JPS62252122A - Magnetic thin film - Google Patents

Magnetic thin film

Info

Publication number
JPS62252122A
JPS62252122A JP9441986A JP9441986A JPS62252122A JP S62252122 A JPS62252122 A JP S62252122A JP 9441986 A JP9441986 A JP 9441986A JP 9441986 A JP9441986 A JP 9441986A JP S62252122 A JPS62252122 A JP S62252122A
Authority
JP
Japan
Prior art keywords
stress
thin film
magnetic
film
magnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9441986A
Other languages
Japanese (ja)
Other versions
JPH0746665B2 (en
Inventor
Hiroichi Goto
博一 後藤
Shuzo Abiko
安彦 修三
Hideto Sano
佐野 秀人
Hisanori Hayashi
林 久範
Takeshi Osato
毅 大里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP61094419A priority Critical patent/JPH0746665B2/en
Publication of JPS62252122A publication Critical patent/JPS62252122A/en
Publication of JPH0746665B2 publication Critical patent/JPH0746665B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To remarkably reduce cracks and crazes in a magnetic substrate by properly managing H density of a magnetic thin film depositing atmosphere. CONSTITUTION:H2 partial pressure in a sputtering atmosphere is set at 10<-10> Torr or lower to reduce H atoms introduced into a magnetic thin film 1. After a Sendust film 1 is formed on a ferrite substrate 2, its temperature is returned to room temperature. Then, a compression stress to make it convex on the side of the film 1 is generated. When it is heated up to 600 deg.C, the stress is increased. When held at 600 deg.C, H atoms are less in the Sendust film. Thus, a dislocation of the Sendust film hardly occurs, and the stress is scarcely alleviated or, even if the stress is moderated, its value is small. When returned to room temperature, since the stress moderation in the case where it is held at 600 deg.C is small, the substrate 2 substantially becomes of a flat state to be returned to the original state.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁性薄膜に係り、特に磁気ヘッドの記録媒体摺
動面側に形成される磁性薄膜に適用して好適なる磁性薄
膜に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic thin film, and particularly to a magnetic thin film suitable for application to a magnetic thin film formed on the recording medium sliding surface side of a magnetic head. .

[従来の技術] 磁気記録の高密度化に伴ない、使用される磁気記録媒体
(以下、磁気テープと言う)も高抗磁力(Hc)タイプ
のものが必要となる。
[Prior Art] As the density of magnetic recording increases, the magnetic recording medium (hereinafter referred to as magnetic tape) used also needs to be of a high coercive force (Hc) type.

例えばVTR用の磁気ヘッドにおいても、記録信号の高
密度化に伴ない、高Hcテープであるメタルテープに対
応するためには、磁性酸化物であるフェライト単体では
飽和磁束密度が足りず、高飽和磁束密度を有する磁性金
属材料との複合磁性材料で磁気コアを形成する必要があ
る。
For example, in magnetic heads for VTRs, as the recording signal density increases, ferrite, which is a magnetic oxide, does not have enough saturation magnetic flux density to handle metal tapes, which are high Hc tapes. It is necessary to form a magnetic core using a composite magnetic material with a magnetic metal material having a magnetic flux density.

[発明が解決しようとする問題点] ところで、!1性酸化物と磁性金属材料との複合磁性材
料から成る磁気コアにおいては、例えばフエライトノ線
膨張係数は、 100−120 XIG/’0であり、
センダスト(Fe−Al2−3 i)は150〜170
 XIO/”Cであるため、ガラス溶着等の高温処理に
おいて、熱膨張差による応力によりフェライトに割れや
はがれ、あるいはひび等が生じる。
[Problem that the invention attempts to solve] By the way! In a magnetic core made of a composite magnetic material of a monomorphic oxide and a magnetic metal material, for example, the linear expansion coefficient of ferrite is 100-120 XIG/'0,
Sendust (Fe-Al2-3 i) is 150-170
Because it is XIO/''C, during high-temperature processing such as glass welding, stress caused by the difference in thermal expansion causes cracking, peeling, or cracks in the ferrite.

