JPS6273414A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS6273414A
JPS6273414A JP21356585A JP21356585A JPS6273414A JP S6273414 A JPS6273414 A JP S6273414A JP 21356585 A JP21356585 A JP 21356585A JP 21356585 A JP21356585 A JP 21356585A JP S6273414 A JPS6273414 A JP S6273414A
Authority
JP
Japan
Prior art keywords
film
modulus
young
magnetized film
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21356585A
Other languages
Japanese (ja)
Other versions
JPH0697499B2 (en
Inventor
Haruo Awano
晴夫 粟野
Naoki Honda
直樹 本多
Tetsuo Samoto
哲雄 佐本
Sachiko Fukushima
福島 幸子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21356585A priority Critical patent/JPH0697499B2/en
Publication of JPS6273414A publication Critical patent/JPS6273414A/en
Publication of JPH0697499B2 publication Critical patent/JPH0697499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To form the titled magnetic recording medium having excellent durability without increasing the spacing loss and film thickness by regulating Young's modulus of the Co vertically magnetized film to >=9,000kg/mm<2>. CONSTITUTION:In the magnetic recording medium obtained by forming a Co- base vertically magnetized film on a nonmagnetic carrier, Young's modulus of the Co-base vertically magnetized film is regulated to >=9,000kg/mm<2>. To improve the mechanical properties of the vertically magnetized film having >=9,000kg/mm<2> Young's modulus, the pores at the grain boundary must be reduced and the crystal grains are closely packed. To reduce the pores at the grain boundary, atoms and molecules are thermally diffused into the grain boundary after the Co-base vertically magnetized film is formed, atoms and molecules are penetrated into the grain boundary by a plasma method, atoms and molecules are implanted in the grain boundary by ion implantation or a method for controlling the conditions in forming the vertically magnetized film can be exemplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、垂直磁化記録方式の磁気記録媒体に関するも
のであり、特にCo系垂直磁化膜を磁性層として形成し
てなる磁気記録媒体に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magnetic recording medium using a perpendicular magnetization recording method, and particularly to a magnetic recording medium formed by forming a Co-based perpendicular magnetization film as a magnetic layer. It is.

〔発明の概要〕[Summary of the invention]

本発明は、非磁性支持体上に形成されるCo系垂直磁化
膜のヤング率を9000 kg/ ms”以上と垂直磁
化膜自身の機械的性質を向上させることで、スペーシン
グロスの増大や膜厚の増加を伴うことなく磁気記録媒体
の耐久性の向上を図ろうとするものである。
The present invention improves the mechanical properties of the perpendicular magnetization film itself by setting the Young's modulus of the Co-based perpendicular magnetization film formed on a non-magnetic support to 9000 kg/ms" or more, thereby reducing the spacing loss and the film. The objective is to improve the durability of magnetic recording media without increasing the thickness.

〔従来の技術〕[Conventional technology]

従来、例えばコンピュータ等の記憶媒体やオーディオテ
ープレコーダ、ビデオテープレコーダ等の記録媒体とし
て使用される磁気記録媒体においては、基板上に被着形
成される磁性層に基板面に対して水平方向の磁化(面内
方向(d化)を行って情報記録するのが一般的である。
Conventionally, in magnetic recording media used as storage media for computers, audio tape recorders, video tape recorders, etc., a magnetic layer deposited on a substrate has magnetization in a direction horizontal to the substrate surface. (It is common to record information in the in-plane direction (d).

ところが、この面内方向磁化による記録の場合、記録信
号が短波長になるにつれ、すなわち記録密度が高まるに
つれ、媒体内の反磁界が増して残留磁束密度が減衰し、
再生出力が減少するという欠点を有している。
However, in the case of recording using in-plane direction magnetization, as the wavelength of the recording signal becomes shorter, that is, as the recording density increases, the demagnetizing field within the medium increases and the residual magnetic flux density attenuates.
This has the disadvantage that the reproduction output decreases.

そこで、記録信号の高密度記録化や記録波長の短波長化
等の進展に対応すべく、磁性層の厚さ方向の磁化により
記録を行う垂直磁化記録方式の磁気記録媒体が提案され
ている。この垂直磁化記録方式によれば、記録波長が短
波長になるにしたがい減磁界が小さくなることから、記
録密度を飛躍的に高めることができ、特に短波長記録、
高密度記録に非常に有利である。
Therefore, in order to cope with the progress of higher density recording of recording signals and shorter recording wavelengths, a perpendicular magnetization recording type magnetic recording medium in which recording is performed by magnetization in the thickness direction of a magnetic layer has been proposed. According to this perpendicular magnetization recording method, as the recording wavelength becomes shorter, the demagnetizing field becomes smaller, so the recording density can be dramatically increased.
Very advantageous for high-density recording.

