JPS61233427A - Production of magnetic recording medium - Google Patents
Production of magnetic recording mediumInfo
- Publication number
- JPS61233427A JPS61233427A JP7341585A JP7341585A JPS61233427A JP S61233427 A JPS61233427 A JP S61233427A JP 7341585 A JP7341585 A JP 7341585A JP 7341585 A JP7341585 A JP 7341585A JP S61233427 A JPS61233427 A JP S61233427A
- Authority
- JP
- Japan
- Prior art keywords
- film
- substrate
- magnetic
- temperature
- protective film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の属する技術分野)
この発明は、磁気ディスク、磁気カード、磁気テープ等
の磁気記録媒体に関するものであり、とりわけ強磁性金
属層を磁気記録層とする媒体の製造方法の改良に関する
。Detailed Description of the Invention (Technical field to which the invention pertains) This invention relates to magnetic recording media such as magnetic disks, magnetic cards, and magnetic tapes, and in particular to the production of media whose magnetic recording layer is a ferromagnetic metal layer. Concerning improvements in methods.
(発明の技術的背景)
近年、従来の塗布型磁気記録媒体とは異なり、蒸着、ス
パッタリング法や湿式めっき法のように、非磁性基体上
に直接、強磁性層を形成する方法により、磁気記録媒体
を製造する方法が検討されている。このようにして得ら
れた磁気記録媒体は。(Technical Background of the Invention) In recent years, unlike conventional coating-type magnetic recording media, magnetic recording has been developed using methods such as vapor deposition, sputtering, and wet plating that form a ferromagnetic layer directly on a nonmagnetic substrate. Methods of manufacturing media are being considered. The magnetic recording medium obtained in this way.
従来の塗布型のものに比べて、極めて高い記録密度が達
成される。中でも最も注目なあつめているのが、垂直磁
化記録方式である。この方式においては媒体の膜面こ垂
直な方向が磁化容易軸である垂直記録媒体が必要となる
。このような媒体に信号を記録すると残留磁化は媒体の
膜面に垂直方向を向き、従って信号が短波長になる程、
媒体内反磁界は減少して、優れた再生出力が得られる。Extremely high recording density can be achieved compared to conventional coating type. Among them, the one that is attracting the most attention is the perpendicular magnetization recording method. This method requires a perpendicular recording medium whose axis of easy magnetization is perpendicular to the film surface of the medium. When a signal is recorded on such a medium, the residual magnetization is oriented perpendicular to the film surface of the medium, so the shorter the wavelength of the signal, the more
The demagnetizing field within the medium is reduced, resulting in superior reproduction output.
垂直記録媒体は高分子材料や非磁性金属等の非磁性材料
から成る基板上に、例えば、Co−Crより成る磁性層
を蒸着法あるいはスパッタリング法により形成したもの
である。また、基板とCo−Cr垂直磁性層の間に、信
号記録再生の効率を上げる為に、膜面内に磁化容易軸を
有するパーマロイ等より成る磁性層を設けた構造をとる
こともある。A perpendicular recording medium is one in which a magnetic layer made of, for example, Co--Cr is formed on a substrate made of a non-magnetic material such as a polymeric material or a non-magnetic metal by a vapor deposition method or a sputtering method. Further, in order to increase the efficiency of signal recording and reproduction, a structure may be adopted in which a magnetic layer made of permalloy or the like having an axis of easy magnetization in the film plane is provided between the substrate and the Co--Cr perpendicular magnetic layer.
強磁性層には、Co−Crの他、Co−Ni、 Co、
Co−0等スパッタリング法により形成できる膜や。In addition to Co-Cr, the ferromagnetic layer includes Co-Ni, Co,
A film that can be formed by a sputtering method such as Co-0.
Co−P、 Co−Ni −P、 Co−Ni−Mn
−P、 Co −Re−Ni−P等めっき膜が用いられ
る。Co-P, Co-Ni-P, Co-Ni-Mn
-P, Co-Re-Ni-P, or other plating films are used.
(背景技術の問題点)
以上の高密度特性を有する媒体を実用化する際の問題と
して、腐蝕、摩耗からいかに強磁性層を保護するかとい
うことがあった。(Problems in the Background Art) One of the problems encountered when putting into practical use a medium having the above-mentioned high-density characteristics is how to protect the ferromagnetic layer from corrosion and abrasion.