特に、磁性酸化物と磁性金属材料を複合化するため、フ
ェライトコアの半体上にセンダスト薄膜をスパッタリン
グ等により形成する場合、熱応力によるフェライトコア
の割れ等が生じる。
In particular, when a sendust thin film is formed by sputtering or the like on a half of a ferrite core in order to combine a magnetic oxide and a magnetic metal material, cracks in the ferrite core occur due to thermal stress.

第2図に基づいて割れやひび等が生じる過程を説明する
The process by which cracks, cracks, etc. occur will be explained based on FIG.

第2図に示す例は、センダスト等の磁性薄膜中にH原子
が多く存在する場合を示している。
The example shown in FIG. 2 shows a case where a large number of H atoms exist in a magnetic thin film such as sendust.

第2図(a)はフェライト基板2上にスパッタリング等
によりセンダスト膜1が形成された後、室温に戻した時
のフェライト基板のそりの状態を示し、センダスト1側
を凹面とする圧縮応力が生じているφ また、第2図(b)は(a)に示したサンプルを600
 ”cに加熱した場合で、センダスト膜1の線膨張係数
がフェライトに比較して大きいため。
FIG. 2(a) shows the warped state of the ferrite substrate 2 when the sendust film 1 is formed on the ferrite substrate 2 by sputtering or the like and then returned to room temperature, and compressive stress is generated that makes the sendust 1 side a concave surface. In addition, Fig. 2 (b) shows the sample shown in (a) at 600
This is because the coefficient of linear expansion of Sendust film 1 is larger than that of ferrite when heated to c.

センダスト膜1側の凸面が大きくなり、圧縮応力が更に
増大する。
The convex surface on the sendust film 1 side becomes larger, and the compressive stress further increases.

また、第2図(C)は、上述したサンプルを600℃に
保持した場合を示し、センダスト膜1は転位により応力
が緩和されるため、フェライト基板2とセンダストB’
J lの凸面が解消され、平坦となり、応力が除去され
た状態となっている。
Moreover, FIG. 2(C) shows the case where the above-mentioned sample is held at 600°C, and since the stress in the sendust film 1 is relaxed due to dislocation, the ferrite substrate 2 and the sendust film B'
The convex surface of J l has been eliminated and it has become flat, and the stress has been removed.

一方、第2図(d)は、上述したサンプルを600℃か
ら室温に戻した場合を示し、この場合にはf8膨張差に
よる応力が発生し、全体として凹面となり、フェライト
基板2に対する応力は引張応力となる。
On the other hand, FIG. 2(d) shows the case where the above-mentioned sample is returned to room temperature from 600°C. In this case, stress is generated due to the difference in f8 expansion, resulting in a concave surface as a whole, and the stress on the ferrite substrate 2 is tensile. It becomes stress.

そして、この引張応力の値が4X 10’  dyn/
cmを越えるとフェライト基板2に割れやひびが生じ、
センダストn々1がはがれてしまうことになる。
Then, the value of this tensile stress is 4X 10' dyn/
If it exceeds cm, cracks or cracks will occur in the ferrite substrate 2.
Sendust n1 will come off.

なお、上述した説明では(b)、(c)の過程は別過程
で進行するように説明したが、実際には(b)、(c)
の過程は同時に進行する。
In addition, in the above explanation, it was explained that processes (b) and (c) proceed as separate processes, but in reality, (b) and (c)
The processes proceed simultaneously.

[問題点を解決するための手段1 本発明においては上述した問題点を解決するために、磁
性S膜を薄膜堆積法により形成する場合の雰囲気をH2
分圧が10 7all以下で成膜させた。
[Means for Solving the Problems 1] In the present invention, in order to solve the above-mentioned problems, the atmosphere when forming the magnetic S film by the thin film deposition method is set to H2.
The film was formed at a partial pressure of 10 7 all or less.

