JPH0731810B2 - Method of manufacturing magnetic recording medium - Google Patents

Method of manufacturing magnetic recording medium

Info

Publication number
JPH0731810B2
JPH0731810B2 JP62240164A JP24016487A JPH0731810B2 JP H0731810 B2 JPH0731810 B2 JP H0731810B2 JP 62240164 A JP62240164 A JP 62240164A JP 24016487 A JP24016487 A JP 24016487A JP H0731810 B2 JPH0731810 B2 JP H0731810B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
alloy
substrate
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62240164A
Other languages
Japanese (ja)
Other versions
JPS6484436A (en
Inventor
岳雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62240164A priority Critical patent/JPH0731810B2/en
Publication of JPS6484436A publication Critical patent/JPS6484436A/en
Publication of JPH0731810B2 publication Critical patent/JPH0731810B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録装置に用いられる磁気ディスクなど
の面内記録型磁気記録媒体(以下単に媒体とも称する)
の製造方法に関する。
The present invention relates to an in-plane recording type magnetic recording medium (hereinafter also simply referred to as medium) such as a magnetic disk used in a magnetic recording device.
Manufacturing method.

〔従来の技術〕[Conventional technology]

近年、磁気記録装置に用いられている連続薄膜磁気記録
媒体,特にCo合金系をスパッタした膜を磁性層とする媒
体は、従来の塗布型γ−Fe2O3媒体に比べ高性能,高記
録密度という点で高い評価を得ているが、その理由は高
残留磁束密度(Br*δ),高保磁力(Hc)による。その
うち、特に保磁力は記録密度との相関が大きいが、前述
の連続薄膜媒体で高保磁力を得るのは非常に困難な問題
であった。
In recent years, continuous thin film magnetic recording media used in magnetic recording devices, especially media having a magnetic layer of a film sputtered with a Co alloy system, have higher performance and higher recording than conventional coated γ-Fe 2 O 3 media. It is highly evaluated in terms of density because of its high residual magnetic flux density (Br * δ) and high coercive force (Hc). Among them, especially the coercive force has a large correlation with the recording density, but it was a very difficult problem to obtain a high coercive force with the above-mentioned continuous thin film medium.

第5図はCo合金系を磁性層とする一般的な連続薄膜媒体
の模式的断面図を示したものであり、非磁性基板,例え
ばAl−Mg合金基板1の表面にNi−P合金の無電解めっき
を施し、このNi−P合金層2上にスパッタでCrからなる
非磁性金属下地層3,Co合金系の磁性層4,保護潤滑層5を
順次成膜積層して作製される。このような媒体におい
て、従来その保磁力を高めるためには、一般的に、非磁
性金属下地層3の膜厚を厚くする方法やスパッタを行う
ときのアルゴン圧を高くする方法などが採られている。
FIG. 5 is a schematic cross-sectional view of a general continuous thin film medium having a Co alloy system as a magnetic layer. The surface of a non-magnetic substrate, for example, an Al—Mg alloy substrate 1, is coated with a Ni—P alloy. Electroless plating is performed, and a non-magnetic metal underlayer 3, which is made of Cr, a Co alloy magnetic layer 4, and a protective lubricating layer 5, are sequentially deposited on the Ni-P alloy layer 2 by sputtering to form a laminate. In order to increase the coercive force of such a medium, conventionally, a method of increasing the film thickness of the non-magnetic metal underlayer 3 or a method of increasing the argon pressure during sputtering is generally used. There is.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、非磁性金属下地層3の膜厚を厚くする方
法では成膜に長時間を要し材料費もかさむ。また、スパ
ッタ時のアルゴン圧を高くする方法もアルゴンの使用量
が増すなどしてコストアップとなる。従って、このよう
な方法で高保磁力を得ようとして作製した媒体はコスト
高になるという問題点があった。
However, the method of increasing the film thickness of the non-magnetic metal underlayer 3 requires a long time for film formation and increases the material cost. Further, the method of increasing the argon pressure during sputtering also increases the amount of argon used, resulting in an increase in cost. Therefore, there is a problem in that the cost of the medium manufactured to obtain a high coercive force by such a method is high.