上記垂直磁化記録方式の磁気記録媒体としては、Co−
Cr合金等のCo系合金材料を高分子フィルム等の非磁
性支持体上に蒸着もしくはスパッタリング等の真空薄膜
形成技術により被着し、垂直磁化膜とした磁気記録媒体
が盛んに開発、研究されている。
As the magnetic recording medium of the perpendicular magnetization recording method, Co-
Magnetic recording media, in which a Co-based alloy material such as a Cr alloy is deposited on a non-magnetic support such as a polymer film using a vacuum thin film formation technique such as vapor deposition or sputtering, are being actively developed and researched to form a perpendicularly magnetized film. There is.

しかしながら、この種のi気記録媒体においては、耐久
性や走行性に問題が多く、その改善が大きな課題となっ
ている。これら磁気記録媒体を磁気テープあるいは磁気
ディスクとして実用化するには、充分な耐久性が不可欠
である。
However, this type of i-air recording medium has many problems with durability and runnability, and improvement thereof has become a major issue. In order to put these magnetic recording media into practical use as magnetic tapes or magnetic disks, sufficient durability is essential.

そのために各種の保護膜が検討されており、耐久性向上
のだめの研究開発が進められている。
To this end, various types of protective films are being considered, and research and development is underway to improve durability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、保護膜を設ける方法では、スペーシング
ロスの増大と媒体の膜厚の増大という、2つの大きな欠
点が問題となっていた。
However, the method of providing a protective film has two major drawbacks: an increase in spacing loss and an increase in the film thickness of the medium.

例えば、耐久性を向上するために設けた保護膜が原因し
て、出力が低下したり、周波数特性が劣化する等、電磁
変換特性に悪影響を及ぼしていた。
For example, the protective film provided to improve durability has had an adverse effect on electromagnetic conversion characteristics, such as a drop in output and deterioration of frequency characteristics.

あるいは、媒体の膜厚が増大すると、カールと称される
屈曲が生したり、媒体の可撓性が損なわれる等の不都合
が生じていた。
Alternatively, when the film thickness of the medium increases, problems such as bending called curling and loss of flexibility of the medium occur.

そこで本発明は、従来技術の前記欠点を解消するために
Igされたものであって、スペーシングロスの増大や膜
厚の増加を伴わず、優れた耐久性を有する磁気記録媒体
を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention has been developed to solve the above-mentioned drawbacks of the prior art, and provides a magnetic recording medium that has excellent durability without increasing spacing loss or film thickness. With the goal.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上述の如き目的を達成せんものと鋭意研
究の結果、耐久性向上には垂直磁化膜自身の機械的性質
の向上が有効であることを見出し本発明を完成するに至
ったものであって、非磁性支持体上にCo系垂直磁化膜
を形成してなる磁気記録媒体において、上記Co系垂直
磁化膜はヤング率が9000 kg/l■2以上である
ことを特徴とするものである。
As a result of intensive research to achieve the above objectives, the present inventors discovered that improving the mechanical properties of the perpendicularly magnetized film itself is effective in improving durability, and completed the present invention. A magnetic recording medium comprising a Co-based perpendicular magnetization film formed on a non-magnetic support, characterized in that the Co-based perpendicular magnetization film has a Young's modulus of 9000 kg/l 2 or more. It is something.

本発明が適用される磁気記録媒体は、非磁性支持体上に
Co系合金材料を直接被着し、磁性層となるCo系垂直
磁化膜を形成してなる磁気記録媒体である。
A magnetic recording medium to which the present invention is applied is a magnetic recording medium in which a Co-based alloy material is directly deposited on a non-magnetic support to form a Co-based perpendicularly magnetized film serving as a magnetic layer.

上記Co系垂直磁化膜を構成する合金材料としては、C
o−Cr、Co−V、Go−Os、C。
The alloy material constituting the Co-based perpendicular magnetization film is C
o-Cr, Co-V, Go-Os, C.