[作 用] 上述した構造を使用すると、磁性薄膜中におけるH原子
が少なくなり、磁性基板側の割れやひび等の発生を著し
く減少させることができる。
[Function] When the above-described structure is used, the number of H atoms in the magnetic thin film is reduced, and the occurrence of cracks and cracks on the magnetic substrate side can be significantly reduced.

[実施例] 以下、図面に示す実施例に基づき本発明の詳細な説明す
る。
[Example] Hereinafter, the present invention will be described in detail based on the example shown in the drawings.

本発明者はスパッタリング等の薄膜堆積法により形成さ
れる磁性薄膜の熱応力による割れやひびの発生の原因を
調べた結果、磁性薄膜中ば存在するH原子の量との相関
関係が大きいことがわかった。
The inventor investigated the cause of cracks and cracks caused by thermal stress in magnetic thin films formed by thin film deposition methods such as sputtering, and found that there is a strong correlation with the amount of H atoms present in the magnetic thin film. Understood.

磁性fJ模膜中H原子が多数存在すると、磁性材の転移
速度が増大してしまう。
If a large number of H atoms exist in the magnetic fJ model, the transition speed of the magnetic material will increase.

また、Hは低温でも易動度が大きいため、結合エネルギ
ーが小さくても集合し、クラスタ等を生じて集団として
転位運動に顕著な効果を持つことがわかった。
Furthermore, since H has a high mobility even at low temperatures, it was found that even if the binding energy is small, it aggregates, forming clusters, etc., and collectively has a significant effect on dislocation motion.

そこで、本実施例にあっては磁性f1膜中のH原子を減
少させるために薄膜堆積雰囲気のHI3度を充分に管理
するようにした。
Therefore, in this embodiment, in order to reduce the H atoms in the magnetic f1 film, the HI3 degree of the thin film deposition atmosphere was sufficiently controlled.

具体的にはスパッタリング雰囲気におけるH2分圧を1
0 7all以下にし、磁性薄膜中に取り込まれるH原
子を減少させるようにした。
Specifically, the H2 partial pressure in the sputtering atmosphere is set to 1
0.07all or less to reduce the number of H atoms incorporated into the magnetic thin film.

上述した雰囲気において成膜した場合の例を、第1図(
a)〜(d)に示す。
An example of film formation in the above-mentioned atmosphere is shown in Figure 1 (
Shown in a) to (d).

第1図(a)はフェライト基板2上にセンダスト膜lを
形成した後、室温に戻した時のそりの状態を示し、セン
ダストll1l側を凸面とする圧縮応力が生じている。
FIG. 1(a) shows the warped state when the sendust film l is formed on the ferrite substrate 2 and then returned to room temperature, and compressive stress is generated that makes the sendust film l1l side a convex surface.

第1図(b)は上述したサンプルを600°Cに加熱し
た場合で、従来と同様にセンダスト膜l側の凸面は大き
くなり、圧縮応力は増加する。
FIG. 1(b) shows the case where the above-mentioned sample is heated to 600° C. As in the conventional case, the convex surface on the sendust film l side becomes larger and the compressive stress increases.

また、第2図(C)は、上述したサンプルを600℃に
保持した場合で、この場合には従来と異なりセンダスト
膜中にH原子が少ないため、センダスト膜の転位が生じ
にくく、はとんど応力緩和は生じていないか、または応
力緩和が行なわれていてもその値は小さい。
In addition, Figure 2 (C) shows the case where the above-mentioned sample is held at 600°C. In this case, unlike the conventional case, there are fewer H atoms in the sendust film, so dislocations in the sendust film are less likely to occur. Either no stress relaxation occurs, or even if stress relaxation occurs, its value is small.