本発明は、上述の問題点を解消して、高保磁力を有する
磁気記録媒体の安価な製造方法を提供することを目的と
する。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and provide an inexpensive method for manufacturing a magnetic recording medium having a high coercive force.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上述の目的を達成するため、非磁性基板を被
覆する非磁性Ni−P合金層上に、Cr非磁性金属下地層,C
o合金磁性層及び保護潤滑層を順次スパッタリングによ
り積層形成する磁気記録媒体の製造方法において、前記
Ni−P合金層により被覆された非磁性基板を真空槽内に
入れて真空中で100℃以上270℃以下の範囲内の所定温度
に所定時間加熱する工程と、該温度に保持した状態で前
記非磁性基板をスパッタチャンバ内に移動してArガス中
で前記Ni−P合金層上に前記非磁性金属下地層,磁性層
及び保護潤滑層を順次スパッタリングにより積層形成す
る工程とを備えることを特徴している。
In order to achieve the above object, the present invention provides a non-magnetic Ni-P alloy layer covering a non-magnetic substrate with a Cr non-magnetic metal underlayer, C
o In the method for manufacturing a magnetic recording medium, in which the alloy magnetic layer and the protective lubricating layer are sequentially laminated by sputtering,
The non-magnetic substrate coated with the Ni-P alloy layer is placed in a vacuum chamber and heated in vacuum to a predetermined temperature in the range of 100 ° C to 270 ° C for a predetermined period of time, and the above-mentioned state is maintained at that temperature. A step of moving the non-magnetic substrate into a sputtering chamber and sequentially forming the non-magnetic metal underlayer, the magnetic layer and the protective lubricating layer on the Ni-P alloy layer by sputtering in Ar gas. is doing.

〔作用〕[Action]

本発明においては、非磁性基板を真空槽内に入れて真空
中で100℃以上270℃以下の範囲内の所定温度に所定時間
加熱しているので、Ni−P合金層を磁化させることなく
基板内に吸蔵されている水分などのガスを充分に除くこ
とができ、その後、その温度に保持した状態で基板をス
パッタチャンバ内に移動して、Ni−P合金層上に非磁性
金属下地層,磁性層および保護潤滑層をスパッタリング
で形成することにより、非磁性金属下地層の膜厚を厚く
することなく、あるいはスパッタ時のアルゴン圧を高く
することなく、媒体の保磁力を向上させることができ
る。
In the present invention, the non-magnetic substrate is placed in a vacuum chamber and heated in vacuum to a predetermined temperature in the range of 100 ° C. or higher and 270 ° C. or lower for a predetermined time. It is possible to sufficiently remove gas such as water stored in the substrate, and then, while keeping the temperature, the substrate is moved into the sputtering chamber, and the non-magnetic metal underlayer on the Ni-P alloy layer, By forming the magnetic layer and the protective lubricating layer by sputtering, the coercive force of the medium can be improved without increasing the thickness of the nonmagnetic metal underlayer or increasing the argon pressure during sputtering. .

〔実施例〕〔Example〕

実施例1 Ni−P合金の無電解めっきを施したAl−Mg合金基板1を
セットした基板ホルダを真空槽内に入れ5×10-4Torr以
下の高真空に排気し、その後、基板を所定温度にして3
〜10分間加熱する。続いて基板ホルダをスパッタチャン
バ内に移動させ、所定圧力のArガス中で、Crからなる非
磁性金属下地層3,Co−30Ni−7.5Cr合金からなる磁性層
4,保護潤滑層5を順次成膜して第5図に示したような連
続薄膜媒体を作製する。
Example 1 A substrate holder on which an Al-Mg alloy substrate 1 on which electroless plating of Ni-P alloy was applied was placed in a vacuum chamber and evacuated to a high vacuum of 5 x 10 -4 Torr or less, and then the substrate was predetermined. Set to 3
Heat for ~ 10 minutes. Next, the substrate holder is moved into the sputtering chamber, and the nonmagnetic metal underlayer 3 made of Cr and the magnetic layer made of Co- 30 Ni- 7.5 Cr alloy are placed in Ar gas at a predetermined pressure.
4. The protective lubricating layer 5 is sequentially formed to produce a continuous thin film medium as shown in FIG.