この為に、保護層として種々の材料を強磁性層上に形成
する試みがなされてきた。これまでに。For this reason, attempts have been made to form various materials on the ferromagnetic layer as a protective layer. So far.
S鳳0! 、 Ti01 、8i3N4 、WC,8i
C,BN、 At、o、等が検討されてきた。しかしな
がら、これらの物質は硬度が低かったり、密着性が悪か
ったり潤滑性が悪いため、保護膜上にわずかな突起があ
ると、記録・再生用の磁気ヘッドとの間の摺接C二より
、そこで保護層の剥離が生じ、更には磁性−がはがれて
ノイズが発生したり、記録、再生が不能となるような実
用上致命的な欠陥が発生する場合があった。S-Otori 0! , Ti01 , 8i3N4 , WC, 8i
C, BN, At, o, etc. have been considered. However, these materials have low hardness, poor adhesion, and poor lubricity, so if there is a slight protrusion on the protective film, the sliding contact between the recording/reproducing magnetic head and the As a result, the protective layer may peel off, and the magnetic layer may also peel off, causing noise or practically fatal defects such as recording and reproduction being impossible.
(発明の目的)
不発明は以上の欠点に鑑みなされたもので、密着性、硬
度に優れた保護層を得るため、基板温度を高めて保護膜
を形成する工程を含む磁気記録媒体の製造方法を提供す
ることを目的とする。(Objective of the invention) The invention was made in view of the above-mentioned drawbacks, and provides a method for manufacturing a magnetic recording medium, which includes a step of forming a protective film by increasing the substrate temperature in order to obtain a protective layer with excellent adhesion and hardness. The purpose is to provide
(発明の概要)
本発明は基板温度を高めることにより得られた保護膜が
、磁気記録媒体としての特性、特に耐久性に優れている
点に看目し、その目的を達成したものである。(Summary of the Invention) The present invention has achieved its object by noting that a protective film obtained by raising the substrate temperature has excellent properties as a magnetic recording medium, particularly durability.
まず記録媒体の耐久性試験からの知見について記す。理
想的には保護膜上に形成した潤滑層中をヘッドが移動す
る状態が好しいが、実際には基板の凹凸やヘッドの荷重
のために、ヘッドの一部は保護膜と接して移動していく
と考えられる。このため、媒体とヘッドとの摺動耐久性
試験を行うと、保護膜の剥離が生じ劣化を招く、
保護膜と磁性膜との密着性を上げる為に種々の実験を行
った。保護膜の材料、形成条件を検討したが、基板温度
を変えたときの効果が大であった。First, we will describe findings from durability tests on recording media. Ideally, it would be preferable for the head to move through a lubricant layer formed on the protective film, but in reality, due to the unevenness of the substrate and the load on the head, part of the head may move in contact with the protective film. It is thought that it will continue. For this reason, when performing a sliding durability test between the medium and the head, the protective film peels off, leading to deterioration.We conducted various experiments to improve the adhesion between the protective film and the magnetic film. We investigated the material and formation conditions for the protective film, and found that changing the substrate temperature had a significant effect.
基本的な実験として、シリコン基板上に基板温度を変え
て形成した種々の膜の密着性を調べた。密着性の警備は
引掻試験により行った。その場合、先端角90°の円錐
ダイヤモンド針を用い荷重0.1gで行った。表1にそ
の結果を示す。As a basic experiment, we investigated the adhesion of various films formed on a silicon substrate at different substrate temperatures. Adhesion was checked by a scratch test. In this case, a conical diamond needle with a tip angle of 90° was used and a load of 0.1 g was used. Table 1 shows the results.
表 1
図中X印は600倍の顕微鏡観察で引掻傷の発生が明瞭
に見られたもの、Δ印は少し見られたもの、O印はまっ
たく見られなかったものである。膜の密着強度には材料
による差はあるものの基板温度が高い程、密着強度が大
きい。Table 1 In the figure, the X mark indicates that scratches were clearly observed when observed under a microscope at 600 times magnification, the Δ mark indicates that some scratches were observed, and the O mark indicates that no scratches were observed at all. Although the adhesion strength of the film varies depending on the material, the higher the substrate temperature, the greater the adhesion strength.