一方、第1図(d)は上述したサンプルを室温に戻した
場合を示し、600℃に保持した場合の応力緩和が小さ
いため、フェライト基板2はほとんど平坦な状態となり
、第1図(a)に示す元の状態に戻る。
On the other hand, FIG. 1(d) shows the case where the above-mentioned sample is returned to room temperature.Since the stress relaxation when kept at 600°C is small, the ferrite substrate 2 becomes almost flat, and as shown in FIG. 1(a). Return to the original state shown in .

第1図(a)の状態に戻った場合にも、磁性基板2の凹
面側の引張応力は小さく、割れやひびは生じない。
Even when returning to the state shown in FIG. 1(a), the tensile stress on the concave side of the magnetic substrate 2 is small, and no cracks or cracks occur.

一般にフェライトは凸面となる圧縮応力には10 X 
109dyn/cm程度には耐えることはできるが、凹
面となる引張応力には4 X 10’  dyn/c■
が限界である。
In general, ferrite has a convex surface under compressive stress of 10
Although it can withstand about 109 dyn/cm, it can withstand tensile stress of 4 x 10' dyn/c which causes a concave surface.
is the limit.

本実施例にあっては第1図(a)〜(d)に示すような
熱処理過程を経るため、引張応力の値が小さくなりフェ
ライト基板の割れやひび等が減少する。
In this example, since the heat treatment process shown in FIGS. 1(a) to 1(d) is performed, the value of tensile stress is reduced and cracks and cracks in the ferrite substrate are reduced.

なお、スパッタリング装量の排気ポンプはクライオポン
プ等による排気以外に、ターボモレキュラーポンプ等の
水素排気速度の大きなポンプを併用することが必要であ
る。
In addition to evacuation using a cryopump or the like, it is necessary to use a pump with a high hydrogen evacuation speed such as a turbo molecular pump in combination with the evacuation pump for sputtering charging.

また、バイアススパッタ法を用いて不活性ガスでスバッ
タマック表面をたたくことはH原子の追い出しに極めて
効果がある。
Furthermore, hitting the sputtering surface with an inert gas using a bias sputtering method is extremely effective in expelling H atoms.

なお、上述した実施例で基板としてフェライト、磁性膜
としてセンダストを選んだ例を示したが、これらに限定
されず他の材料を選択できる。
In the above-described embodiments, ferrite is used as the substrate and sendust is used as the magnetic film, but the material is not limited to these and other materials can be selected.

また、非金属及び金属の膜の転位現象には水素の挙動が
大きく関与しており、上述した技術は全ての堆積薄膜に
適用できる。
Further, the behavior of hydrogen is greatly involved in the dislocation phenomenon of nonmetallic and metallic films, and the above-mentioned technique can be applied to all deposited thin films.

[効 果] 以上の説明から明らかなよう―、本発明によれば、磁性
薄膜の堆積雰囲気をH2分圧が10  Toll以下と
して磁性薄膜を成膜した構造を採用しているため、磁性
薄膜中のH原子が少なく基板側に割れやひびが生じるこ
とがなく、磁性薄膜のはがれも生じない。
[Effects] As is clear from the above description, according to the present invention, since the magnetic thin film is deposited in a deposition atmosphere with an H2 partial pressure of 10 Toll or less, a structure in which the magnetic thin film is deposited is adopted. Since there are few H atoms, cracks or cracks do not occur on the substrate side, and the magnetic thin film does not peel off.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(&)〜(d)は本発明の一実施例を説明する熱
処理過程の説明図、第2図(&)〜(d)は従来の熱処
理過程の説明図である。 l・・・センダスト膜  2・・・フェライト基板第1
図 (b) M2図
FIGS. 1(&) to (d) are explanatory diagrams of a heat treatment process for explaining one embodiment of the present invention, and FIGS. 2(&) to (d) are explanatory diagrams of a conventional heat treatment process. l... Sendust film 2... Ferrite substrate first
Figure (b) M2 diagram

Claims (1)

