (en) Semiconductor device
JP2003213081A (en) Epoxy resin composition and semiconductor device
JPS62254453A (en) Semiconductor device
JPS6250324A (en) Epoxy resin molding material for sealing electronic component
JPS62174222A (en) Epoxy resin molding material for sealing electronic component
JPH0977958A (en) Epoxy resin composition and semiconductor device
JPH04328117A (en) Epoxy resin composition for sealing semiconductor
JPH01272620A (en) Epoxy resin molding material for electronic parts sealing use
JPH04173828A (en) Epoxy resin molding material for sealing electric part
JPS63178126A (en) Epoxy resin molding material for sealing electronic component
JPH05217702A (en) Epoxy resin molding material for sealing electronic part
JPH02166116A (en) Epoxy resin molding material for sealing electronic component
JPS63130619A (en) Epoxy resin molding material for sealing electronic component
JPH03221516A (en) Production of epoxy resin and epoxy resin composition
JPS5918724A (en) Termosetting resin composition
JPS6335615A (en) Epoxy resin composition for sealing semiconductor
JPS6395222A (en) Epoxy resin molding material for sealing electronic part
JPH03212423A (en) Epoxy resin molding material for sealing electronic part
JPH03106960A (en) Epoxy resin molding material
JPH07216052A (en) Epoxy resin and epoxy resin composition
JPH02129220A (en) Epoxy resin molding material for sealing electronic component and preparation thereof
JPH01108252A (en) Epoxy resin molding material for sealing electronic component