保護膜の形成温度は高い程良いということになるが、シ
リコン基板とは異なり、磁気記録媒体では下地磁性層と
有機フィルムの制約がでてくる。The higher the temperature at which the protective film is formed, the better; however, unlike silicon substrates, magnetic recording media are subject to limitations due to the underlying magnetic layer and organic film.
磁性層はその磁気特性の点から最高温度が限定される。The maximum temperature of the magnetic layer is limited due to its magnetic properties.
また有機フィルムも変質・変形・分解するような温度以
下で用いなければならない。Furthermore, the organic film must be used at a temperature below the temperature at which it changes, deforms, or decomposes.
いま、 〜1600が磁性層の上限温度とすれば有機フ
ィルムはこのm度では安定である。発明者は、基板温度
150 Cで形成した磁性層上に保護膜として8i0.
とSi3N4を、基板温度をかえて2001膜形成して
みた。先程と同様の引掻試験の結果を表2に示す。Now, if the upper limit temperature of the magnetic layer is ~1600 degrees, the organic film is stable at this m degree. The inventor formed a protective film of 8i0.
A 2001 film was formed using Si3N4 and Si3N4 at different substrate temperatures. Table 2 shows the results of the same scratch test as above.
(以下余白)
表 2
この場合には先程の、温度が高い程密讐性が良いという
結論はくつがえされている。また、実際に耐久性試験を
行ってみても密着性が悪い(表2中Xで示したもの)試
料は1万ノ(ス以下で駄目になってしまった。これに対
し表2中○で示した試料は500万バス以上の実用可能
範囲の耐久性を記録した。(Leaving space below) Table 2 In this case, the earlier conclusion that the higher the temperature, the better the intimacy is overturned. In addition, even in actual durability tests, samples with poor adhesion (those indicated by X in Table 2) failed after less than 10,000 s. The sample shown had a practical durability of more than 5 million busses.
結果を分析することC;より欠の点を発見した。Analyzing the results C: I discovered more shortcomings.
すなわち、保護膜形成時の基板温度と同じか、又は高い
温贋に、保護膜形成以前の工程で有機フィルムが処理さ
れていないと、保護膜の密着性が悪くなり、耐久性が看
しく低下する。密着性低下の原因はフィルムからの残存
溶媒や吸着・吸蔵ガスの放出であり、保護膜形成時に、
これが起こると密着性が低下するものである。これを防
ぐためには保護膜形成以前に保護膜形成温度以上でフィ
ルムを処理すればよいとわかった。In other words, if the temperature of the substrate is the same as or higher than the substrate temperature when forming the protective film, and the organic film is not treated in the process prior to forming the protective film, the adhesion of the protective film will deteriorate and the durability will deteriorate unnecessarily. do. The cause of the decrease in adhesion is the release of residual solvent and adsorbed/occluded gas from the film, and during the formation of the protective film,
When this occurs, the adhesion deteriorates. It has been found that in order to prevent this, the film may be treated at a temperature higher than the protective film forming temperature before forming the protective film.
従って、保護膜は磁性層の磁気特性を損わない限り高い
温度で形成することが好しく、フィルムは保護膜の形成
温度以上で予め熱処理しておくことが本発明のポイント
である。磁性膜の形成温度150 C、所望の磁気特性
を保証する上限160 rのときにフィルムの処理温度
と保護膜形成温度をパラメータとした膜の剥離性を表3
に示す。8i0゜を例にとったがSi、N、等でも同様
であった。Therefore, it is preferable to form the protective film at a high temperature as long as it does not impair the magnetic properties of the magnetic layer, and the key point of the present invention is to heat-treat the film in advance at a temperature higher than the formation temperature of the protective film. Table 3 shows the peelability of the film using the film processing temperature and the protective film formation temperature as parameters when the magnetic film formation temperature is 150 C and the upper limit of 160 R that guarantees the desired magnetic properties.
Shown below. Although 8i0° is taken as an example, the same applies to Si, N, etc.
表3
「
■
コ
;
!