【特許請求の範囲】 1)基板上に薄膜堆積法により形成される磁性薄膜にお
いて、磁性薄膜の堆積雰囲気をH_2分圧が10^−^
1^0Toll以下で成膜したことを特徴とする磁性薄
膜。 2)前記磁性薄膜はFe−Al−Si系合金であること
を特徴とする特許請求の範囲第1項に記載の磁性薄膜。
[Claims] 1) In a magnetic thin film formed on a substrate by a thin film deposition method, the atmosphere in which the magnetic thin film is deposited has a H_2 partial pressure of 10^-^.
A magnetic thin film characterized in that it is formed at less than 1^0Toll. 2) The magnetic thin film according to claim 1, wherein the magnetic thin film is made of a Fe-Al-Si alloy.
JP61094419A 1986-04-25 1986-04-25 Method of manufacturing magnetic thin film Expired - Lifetime JPH0746665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61094419A JPH0746665B2 (en) 1986-04-25 1986-04-25 Method of manufacturing magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61094419A JPH0746665B2 (en) 1986-04-25 1986-04-25 Method of manufacturing magnetic thin film

Publications (2)

Publication Number Publication Date
JPS62252122A true JPS62252122A (en) 1987-11-02
JPH0746665B2 JPH0746665B2 (en) 1995-05-17

Family

ID=14109715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61094419A Expired - Lifetime JPH0746665B2 (en) 1986-04-25 1986-04-25 Method of manufacturing magnetic thin film

Country Status (1)

Country Link
JP (1) JPH0746665B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374112A (en) * 1986-09-17 1988-04-04 Fuji Photo Film Co Ltd Production of thin film magnetic head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100412A (en) * 1981-12-10 1983-06-15 Sony Corp Manufacture of soft magnetic material
JPS59146427A (en) * 1983-02-09 1984-08-22 Comput Basic Mach Technol Res Assoc Production of thin film magnetic head
JPS62210610A (en) * 1986-03-12 1987-09-16 Hitachi Ltd Manufacture of iron nitride thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100412A (en) * 1981-12-10 1983-06-15 Sony Corp Manufacture of soft magnetic material
JPS59146427A (en) * 1983-02-09 1984-08-22 Comput Basic Mach Technol Res Assoc Production of thin film magnetic head
JPS62210610A (en) * 1986-03-12 1987-09-16 Hitachi Ltd Manufacture of iron nitride thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374112A (en) * 1986-09-17 1988-04-04 Fuji Photo Film Co Ltd Production of thin film magnetic head

Also Published As

Publication number Publication date
JPH0746665B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
JPS62252122A (en) Magnetic thin film
US5244627A (en) Ferromagnetic thin film and method for its manufacture
JPS58100412A (en) Manufacture of soft magnetic material
Mapps et al. CoNbFe soft magnetic thin‐film backlayers for glass computer disks
JP3210736B2 (en) Manufacturing method of magnetic recording medium
JPS61216125A (en) Production of magnetic recording medium
JP2935606B2 (en) Manufacturing method of magnetic disk
JPS6235604A (en) Magnetically soft thin film
JP3221035B2 (en) Magnetic head
JPS62164205A (en) Magnetic recording medium
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
KR930006585B1 (en) Thin film and manufacturing method for magnetic head
JPH06244048A (en) Method for formation of magnetically soft thin film and magnetic head
JPS6339128A (en) Magnetic recording medium
JPH04117611A (en) Magnetic recording medium
JPH01132109A (en) Ferromagnetic thin film and magnetic head employing same
JPS58118033A (en) Production of magnetic recording medium
JPH0447521A (en) Magnetic recording medium
JPH0731810B2 (en) Method of manufacturing magnetic recording medium
JPS6215805A (en) Magnetic head
JPH02308419A (en) Production of magnetic recording medium
JPH0254409A (en) Magnetic head
JPH0376102A (en) Multilayer magnetic thin film and magnetic head using the same
JPS6394611A (en) Manufacture of co amorphous magnetic film
JPS62104111A (en) Soft magnetic thin film