各層のスパッタ条件,膜厚を一定とし、スパッタ時の基
板温度のみを変化させて媒体を作製し、基板温度と保磁
力(Hc)との関係を調べた。その結果を第1図に示す。
なお、非磁性金属下地層としてのCr層の膜厚をパラメー
タとして500Å,1000Å,1500Åと変え、各膜厚毎に基板
温度を変えてみた。第1図より、いずれの膜厚のCr層の
媒体についても、Cr層膜厚が一定の場合基板温度が上昇
するにつれて保磁力が増大していくことが判る。また、
いずれの基板温度においてもCr層の膜厚の厚い方が保磁
力が大きいことも判る。第2図はこのCr層膜厚と保磁力
との関係を基板温度をパラメータとして示してみたもの
である。
The medium was prepared by changing the substrate temperature during sputtering while keeping the sputtering conditions and film thickness of each layer constant, and the relationship between the substrate temperature and the coercive force (Hc) was investigated. The results are shown in FIG.
The film thickness of the Cr layer as the nonmagnetic metal underlayer was changed to 500Å, 1000Å, 1500Å as a parameter, and the substrate temperature was changed for each film thickness. It can be seen from FIG. 1 that the coercive force increases as the substrate temperature rises when the Cr layer thickness is constant in any media having a Cr layer thickness. Also,
It is also found that the coercive force is larger when the Cr layer is thicker at any substrate temperature. FIG. 2 shows the relationship between the Cr layer thickness and the coercive force by using the substrate temperature as a parameter.

ところで、第1図には基板温度を上げれば上げる程保磁
力が増加することが示されているが、一方、基板温度が
275℃を超えるとNi−P合金層が磁化されるようにな
り、記録特性に悪影響を及ぼす。従って、基板温度には
上限があり、275℃以上に高くすることはできない。ま
た、基板温度が100℃より低いと基板に吸蔵されている
水分などのガスを充分に除くことができないので100℃
以上にしなければならない。
By the way, FIG. 1 shows that the higher the substrate temperature is, the more the coercive force is increased.
If the temperature exceeds 275 ° C, the Ni-P alloy layer becomes magnetized, which adversely affects the recording characteristics. Therefore, the substrate temperature has an upper limit and cannot be raised to 275 ° C or higher. Also, if the substrate temperature is lower than 100 ° C, it is not possible to sufficiently remove gases such as water stored in the substrate, so 100 ° C
You have to do more than that.

実施例2 実施例1において、磁性材料をCo−30Ni−7.5Cr合金か
らCo−20Ni−10Cr合金に替え、その他は実施例1と同様
にして媒体を作製した。これらの媒体について、実施例
1と同様に基板温度と保磁力との関係を調べた結果を、
Cr層膜厚をパラメータとして第3図に示す。また、Cr層
膜厚と保磁力との関係を基板温度をパラメータとして第
4図に示す。
In Example 1, except replacing the magnetic material from Co- 30 Ni- 7.5 Cr alloy Co- 20 Ni- 10 Cr alloy, others were prepared medium in the same manner as in Example 1. The results of investigating the relationship between the substrate temperature and the coercive force of these media as in Example 1 were as follows:
FIG. 3 shows the Cr layer thickness as a parameter. The relationship between the Cr layer thickness and the coercive force is shown in FIG. 4 with the substrate temperature as a parameter.

このようにCo−20Ni−10Cr合金を磁性材料とした媒体に
おいても、基板温度を高くするにつれて保磁力が増加す
ることは明らかである。
As described above, it is clear that the coercive force also increases as the substrate temperature is increased even in the medium using the Co- 20 Ni- 10 Cr alloy as the magnetic material.

なお、磁性層の耐腐食を考えるとCr層膜厚は500Å以上
であることが望ましく、また保磁力としては一般に800O
e以上であることが要求されるので、基板温度は好まし
くは150℃以上であることが望まれる。また歩留りなど
を考えると基板温度は250℃までが最適である。
Considering the corrosion resistance of the magnetic layer, it is desirable that the thickness of the Cr layer be 500Å or more.
Since the temperature is required to be e or higher, the substrate temperature is preferably 150 ° C. or higher. Also, considering the yield and the like, the optimum substrate temperature is 250 ° C.