以上のように、基板の加熱処理温度なT8、磁性膜の形
成温度をTI、保護膜形成温度なT、としたときにTt
> T t−tT 3の関係を満たすようにして形成
した保護膜を有する記録媒体は良好な耐久性を示すこと
がわかった。TI>T、の場合、保護膜の密着性が弱<
T、はT、に近づける程良い。他方Ts)T、だと先
につけた磁性膜との間に膜歪が生じ剥離率が高くなった
。従って、T2とT、は磁気特性を維持できる範囲で高
い方が良く、相互の温度差は無い方が有利である。以上
はマグネトロン方式の高速スパッタリングについて成立
つと同時に蒸着法(電子ビーム法)によるものについて
も同様の効果があった。Table 3 ``■ ko;! As mentioned above, when T8 is the substrate heat treatment temperature, TI is the magnetic film formation temperature, and T is the protective film formation temperature, Tt
It was found that a recording medium having a protective film formed to satisfy the relationship: > T t - t T 3 exhibits good durability. When TI>T, the adhesion of the protective film is weak<
The closer T is to T, the better. On the other hand, in the case of Ts)T, film distortion occurred between the magnetic film and the previously applied magnetic film, resulting in a high peeling rate. Therefore, it is better that T2 and T are as high as possible within a range that can maintain the magnetic properties, and it is advantageous that there is no temperature difference between them. The above holds true for high-speed sputtering using a magnetron method, and at the same time, similar effects were obtained for sputtering using an evaporation method (electron beam method).
(発明の実施例) 以下、図面を用いて本発明の実施例を詳細に説明する。(Example of the invention) Embodiments of the present invention will be described in detail below with reference to the drawings.
第1図は、本発明の詳細な説明する図である。FIG. 1 is a diagram illustrating the present invention in detail.
基板(1)として50μm厚のポリイミドフィルムを用
い、200 Cで熱処理し、上ニ150 CテCoCr
垂直磁化膜(2)を0.6μmマグネトロンスパッタ
リングにより形成し、更に150Cで酸化シリコン膜(
3)をマグネトロンスパッタリングにより0.01〜0
.04μm積層形成した。この記録媒体で、ヘッドを装
着したところ、ス1常300万パス位で信号出力が低下
するところを600万バスを越えても信号出力の低下は
認められなかった。A 50 μm thick polyimide film was used as the substrate (1), heat treated at 200 C, and then heated to 150 C and CoCr.
A perpendicular magnetization film (2) is formed by magnetron sputtering to a thickness of 0.6 μm, and a silicon oxide film (2) is formed at 150C.
3) by magnetron sputtering to 0.01 to 0
.. A 04 μm layer was formed. When a head was attached to this recording medium, no decrease in signal output was observed even after more than 6 million bus passes, whereas the signal output usually decreases after about 3 million bus passes.
第2図は1本発明の製造方法を実施可能な装置の説明図
である。真空チャンバー住υの中にフィルム巻き取り機
構、スパッタ電極を配置する。回転軸Hより送り出され
たフィルムαaを熱処理ゾーン(L!9で加熱処理する
。加熱は均−C:行われれば雰囲気による方法でも直接
加熱する方法でもよい。ここではヒータ(la t d
abを用いた。FIG. 2 is an explanatory diagram of an apparatus capable of carrying out the manufacturing method of the present invention. Place the film winding mechanism and sputtering electrode inside the vacuum chamber. The film αa sent out from the rotating shaft H is heat-treated in a heat treatment zone (L!9). Heating may be done evenly by an atmospheric method or a direct heating method.
ab was used.
次にフィルムa7)上6二Co−Cr磁性膜を0.5μ
m スパッタ形成する。α−,asbはCo−Crター
ゲット(元素組成比80 : 20 )を装着したマグ
ネトロンカソードで、図示しない、マツチングボックス
。Next, apply a 0.5μ Co-Cr magnetic film on the film a7).
m Sputter formation. α-, asb is a magnetron cathode equipped with a Co-Cr target (element composition ratio 80:20), and a matching box (not shown).
電源に接続されている。熱処理ゾーンで200 Cに処
理されたフィルムは一度温度低下し150 Cになる。Connected to power. The temperature of the film treated at 200 C in the heat treatment zone is lowered once to 150 C.