−Ru、Co−Re、Go−Mn等のCo系合金材料が
挙げられ、さらにこれらCo系合金材料にNb、Mo、
W、Rh等の添加元素を加えたものであってもよい。
Co-based alloy materials such as -Ru, Co-Re, Go-Mn, etc. are mentioned, and these Co-based alloy materials include Nb, Mo,
Additional elements such as W and Rh may be added.

上記垂直磁化膜の形成方法としては、真空蒸着法、イオ
ンブレーティング法、スパッタ法等に代表される真空薄
膜形成技術が採用される。ここで、真空蒸着法は、1O
−4〜10−’Torrの真空下で上記Co系合金材料
を、抵抗加熱、高周波加熱、電子ビーム加熱等により蒸
発させ、非磁性支持体上に蒸発金属を沈着するというも
のである。イオンブレーティング法も真空蒸着法の一種
であり、10−4〜10−’Torrの不活性ガス雰囲
気中でDCグロー放電、RFグロー放電を起こし、放電
中で上記Co系合金材料を蒸発させるというものである
As a method for forming the above-mentioned perpendicular magnetization film, a vacuum thin film forming technique represented by a vacuum evaporation method, an ion blating method, a sputtering method, etc. is employed. Here, in the vacuum evaporation method, 1O
The Co-based alloy material is evaporated under a vacuum of -4 to 10 Torr by resistance heating, high frequency heating, electron beam heating, etc., and the evaporated metal is deposited on a nonmagnetic support. The ion blating method is also a type of vacuum deposition method, in which DC glow discharge and RF glow discharge are generated in an inert gas atmosphere of 10-4 to 10-' Torr, and the above-mentioned Co-based alloy material is evaporated during the discharge. It is something.

スパッタ法は、1O−3〜10−’Torrのアルゴン
を主成分とする雰囲気中でグロー放電を起こし、生した
アルゴンイオンでターゲット表面の原子をたたき出すと
いうもので、グロー放電の方法により、直流2極、3極
スバ、り法や、高周波スバ、り法、マグネトロンを利用
したマグネトロンスパック法等がある。
In the sputtering method, a glow discharge is caused in an atmosphere mainly composed of argon at 10-3 to 10-' Torr, and the generated argon ions are used to knock out atoms on the target surface. There are the pole and three-pole spacing methods, the high-frequency spacing method, and the magnetron packing method using a magnetron.

そして、本発明では、上記Co系垂直磁化膜のヤング率
を9000kg/■12以上とする。
In the present invention, the Co-based perpendicular magnetization film has a Young's modulus of 9,000 kg/12 or more.

本発明者等の実験によれば、Co系垂直磁化膜のヤング
率を9000 kg/ 龍”以上とすれば、垂直磁化膜
自身の機械的性質が向上し、スペーシングロスや膜厚を
増大させることなく耐久性を向上できるとの結論を得る
に至った。例えば、Co系垂直磁化膜のヤング率を変え
て、そのスチル耐久性(出力低下するまでの回転回数と
して測定。)を調べたところ、第1図に示すように、ヤ
ング率9000kg/■l!以上で急激に耐久性が向上
することがわかった。
According to the experiments conducted by the present inventors, when the Young's modulus of the Co-based perpendicularly magnetized film is set to 9000 kg/min or more, the mechanical properties of the perpendicularly magnetized film itself are improved, and the spacing loss and film thickness are increased. For example, by changing the Young's modulus of the Co-based perpendicular magnetization film, we investigated its still durability (measured as the number of rotations until the output decreases). As shown in FIG. 1, it was found that the durability rapidly improved when the Young's modulus was 9000 kg/l! or more.

Co系垂直磁化膜の機械的性質は、その結晶粒界の性質
に大きく依存し、結晶粒界を密にすることで機械的性質
が向上し、媒体の耐久性が向上する。すなわち、垂直磁
化膜のヤング率を9000kg / ma 2以上とし
、機械的性質を向上するには、この垂直磁化膜の結晶粒
界に空孔の少ない状態とし、結晶粒が密につまるように
すればよい、この結晶粒界を空孔の少ない状態とする方
法としては、Co系垂直磁化膜形成後において、結晶粒
界に原子1分子を熱拡散させる方法や、プラズマ法等で
結晶粒界に原子2分子を侵入させる方法、イオン注入法
で結晶粒界に原子2分子を注入させる方法、あるいは垂
直磁化膜作成時の条件を制御する方法等が挙げられる。
The mechanical properties of a Co-based perpendicularly magnetized film largely depend on the properties of its crystal grain boundaries, and by making the crystal grain boundaries denser, the mechanical properties are improved and the durability of the medium is improved. In other words, in order to increase the Young's modulus of the perpendicularly magnetized film to 9000 kg/ma 2 or more and to improve its mechanical properties, the crystal grain boundaries of this perpendicularly magnetized film should be in a state with few vacancies so that the crystal grains are densely packed. As a method to make this grain boundary a state with few vacancies, there is a method of thermally diffusing one molecule of an atom into the grain boundary after forming a Co-based perpendicular magnetization film, or a method of thermally diffusing one molecule of an atom into the grain boundary with a plasma method, etc. Examples include a method of injecting two molecules of atoms, a method of injecting two molecules of atoms into crystal grain boundaries using an ion implantation method, and a method of controlling conditions during the production of a perpendicularly magnetized film.