〔発明の効果〕〔The invention's effect〕

以上のような本発明によれば、Ni−P合金層により被覆
された非磁性基板を真空槽内に入れて真空中で100℃以
上270℃以下の範囲内の所定温度に所定時間加熱するよ
うにしたので、磁気特性に悪影響を与えるNi−P合金層
の磁化を防止しつつ基板内の吸蔵ガスを真空槽内で除去
して磁気特性を向上できると共に、その温度に保持した
状態で基板をスパッタチャンバ内に移動してArガス中で
Ni−P合金層上に非磁性金属下地層,磁性層及び保護潤
滑層を順次スパッタリングにより積層形成するようにし
たので、吸蔵ガスを除去するために加熱した基板の加熱
状態を利用して保磁力を高ることができる。
According to the present invention as described above, the non-magnetic substrate coated with the Ni-P alloy layer is placed in a vacuum chamber and heated in vacuum to a predetermined temperature in the range of 100 ° C to 270 ° C for a predetermined time. Therefore, it is possible to prevent the magnetization of the Ni-P alloy layer which adversely affects the magnetic properties while removing the stored gas in the substrate in the vacuum chamber to improve the magnetic properties, and at the same time to maintain the substrate at that temperature. Move to the sputter chamber and in Ar gas
Since the non-magnetic metal underlayer, the magnetic layer, and the protective lubricating layer are sequentially formed on the Ni-P alloy layer by sputtering, the coercive force is utilized by utilizing the heating state of the substrate heated to remove the stored gas. Can rise.

従って、特性の安定した高保磁力の磁気記録媒体を安価
に提供することができる。
Therefore, a magnetic recording medium having stable characteristics and a high coercive force can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図はCo−30Ni−7.5Cr合金を磁性材料
とする媒体に関するもので、第1図は基板温度と保磁力
との関係をCr膜厚をパラメータとして示す線図、第2図
はCr膜厚と保磁力との関係を基板温度をパラメータとし
て示す線図。第3図および第4図はCo−20Ni−10Cr合金
を磁性材料とする媒体に関するもので、第3図は基板温
度と保磁力との関係をCr膜厚をパラメータとして示す線
図、第4図はCr膜厚と保磁力との関係を基板温度をパラ
メータとして示す線図。第5図は一般的な連続薄膜媒体
の模式的断面図。 1……非磁性基板、2……Ni−P合金層、3……非磁性
金属下地層、4……磁性層、5……保護潤滑層。
FIGS. 1 and 2 relate to a medium using a Co- 30 Ni- 7.5 Cr alloy as a magnetic material. FIG. 1 is a diagram showing the relationship between the substrate temperature and the coercive force with the Cr film thickness as a parameter. Figure 2 is a diagram showing the relationship between the Cr film thickness and the coercive force using the substrate temperature as a parameter. 3 and 4 relate to a medium using a Co- 20 Ni- 10 Cr alloy as a magnetic material. FIG. 3 is a diagram showing the relationship between the substrate temperature and the coercive force with the Cr film thickness as a parameter. Fig. 4 is a diagram showing the relationship between the Cr film thickness and the coercive force using the substrate temperature as a parameter. FIG. 5 is a schematic sectional view of a general continuous thin film medium. 1 ... Non-magnetic substrate, 2 ... Ni-P alloy layer, 3 ... Non-magnetic metal underlayer, 4 ... Magnetic layer, 5 ... Protective lubricating layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】非磁性基板を被覆する非磁性Ni−P合金層
上に、Cr非磁性金属下地層,Co合金磁性層及び保護潤滑
層を順次スパッタリングにより積層形成する面内記録型
磁気記録媒体の製造方法において、前記Ni−P合層によ
り被覆された非磁性基板を真空槽内に入れて真空中で10
0℃以上270℃以下の範囲内の所定温度に所定時間加熱す
る工程と、該温度に保持した状態で前記非磁性基板をス
パッタチャンバ内に移動してArガス中で前記Ni−P合金
層上に前記非磁性金属下地層,磁性層及び保護潤滑層を
順次スパッタリングにより積層形成する工程とを備える
ことを特徴とする面内記録型磁気記録媒体の製造方法。
1. An in-plane recording type magnetic recording medium in which a Cr non-magnetic metal underlayer, a Co alloy magnetic layer and a protective lubricating layer are sequentially laminated by sputtering on a non-magnetic Ni-P alloy layer covering a non-magnetic substrate. In the manufacturing method of step 1, the non-magnetic substrate coated with the Ni-P composite layer is placed in a vacuum chamber and the
A step of heating to a predetermined temperature within a range of 0 ° C. or higher and 270 ° C. or lower for a predetermined time; And a step of sequentially laminating the non-magnetic metal underlayer, the magnetic layer and the protective lubricating layer by sputtering.
【請求項2】特許請求の範囲第1項記載の製造方法にお
いて、前記所定温度が150℃以上250℃以下の範囲内の温
度であることを特徴とする面内記録型磁気記録媒体の製
造方法。
2. The method for manufacturing an in-plane recording magnetic recording medium according to claim 1, wherein the predetermined temperature is within a range of 150 ° C. or higher and 250 ° C. or lower. .
JP62240164A 1987-09-25 1987-09-25 Method of manufacturing magnetic recording medium Expired - Lifetime JPH0731810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62240164A JPH0731810B2 (en) 1987-09-25 1987-09-25 Method of manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62240164A JPH0731810B2 (en) 1987-09-25 1987-09-25 Method of manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6484436A JPS6484436A (en) 1989-03-29
JPH0731810B2 true JPH0731810B2 (en) 1995-04-10