Co−Crスパッタゾーンでは160Cに保たれるよう
にプレヒータl!Ja 、 l1lbを調整しである。In the Co-Cr sputter zone, a preheater is installed to maintain the temperature at 160C! Ja, l1lb is adjusted.
続いてやはりアフターヒータ(2Ia s 翰すでも1
50Cに調整され1次の保護膜形成ゾーンで8i0.が
スパッタされる。f910.スパッタターゲット(財)
a。Next is the after-heater (2Ia s Kansumode 1)
Adjusted to 50C, 8i0. is sputtered. f910. Sputter target (goods)
a.
(21)bも図示しないマツチングボックス、電源に接
続される。各スパッタ室へは人rガスが外部のボンベか
ら供給され、所定の圧力を保つよう(二排気されている
。最後に巻きとられて成膜が完了する。(21)b is also connected to a matching box (not shown) and a power source. Gas is supplied to each sputtering chamber from an external cylinder, and the chamber is evacuated to maintain a predetermined pressure.Finally, the chamber is wound up to complete the film formation.
このような記録媒体の製造方法によれば、従来のような
耐久性の悪さに結びつく保護膜の密着性が改善され、変
形も少い微意性に優れた媒体の生産ができた。According to such a method of manufacturing a recording medium, the adhesion of the protective film, which conventionally leads to poor durability, is improved, and a medium with excellent subtlety and less deformation can be produced.
第3図は本発明の別の実施例を説明する図である。基板
Gυとして70μmのポリエテレンテレフタレートを準
備し150Cに加熱後、マグネトロンスパッタリングC
二より0.6μmのパーマロイ膜0り及び0.4μmの
Co−Cr垂直磁化膜(至)より成る磁性層を基板温度
130 Cで形成、さらに窒化シリコン膜(ロ)をやは
リマグネトロンスパッタリングで130Cに加熱して形
成した。この記録媒体で、ヘッドを装着したところ通常
300万バス位で信号出力が低下するところを600万
パスを越えても信号出力の低下は無かった。FIG. 3 is a diagram illustrating another embodiment of the present invention. A 70 μm polyethylene terephthalate was prepared as the substrate Gυ, heated to 150 C, and then magnetron sputtered C.
From the second step, a magnetic layer consisting of a 0.6 μm permalloy film and a 0.4 μm Co-Cr perpendicular magnetization film was formed at a substrate temperature of 130 C, and a silicon nitride film (b) was formed by remagnetron sputtering. It was formed by heating to 130C. When a head was attached to this recording medium, the signal output did not decrease even after 6 million passes, whereas the signal output usually decreases after about 3 million passes.
以上の趙り、本発明によればフィルムの熱処理。 According to the present invention, the film is heat-treated.
磁性膜形成時の基板温度、保護膜形成時の基板温度を最
適化することに・より、積層膜の密着性の良い状態が達
成でき、耐久性の優れた、またそりの少ない生産性に優
れた記録媒体の製造方法を得ることができる。By optimizing the substrate temperature when forming the magnetic film and the substrate temperature when forming the protective film, it is possible to achieve good adhesion of the laminated film, resulting in excellent durability and productivity with less warping. A method for manufacturing a recording medium can be obtained.