〔作用〕[Effect]

Co垂直磁化膜のヤング率を9000 kg/m”以上
とすることにより、垂直磁化膜自身の機械的性質で耐久
性が確保される。したがって、スペーシングロスや膜厚
の増大は皆無となる。
By setting the Young's modulus of the Co perpendicularly magnetized film to 9000 kg/m'' or more, durability is ensured by the mechanical properties of the perpendicularly magnetized film itself.Therefore, there is no spacing loss or increase in film thickness.

〔実施例〕〔Example〕

以下、本発明を具体的な実験結果により説明する。 The present invention will be explained below using specific experimental results.

本実験では、厚さ50μmのポリイミドベース上に厚さ
0.5 p mのGo−Crスパッタ膜(Cr含を盟約
17〜18重量%)をCo系垂直磁化膜として堆積した
構造とした。
In this experiment, a structure was used in which a 0.5 pm thick Go-Cr sputtered film (containing approximately 17 to 18 wt % Cr) was deposited as a Co-based perpendicularly magnetized film on a 50 μm thick polyimide base.

Go−Crスパッタ膜はRFスパッタ法により堆積させ
たが、そのスパッタ条件は下記の通りである。
The Go-Cr sputtered film was deposited by RF sputtering, and the sputtering conditions were as follows.

スパック条件 スパック装置   RF2極スパッタ装置ターゲット 
   Co板(2001膳φ)上にCrのベレットを面
積比で 19%なる割合で一様に配 置したターゲット アルゴン圧    3〜30 mTorr基板温度  
   170℃ 基板−ターゲット間距離   60菖1RFパワー  
   150W RFパワー密度  0.96W/! また、Co−Crスパッタ膜のヤング率は、スパッタ時
のAr圧により制御した。第2図に示すように、スパッ
タ時のAr圧を低くすれば、垂直磁化膜のヤング率が大
幅に向上し、さらに、第3図に示すように、成長する膜
の結晶粒径も小さくなって結晶粒界に空孔の少ない状態
になる。なお、ここでヤング率は、ベースを含むも■気
記録媒体試料のヤング率と、Co−Crスパッタ膜を取
り除いたベースのみのヤング率を測定し、複合材料のヤ
ング率(線形性を仮定)のモデルからCo−Crスパッ
タ膜のみのヤング率をみかけのヤング率として計算によ
り求めた。
Spacking conditions Spacking equipment RF 2-pole sputtering equipment target
Target Argon pressure: 3 to 30 mTorr Substrate temperature: Cr pellets are uniformly arranged on a Co plate (2001 mm diameter) at an area ratio of 19%
170℃ Substrate-target distance 60 iris 1RF power
150W RF power density 0.96W/! Further, the Young's modulus of the Co--Cr sputtered film was controlled by the Ar pressure during sputtering. As shown in Figure 2, by lowering the Ar pressure during sputtering, the Young's modulus of the perpendicularly magnetized film is greatly improved, and as shown in Figure 3, the crystal grain size of the growing film is also reduced. As a result, there are fewer vacancies at grain boundaries. Note that the Young's modulus here is determined by measuring the Young's modulus of a recording medium sample including the base and the Young's modulus of only the base from which the Co-Cr sputtered film is removed, and the Young's modulus of the composite material (assuming linearity). The Young's modulus of only the Co--Cr sputtered film was calculated as the apparent Young's modulus from the model.