Family

ID=17055446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62240164A Expired - Lifetime JPH0731810B2 (en) 1987-09-25 1987-09-25 Method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0731810B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581225B2 (en) * 1989-08-09 1997-02-12 富士電機株式会社 Magnetic recording medium and method of manufacturing the same
JP2581232B2 (en) * 1989-10-13 1997-02-12 富士電機株式会社 Manufacturing method of magnetic recording medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753829A (en) * 1980-09-18 1982-03-31 Toshiba Corp Production of magnetic recording medium
JPS5936326A (en) * 1982-08-23 1984-02-28 Fujitsu Ltd Vertically magnetized recording medium and its production
JPS61233427A (en) * 1985-04-09 1986-10-17 Toshiba Corp Production of magnetic recording medium
JPS62125523A (en) * 1985-11-26 1987-06-06 Hitachi Metals Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS6484436A (en) 1989-03-29

Similar Documents

Publication Publication Date Title
JP3041702B2 (en) Recording medium for horizontal recording
US4664976A (en) Magnetic recording medium comprising a protective carbon nitride layer on the surface thereof
JPH04228105A (en) High-coercive-force thin-film recording medium and its production
US5084152A (en) Method for preparing high density magnetic recording medium
US4743348A (en) Magnetic medium for horizontal magnetization recording and method for making same
JPH0613237A (en) Magnetic recording medium and method for increasing rate of coercive force thereof
JPH0731810B2 (en) Method of manufacturing magnetic recording medium
JPS62114124A (en) Production of magnetic disk
JPH0647722B2 (en) Method of manufacturing magnetic recording medium
US6042927A (en) Magnetic disk
CA1255000A (en) Perpendicular magnetic recording medium and method of making same
CA1131438A (en) Method and alloying elements for producing high coercive force and high squareness magnetic film for magnetic recording medium
JPS63317922A (en) Perpendicular magnetic recording medium
KR100639620B1 (en) Magnetic recording medium, method of manufacture thereof, and magnetic disk device
JPH05189738A (en) Magnetic recording medium
JPS61210521A (en) Production of magnetic disk
JPH0416851B2 (en)
JP2538124B2 (en) Fixed magnetic disk and manufacturing method thereof
JP2990975B2 (en) Magnetic recording media
JPS62110619A (en) Magnetic recording medium
JPS6364623A (en) Magnetic recording medium
Ouchi et al. Perpendicular magnetic recording media
JPH0594612A (en) Magnetic recording medium
JPH0740362B2 (en) Method of manufacturing magnetic recording medium
JPH0447521A (en) Magnetic recording medium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080410

Year of fee payment: 13