第1図は本発明により得られる一実施例の磁気記録媒体
の断面図、第2図は本発明を実施するための装置の概略
図、第3図は本発明により得られる別の磁気記録媒体の
断面図である。
(1)、C1υ・・・基板
(2)、 C32,C33・・・磁性膜(3)、(ロ)
・・・保1i膜
代理人 弁理士 則 近 憲 佑 (ほか1名)第1図
第2図
第a図FIG. 1 is a sectional view of an embodiment of a magnetic recording medium obtained by the present invention, FIG. 2 is a schematic diagram of an apparatus for carrying out the present invention, and FIG. 3 is another magnetic recording medium obtained by the present invention. FIG. (1), C1υ...substrate (2), C32, C33... magnetic film (3), (b)
...Ho 1i Membrane Agent Patent Attorney Kensuke Chika (and 1 other person) Figure 1 Figure 2 Figure a
Claims (1)
の基板を加熱しながら基板上に強磁性金属膜を形成する
工程と、前記強磁性金属膜を形成した基板を加熱しなが
ら前記金属膜上に保護膜を形成する工程とを有する磁気
記録媒体の製造方法において、加熱処理工程での基板温
度をT_1、強磁性金属膜形成時の基板温度をT_2、
保護膜形成時の基板温度をT_1としたときに、T_1
≧T_2≒T_3なる関係が成り立つように各工程の加
熱処理温度を保つようにしたことを特徴とする磁気記録
媒体の製造方法。a step of heating an organic film substrate; a step of forming a ferromagnetic metal film on the substrate while heating the heat-treated substrate; and a step of forming a ferromagnetic metal film on the substrate while heating the substrate on which the ferromagnetic metal film is formed. In a method for manufacturing a magnetic recording medium, which includes a step of forming a protective film, the substrate temperature in the heat treatment step is T_1, the substrate temperature during formation of the ferromagnetic metal film is T_2,
When the substrate temperature at the time of forming the protective film is T_1, T_1
A method for manufacturing a magnetic recording medium, characterized in that the heat treatment temperature in each step is maintained so that the relationship ≧T_2≒T_3 holds.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7341585A JPS61233427A (en) | 1985-04-09 | 1985-04-09 | Production of magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7341585A JPS61233427A (en) | 1985-04-09 | 1985-04-09 | Production of magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61233427A true JPS61233427A (en) | 1986-10-17 |
Family
ID=13517547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7341585A Pending JPS61233427A (en) | 1985-04-09 | 1985-04-09 | Production of magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61233427A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6484436A (en) * | 1987-09-25 | 1989-03-29 | Fuji Electric Co Ltd | Production of magnetic recording medium |
JPH01103015U (en) * | 1987-12-24 | 1989-07-12 | ||
US6571729B2 (en) * | 1999-07-28 | 2003-06-03 | Anelva Corporation | Apparatus for depositing a thin film on a data recording disk |
-
1985
- 1985-04-09 JP JP7341585A patent/JPS61233427A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6484436A (en) * | 1987-09-25 | 1989-03-29 | Fuji Electric Co Ltd | Production of magnetic recording medium |
JPH01103015U (en) * | 1987-12-24 | 1989-07-12 | ||
US6571729B2 (en) * | 1999-07-28 | 2003-06-03 | Anelva Corporation | Apparatus for depositing a thin film on a data recording disk |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR890003552B1 (en) | Magnetic recording carrier | |
EP0710949B1 (en) | Magnetic recording medium and its manufacture | |
US5562982A (en) | Magnetic recording medium | |
JPS61233427A (en) | Production of magnetic recording medium | |
US4865878A (en) | Method of manufacturing vertical magnetization type recording medium | |
JPH05143983A (en) | Method for forming protecting film of hafnia and zirconia group on long magnetic recording medium | |
JPS62298923A (en) | Production of magnetic recording medium | |
JP3724814B2 (en) | Magnetic recording medium | |
JPS63168831A (en) | Magnetic recording carrier and manufacture thereof | |
JP2794578B2 (en) | Manufacturing method of magnetic recording medium | |
JPS61115229A (en) | Magnetic recording medium | |
JPH03122846A (en) | Magneto-optical recording medium | |
JPH06223355A (en) | Thin-film magnetic recording medium and its manufacture | |
EP0869479A1 (en) | Magnetic recording medium and production method thereof | |
JPH0261819A (en) | Perpendicular magnetic recording medium | |
JPH06101028A (en) | Production device for magnetic recording medium and production of the same | |
JPS62175925A (en) | Vertical magnetic recording medium and its production | |
JPS63160008A (en) | Substrate for magnetic disk | |
Djayaprawira et al. | Control of thin film media microstructure by using very thin seedlayer material with different affinity for oxygen | |
JPS6273414A (en) | Magnetic recording medium | |
JPH05258271A (en) | Magnetic recording medium | |
JPH03127320A (en) | Perpendicular magnetic recording medium and its production | |
JPH07169016A (en) | Magnetic head and its manufacture | |
JPH04117611A (en) | Magnetic recording medium | |
JPS61104316A (en) | Magnetic recording medium and its production |