以上の手法に従い、みかけのヤング率2500kg/ 
as”  、  6300 kg/■m”、11000
kg/龍2を有するCo−Crスパッタ膜を作成し、そ
れぞれ比較例1.比較例2.実施例とした。
According to the above method, the apparent Young's modulus is 2500 kg/
as", 6300 kg/■m", 11000
A Co-Cr sputtered film having a weight of 2 kg/dragon 2 was prepared, and Comparative Example 1. Comparative example 2. This is an example.

これら試料の破断面の走査電子顕微鏡写真(倍率450
00倍)を第4図、第5図、第6図にそれぞれ示す、こ
れら膜構造を観察すると、ヤング率の小さいものは柱状
構造が明瞭で結晶粒界が疎で空孔等が多いのに対して、
ヤング率の大きいものは結晶粒界が密になって柱状構造
が不鮮明になることがわかった。
Scanning electron micrographs of the fracture surfaces of these samples (450 magnification)
00 times) are shown in Figures 4, 5, and 6, respectively.When observing these membrane structures, those with a small Young's modulus have a clear columnar structure, sparse grain boundaries, and many vacancies. for,
It was found that when the Young's modulus is large, the grain boundaries become dense and the columnar structure becomes unclear.

さらに、上記各実施例及び比較例について、ひっかき強
度及びスチル耐久性を測定した。
Furthermore, scratch strength and still durability were measured for each of the above Examples and Comparative Examples.

上記ひっかき強度は、新来科学社製、連続加重弐ひっか
き強度試験機を用いて行った。測定の原理は、試料を固
定した移動台が移動を開始すると、連続加重分銅も同じ
距離だけ支点から離れて加重され、移動距離に比例した
圧力が試料に加わるというもので、きす付きが始まった
加重をひっかき強度として読み取るものである。試験測
定条件は、移動分銅       100g、200g
針          サファイア針 ひっかき速度     10日/secとし、きす付き
始め箇所の読み取りは微分干渉顕微鏡を用い、−試料に
対して10回行い、その平均値とした。
The above scratch strength was measured using a continuous load double scratch strength tester manufactured by Shinraikagakusha. The principle of measurement is that when the moving table with the sample fixed starts moving, the continuous weight is also weighted the same distance away from the fulcrum, and pressure proportional to the moving distance is applied to the sample. The weight is read as the scratch strength. Test measurement conditions are moving weights 100g and 200g.
The scratching speed of the sapphire needle was 10 days/sec, and the reading of the starting point of the scratch was performed 10 times on the -sample using a differential interference microscope, and the average value was taken as the reading.

スチル耐久性は、各試料を3.5インチ径に裁断し、波
長1μmの記録信号のRMS再生出力が出力低下するま
での回転回数として測定した。
Still durability was measured by cutting each sample to a diameter of 3.5 inches and measuring the number of rotations until the RMS reproduction output of a recording signal with a wavelength of 1 μm decreased.

結果を次表に示す。The results are shown in the table below.

表 この表より、ヤング率を9000kg/mm”以上とし
結晶粒界を密にした実施例では、他の比較例と比べ耐久
性や機械的強度の大幅な向上が見られ〔発明の効果〕 以上の説明からも明らかなように、本発明においては、
Co系垂直磁化膜のヤング率を9000kg / x*
 ”以上とし、結晶粒界での空孔を少ない状態としてい
るので、垂直磁化膜自身の機械的性質を向上させること
ができ、耐久性の高い磁気記録媒体の提供が可能である
。また、このとき保護膜を形成する場合と異なり、スペ
ーシングロスや膜厚の増加を伴うことはなく、を磁変換
特性やカール、媒体の可撓性等の点で極めて有利である
Table From this table, it can be seen that in the examples in which the Young's modulus was 9000 kg/mm or more and the grain boundaries were dense, there was a significant improvement in durability and mechanical strength compared to other comparative examples [Effects of the invention] As is clear from the explanation, in the present invention,
The Young's modulus of the Co-based perpendicular magnetization film is 9000 kg/x*
``With the above, since the number of vacancies at the grain boundaries is reduced, the mechanical properties of the perpendicularly magnetized film itself can be improved, and a highly durable magnetic recording medium can be provided. Unlike the case of forming a protective film, there is no spacing loss or increase in film thickness, and it is extremely advantageous in terms of magnetic conversion characteristics, curling, flexibility of the medium, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCo垂直磁化膜のヤング率とスチル耐久性の関
係を示す特性図、第2図はスパッタ時のAr圧と得られ
るCo垂直磁化膜のヤング率の関係を示す特性図、第3
図はスパッタ時のAr圧とCo垂直磁化膜の結晶粒径の
関係を示す特性図である。 第4図はヤング率2500 kg/n”なるCo垂直磁
化膜の破断面における結晶の構造を示す走査電子顕微鏡
写真(倍率45000倍)、第5図はヤング率6300
kg/龍fなるCo垂直磁化膜の破断面における結晶の
構造を示す走査電子顕微鏡写真(倍率45000倍)、
第6図はヤング率11000 kg/w”なるCo垂直
磁化膜の破断面における結晶の構造を示す走査電子顕微
鏡写真(倍率45000倍)である。
Figure 1 is a characteristic diagram showing the relationship between the Young's modulus of a perpendicularly magnetized Co film and still durability. Figure 2 is a characteristic diagram showing the relationship between the Ar pressure during sputtering and the Young's modulus of the obtained perpendicularly magnetized Co film.
The figure is a characteristic diagram showing the relationship between the Ar pressure during sputtering and the crystal grain size of a Co perpendicularly magnetized film. Figure 4 is a scanning electron micrograph (45,000x magnification) showing the crystal structure on the fracture surface of a Co perpendicularly magnetized film with a Young's modulus of 2,500 kg/n'', and Figure 5 shows a crystal structure with a Young's modulus of 6,300 kg/n''.
A scanning electron micrograph (magnification: 45,000 times) showing the crystal structure on the fracture surface of a Co perpendicularly magnetized film of kg/dragon f.
FIG. 6 is a scanning electron micrograph (magnification: 45,000 times) showing the crystal structure on the fracture surface of a Co perpendicularly magnetized film having a Young's modulus of 11,000 kg/w''.

Claims (1)

【特許請求の範囲】[Claims] 非磁性支持体上にCo系垂直磁化膜を形成してなる磁気
記録媒体において、上記Co系垂直磁化膜はヤング率が
9000kg/mm^2以上であることを特徴とする磁
気記録媒体。
A magnetic recording medium comprising a Co-based perpendicular magnetization film formed on a non-magnetic support, wherein the Co-based perpendicular magnetization film has a Young's modulus of 9000 kg/mm^2 or more.
JP21356585A 1985-09-26 1985-09-26 Magnetic recording medium Expired - Fee Related JPH0697499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21356585A JPH0697499B2 (en) 1985-09-26 1985-09-26 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21356585A JPH0697499B2 (en) 1985-09-26 1985-09-26 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6273414A true JPS6273414A (en) 1987-04-04
JPH0697499B2 JPH0697499B2 (en) 1994-11-30

Family

ID=16641312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21356585A Expired - Fee Related JPH0697499B2 (en) 1985-09-26 1985-09-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0697499B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234130A (en) * 2006-03-01 2007-09-13 Hitachi Ltd Patterned medium and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234130A (en) * 2006-03-01 2007-09-13 Hitachi Ltd Patterned medium and its manufacturing method
JP4571084B2 (en) * 2006-03-01 2010-10-27 株式会社日立製作所 Patterned media and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0697499B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US5736262A (en) Magnetic recording medium
JPS6249722B2 (en)
US4636448A (en) Magnetic recording medium
JPH0363919A (en) Magnetic thin film recording medium and method of manufacturing the same
JPH056738B2 (en)
KR890003038B1 (en) Magnetic recording carrier
JPS6273414A (en) Magnetic recording medium
JPH08180360A (en) Perpendicular magnetic recording medium and magnetic recorder
KR100639620B1 (en) Magnetic recording medium, method of manufacture thereof, and magnetic disk device
JP3157806B2 (en) Magnetic recording media
JPS59157828A (en) Magnetic recording medium
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPH0261819A (en) Perpendicular magnetic recording medium
JPS60231911A (en) Magnetic recording medium
JPS6374121A (en) Production of perpendicular magnetic recording medium
JPS61187122A (en) Magnetic recording medium
KR890004255B1 (en) Magnetic recording carrier
JPH0380445A (en) Magneto-optical recording medium
JPS59191130A (en) Base material for magnetic recording medium and magnetic recording medium
JPS62241122A (en) Magnetic recording medium
JPS61292219A (en) Magnetic recording medium
JPS58171717A (en) Magnetic recording medium
JPH07122931B2 (en) Perpendicular magnetic recording medium
JPH0130218B2 (en)
JPS62120627A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees