JPH05258271A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH05258271A
JPH05258271A JP11400192A JP11400192A JPH05258271A JP H05258271 A JPH05258271 A JP H05258271A JP 11400192 A JP11400192 A JP 11400192A JP 11400192 A JP11400192 A JP 11400192A JP H05258271 A JPH05258271 A JP H05258271A
Authority
JP
Japan
Prior art keywords
film
magnetic
alloy
medium
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11400192A
Other languages
Japanese (ja)
Inventor
Kenji Matsumoto
賢次 松本
Shogo Nasu
昌吾 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10669191A external-priority patent/JPH04311811A/en
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Publication of JPH05258271A publication Critical patent/JPH05258271A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enhance durability by forming a perpendicular magnetic anisotropic film of a specified oxide on a magnetic film of a specified alloy. CONSTITUTION:A magnetic film of a Co-Ni-Cr alloy having plane anisotropy is formed by sputtering on a nonmagnetic substrate such as a sheet of polyimide, polyester or other org. polymer, a stainless steel sheet or a glass sheet and a perpendicular magnetic anisotropic film of a partially oxidized Fe-Co alloy or partially oxidized Co is further formed on the magnetic film under the conditions of -30 to +200 deg.C temp. of the substrate, 1-10mTorr pressure of gaseous Ar and 10-10,000Angstrom /min rate of deposition. The durability of the resulting magnetic recording medium can be considerably enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度記録可能な磁気
記録媒体に関し、更に詳しくは、スチルビデオ、データ
ディスク等に用いられるビデオフロッピーディスクに好
適な磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium capable of high density recording, and more particularly to a magnetic recording medium suitable for a video floppy disk used for still video, data disk and the like.

【0002】[0002]

【従来の技術】近年、直径2インチの小型フロッピーデ
ィスクが実用化され、画像記録、データ記録等に用いら
れている。これらのディスクは片面使用で、画像記録で
は静止画50枚、データ記録では約1MBの容量を有し
ている。これらのディスクに使用される磁性体は、Feを
ベースとした合金粉末等が使われており、保磁力Hcは
1000〜1500 Oe位に設定されている。
2. Description of the Related Art In recent years, a small floppy disk having a diameter of 2 inches has been put to practical use and used for image recording, data recording and the like. These discs are used on one side and have a capacity of 50 still images for image recording and about 1 MB for data recording. The magnetic material used for these disks is Fe-based alloy powder or the like, and the coercive force Hc is set to about 1000 to 1500 Oe.

【0003】[0003]

【発明が解決しようとする課題】しかし乍ら、2インチ
ディスクで更に容量の増大、画質の向上を図るには、現
在の塗付型媒体ではC/N比の点で不充分であり、また
保磁力を向上させるにも限界がある。一方、近年、金属
薄膜型の媒体が高密度記録可能な媒体として注目され実
用化されつつある。更に高密度記録可能な方式としてCo
−Cr等を記録層とする垂直記録方式も実用化に向けて検
討が続けられている。これらの金属薄膜型媒体は、ヘッ
ド接触型のフロッピーディスクの場合、媒体とヘッドと
の摺動のために媒体が摩耗し易く、耐久性の点で問題が
ある。
However, in order to further increase the capacity and the image quality of the 2-inch disk, the current coatable medium is insufficient in the C / N ratio, and There is a limit to improving the coercive force. On the other hand, in recent years, a metal thin film type medium has attracted attention as a medium capable of high density recording and is being put to practical use. As a method that enables higher density recording, Co
The perpendicular recording method using −Cr as a recording layer is also being studied for practical use. In the case of a head-contact type floppy disk, these metal thin film media are apt to wear due to the sliding of the media and the head, and there is a problem in durability.

【0004】[0004]

【課題を解決するための手段】本発明者らは、かかる実
情に鑑み上記課題を解決せんとして鋭意研究の結果、本
発明に到達した。即ち、本発明の第1は、非磁性基板上
に、面内異方性をもつCo−Ni−Cr合金からなる磁性膜を
設け、更にその上にFe−Co合金の部分酸化物またはCoの
部分酸化物からなる垂直磁気異方性膜を設けてなる磁気
記録媒体を、本発明の第2は、厚み25〜30μmのポ
リイミドフィルムの少なくとも片面に、非磁性下地層と
してCr膜、面内異方性をもつCo−Ni−Cr合金からなる磁
性膜、Fe−Co合金の部分酸化物またはCoの部分酸化物
からなる垂直磁気異方性膜を2000〜4000Åの合
計膜厚になるように順次形成してなる電子スチルカメラ
用磁気記録媒体をそれぞれ内容とするものである。
SUMMARY OF THE INVENTION The present inventors have arrived at the present invention as a result of earnest research as a solution to the above problems in view of the above circumstances. That is, the first aspect of the present invention is to provide a magnetic film made of a Co-Ni-Cr alloy having in-plane anisotropy on a non-magnetic substrate, and further to provide a partial oxide of Fe-Co alloy or Co. A second aspect of the present invention provides a magnetic recording medium provided with a perpendicular magnetic anisotropy film made of a partial oxide on at least one surface of a polyimide film having a thickness of 25 to 30 μm. A magnetic film made of a Co-Ni-Cr alloy having a directionality, a perpendicular magnetic anisotropy film made of a partial oxide of Fe-Co alloy or a partial oxide of Co are sequentially formed to a total film thickness of 2000 to 4000 Å. The contents are the magnetic recording media for electronic still cameras that are formed.

【0005】本発明は面内記録層と垂直記録層を組み合
わせることにより馬蹄型の磁化モードを形成し、低密度
から高密度まで広い範囲の記録密度領域で高いC/N比
が得られるとともに、酸化物であるFe−Co又はCo部分酸
化物層の動摩擦係数が低いため、耐久性も改善されるの
である。
According to the present invention, a horseshoe-shaped magnetization mode is formed by combining an in-plane recording layer and a perpendicular recording layer, and a high C / N ratio can be obtained in a wide range of recording density from low density to high density. Since the dynamic friction coefficient of the Fe-Co or Co partial oxide layer, which is an oxide, is low, the durability is also improved.

【0006】本発明に使用される非磁性基板としては、
ポリイミド、ポリエステル等の有機高分子の板、フィル
ム、シートや、アルミニウム、ステンレス等の金属板、
ガラス板等が使用される。
As the non-magnetic substrate used in the present invention,
Plates, films and sheets of organic polymers such as polyimide and polyester, and metal plates such as aluminum and stainless steel,
A glass plate or the like is used.

【0007】本発明の磁気記録媒体はスパッタリング
法、蒸着法等の広義の薄膜作製法により作製される。以
下スパッタリング法、特に高周波スパッタリング法によ
る作製法について述べる。本発明において、面内異方性
をもつCo−Ni−Cr合金からなる磁性膜については、基板
温度室温〜350℃、アルゴンガス圧1〜20mTorr 、
堆積速度100〜10000Å/分のスパッタリング条
件で好適に得られる。更に、Co−Ni−Cr合金磁性膜の下
に非磁性下地層としてCr膜等を設けると、800〜15
00 Oe程度の大きな保磁力が得られる。この非磁性下
地層は媒体をある程度固くし耐久性を向上させる効果も
ある。Co−Ni−Cr合金磁性膜の厚みは500〜4000
Åの範囲が好ましい。500Åよりも薄いと傷が発生し
易く、また4000Åより厚いと回転不良となる傾向が
ある。
The magnetic recording medium of the present invention is manufactured by a thin film manufacturing method in a broad sense such as a sputtering method and a vapor deposition method. Hereinafter, a manufacturing method by a sputtering method, particularly a high frequency sputtering method will be described. In the present invention, for a magnetic film made of a Co—Ni—Cr alloy having in-plane anisotropy, the substrate temperature is room temperature to 350 ° C., the argon gas pressure is 1 to 20 mTorr,
A deposition rate of 100 to 10,000 Å / min is preferably obtained under sputtering conditions. Further, if a Cr film or the like is provided as a non-magnetic underlayer under the Co-Ni-Cr alloy magnetic film, it becomes 800 to 15
A large coercive force of about 00 Oe can be obtained. This nonmagnetic underlayer also has the effect of hardening the medium to some extent and improving durability. The thickness of the Co-Ni-Cr alloy magnetic film is 500 to 4000.
The range of Å is preferable. If it is thinner than 500Å, scratches are likely to occur, and if it is thicker than 4000Å, there is a tendency for rotation failure.

【0008】本発明の垂直記録層であるFe−Co合金の部
分酸化物膜については、基板温度−30〜200℃、ア
ルゴンガス圧1〜10mTorr 、堆積速度10〜1000
0Å/分の条件で好適に作製される。基板温度は、基板
フィルムの耐熱性、加熱又は冷却装置を用いることの経
済性を勘案して決められる。アルゴンガス圧は低いほど
垂直異方性が大きいが、低すぎると放電が安定しない。
Fe−Co合金の部分酸化物膜の厚みは300〜1000Å
の範囲が好ましい。300Åより薄いと高密度での出力
が小さく、また耐久性が不充分となり、また1000Å
より厚いと記録再生特性が低下する傾向がある。
Regarding the partial oxide film of the Fe--Co alloy which is the perpendicular recording layer of the present invention, the substrate temperature is −30 to 200 ° C., the argon gas pressure is 1 to 10 mTorr, and the deposition rate is 10 to 1000.
It is preferably manufactured under the condition of 0Å / min. The substrate temperature is determined in consideration of the heat resistance of the substrate film and the economical efficiency of using a heating or cooling device. The lower the argon gas pressure, the greater the vertical anisotropy, but if it is too low, the discharge will not be stable.
The thickness of the partial oxide film of Fe-Co alloy is 300 ~ 1000Å
Is preferred. If the thickness is less than 300Å, the output at high density is small and the durability is insufficient.
If it is thicker, the recording / reproducing characteristics tend to deteriorate.

【0009】Fe−Co合金の部分酸化物膜の磁気特性、特
に飽和磁化、垂直磁気異方性、保磁力は主にCo濃度と酸
素濃度によって決定される。Co組成はCo30〜70原子
%〔Co/(Co+Fe)〕の場合に、垂直磁気異方性の大き
な媒体が得られる。更に好ましくは、40〜60原子%
前後で最大の垂直磁気異方性を示す。もう一つの磁性を
決定する因子である酸化率については、50〜85%が
好適である。酸化率は飽和磁化、垂直磁気異方性、保磁
力を規定する。酸化率を上げると飽和磁化は直線的に低
下し、逆に垂直磁気異方性、保磁力は増大する。保磁
力、垂直磁気異方性は使用するヘッドに従って適当な値
にするべきである。酸化率はスパッタリング中の酸素導
入量又は酸素分圧によって制御できる。コバルト、酸素
の両含有量を制御することにより、飽和磁化は300〜
700emu/cc、垂直異方性磁界3〜7kOe 、垂直保磁力
200〜1000 Oeの磁性膜が得られる。
The magnetic properties of the partial oxide film of the Fe--Co alloy, especially the saturation magnetization, the perpendicular magnetic anisotropy and the coercive force, are mainly determined by the Co concentration and the oxygen concentration. When the Co composition is 30 to 70 atomic% [Co / (Co + Fe)], a medium having a large perpendicular magnetic anisotropy can be obtained. More preferably, 40 to 60 atomic%
It shows the maximum perpendicular magnetic anisotropy before and after. The oxidation rate, which is another factor that determines magnetism, is preferably 50 to 85%. The oxidation rate defines saturation magnetization, perpendicular magnetic anisotropy, and coercive force. When the oxidation rate is increased, the saturation magnetization linearly decreases, and conversely the perpendicular magnetic anisotropy and coercive force increase. The coercive force and perpendicular magnetic anisotropy should be appropriate values according to the head used. The oxidation rate can be controlled by the oxygen introduction amount or oxygen partial pressure during sputtering. By controlling the contents of both cobalt and oxygen, the saturation magnetization is 300-
A magnetic film having a magnetic field of 700 emu / cc, a perpendicular anisotropic magnetic field of 3 to 7 kOe and a perpendicular coercive force of 200 to 1000 Oe can be obtained.

【0010】次に、Co部分酸化物膜の作製方法について
は、Coをターゲットとした酸素雰囲気中でのいわゆる直
流反応性スパッタリングによって好適に作製される。磁
気特性はアルゴンガス圧、O2導入量により決定される。
飽和磁化は酸素導入量により決定され、50〜75%酸
化することにより300〜700emu/cm3 に調製され
る。Co部分酸化物膜の厚みは、Fe−Co合金部分酸化物膜
の場合と同様、300〜1000Åが好ましい。この領
域でアルゴンガス圧を高めにすることにより、垂直異方
性の優れた媒体が得られ、また垂直保磁力も高められ
る。垂直異方性磁界3〜5kOe 、垂直保磁力500〜1
500 Oeの膜が得られる。
Next, as for the method of forming the Co partial oxide film, it is preferably formed by so-called DC reactive sputtering in an oxygen atmosphere with Co as a target. The magnetic properties are determined by the argon gas pressure and the amount of O 2 introduced.
Saturation magnetization is determined by the amount of oxygen introduced, and is adjusted to 300 to 700 emu / cm 3 by 50 to 75% oxidation. The thickness of the Co partial oxide film is preferably 300 to 1000Å as in the case of the Fe-Co alloy partial oxide film. By increasing the argon gas pressure in this region, a medium having excellent perpendicular anisotropy can be obtained and the perpendicular coercive force can also be increased. Vertical anisotropy magnetic field 3-5kOe, vertical coercive force 500-1
A film of 500 Oe is obtained.

【0011】本発明の磁気記録媒体を構成するにあたっ
て重要な点の第1は、Co−Ni−Cr合金磁性膜の保磁力で
ある。この保磁力が大きいほど再生出力は大きくなる
が、ヘッドの仕様により通常は500〜1500 Oe位
に設定することが好ましい。更に、非磁性下地層として
Cr膜を設け、その上にCo−Ni−Cr合金磁性膜を設けた方
が保磁力の制御がし易く、また耐久性の向上にも役立
つ。Cr膜はbcc構造をとり、Co−Ni−Cr層はこの上に
エピタキシャル結晶成長し、C軸が傾いた結晶構造をと
り、面に平行な方向の異方性を示すようになる。Cr膜の
厚みは300〜3000Åの範囲で変えることができ
る。
The first important point in constructing the magnetic recording medium of the present invention is the coercive force of the Co--Ni--Cr alloy magnetic film. The larger the coercive force, the larger the reproduction output, but it is usually preferable to set it to about 500 to 1500 Oe depending on the specifications of the head. Furthermore, as a non-magnetic underlayer
It is easier to control the coercive force by providing the Cr film and then providing the Co—Ni—Cr alloy magnetic film thereon, and it is also useful for improving the durability. The Cr film has a bcc structure, the Co-Ni-Cr layer grows epitaxially on this, and the C-axis has a tilted crystal structure to exhibit anisotropy in a direction parallel to the plane. The thickness of the Cr film can be changed within the range of 300 to 3000Å.

【0012】本発明の磁気記録媒体を構成するにあたっ
て重要な点の第2は、非磁性基板並びに磁性層の厚みで
ある。媒体としてのスティフネスを2.5〜5g・mmに
調整することが好ましく、そのためには、例えば、非磁
性基板として引っ張り弾性率700kg/mm2程度のフィル
ムを用いた場合、厚さ25〜30μmのフィルムが適当
である。
The second important point in constructing the magnetic recording medium of the present invention is the thickness of the nonmagnetic substrate and the magnetic layer. The stiffness as a medium is preferably adjusted to 2.5 to 5 g · mm. For that purpose, for example, when a film having a tensile elastic modulus of about 700 kg / mm 2 is used as a non-magnetic substrate, a thickness of 25 to 30 μm is used. A film is suitable.

【0013】磁性層の合計厚みは800〜5000Åに
するのが好ましく、更に好ましくは2000〜4000
Åが好ましい。部分酸化物膜の膜厚を大きくすれば耐久
性は向上するが、特に低記録密度の再生出力は低下す
る。一方、Co−Ni−Crの膜厚を大きくし、部分酸化物膜
の膜厚を小さくした場合は、低記録密度の再生出力は向
上するが、高記録密度の再生出力は低下し、耐久性も低
下する。また、それぞれの膜厚が大きすぎる場合は、デ
ィスクが固くなりヘッドとの摺動が不安定になり、安定
した記録再生ができない。1例として、Cr膜1000
Å、Co−Ni−Cr膜1750Å、Fe−Co部分酸化物膜50
0Åの媒体は、優れた記録密度特性と耐久性を示した。
The total thickness of the magnetic layer is preferably 800 to 5000Å, more preferably 2000 to 4000.
Å is preferred. If the thickness of the partial oxide film is increased, the durability is improved, but the reproduction output especially at low recording density is reduced. On the other hand, when the film thickness of Co-Ni-Cr is increased and the film thickness of the partial oxide film is decreased, the reproduction output of low recording density is improved, but the reproduction output of high recording density is decreased and durability is improved. Also decreases. On the other hand, if the respective film thicknesses are too large, the disc becomes hard and sliding with the head becomes unstable, and stable recording / reproducing cannot be performed. As an example, Cr film 1000
Å, Co-Ni-Cr film 1750 Å, Fe-Co partial oxide film 50
The 0Å medium showed excellent recording density characteristics and durability.

【0014】また、厚み25〜30μmのポリイミドフ
ィルムの少なくとも片面に、非磁性下地層としてCr膜、
面内異方性をもつCo−Ni−Cr合金からなる磁性膜、Fe−
Co合金の部分酸化物又はCoの部分酸化物からなる垂直磁
気異方性膜を2000〜4000Åの合計膜厚になるよ
うに順次形成した媒体は、電子スチルカメラ用磁気記録
媒体として好適である。このような媒体構成で、現行の
電子スチルカメラのフロッピーディスクドライブに対し
て適当なスティフネスが得られ、安定したヘッドタッチ
が得られ優れた記録再生特性、すなわち現行メタル塗布
媒体よりも優れた記録再生特性が実現できる。このステ
ィフネスでヘッドならびに媒体双方の耐久性が最大とな
る。裏面は、表面と同一の構成でも良いが、ドライブパ
ッドとの摺動に耐えられる程度の耐久性があれば薄くと
も構わない。
Further, on at least one surface of a polyimide film having a thickness of 25 to 30 μm, a Cr film as a non-magnetic underlayer,
Magnetic film made of Co-Ni-Cr alloy with in-plane anisotropy, Fe-
A medium in which a partial oxide of a Co alloy or a perpendicular magnetic anisotropic film of a partial oxide of Co is sequentially formed to have a total film thickness of 2000 to 4000 Å is suitable as a magnetic recording medium for an electronic still camera. With such a medium structure, a proper stiffness can be obtained for the floppy disk drive of the current electronic still camera, a stable head touch can be obtained, and excellent recording / reproducing characteristics, that is, recording / reproducing superior to the current metal coated medium. The characteristics can be realized. This stiffness maximizes the durability of both the head and the medium. The back surface may have the same structure as the front surface, but may be thin as long as it is durable enough to withstand sliding with the drive pad.

【0015】従来の金属薄膜型媒体は耐久性に難点があ
り、無機、有機の保護層を設ける手段がとられてきた。
しかし、このような手段ではヘッドと媒体間に非磁性層
に由来するスペーシングが発生し、記録密度特性を損な
うため、保護層の膜厚は200Åが限界であり、充分な
耐久性が得られなかったのが実情である。
The conventional metal thin film type medium has a difficulty in durability, and means for providing an inorganic or organic protective layer has been taken.
However, with such a means, the spacing originating from the non-magnetic layer is generated between the head and the medium, and the recording density characteristic is impaired. Therefore, the thickness of the protective layer is limited to 200 Å, and sufficient durability can be obtained. The reality was that there was no such thing.

【0016】これに対して、本発明の磁気記録媒体は表
層が部分酸化物膜で硬く、摩擦係数も小さく、ヘッドと
の摺動に対する耐久性も優れている。また、部分酸化物
膜自体が垂直磁気異方性をもった磁性膜であるため、ス
ペーシングを発生させることはない。即ち、記録層自体
が保護層としても働くため、充分な耐久性と記録再生特
性を兼ね備えたものである。本発明の媒体の記録再生
は、特にリングヘッドを用いた場合に高い再生出力と高
い記録密度が得られる。
On the other hand, the magnetic recording medium of the present invention has a hard surface layer of a partial oxide film, a small friction coefficient, and excellent durability against sliding with the head. Moreover, since the partial oxide film itself is a magnetic film having perpendicular magnetic anisotropy, spacing is not generated. That is, since the recording layer itself also functions as a protective layer, it has both sufficient durability and recording / reproducing characteristics. The recording / reproducing of the medium of the present invention can obtain a high reproducing output and a high recording density particularly when a ring head is used.

【0017】本発明において、保磁力を大きくするため
に非磁性基板のAr雰囲気中でのスパッタ処理を行うこと
ができる。図1に保磁力とスパッタ処理時間との関係を
示す。スパッタ処理していくと、処理時間にともなって
保磁力が増大していくことがわかる。この膜を電子顕微
鏡により観察すると、スパッタ処理によって微小な凹凸
が発生していることがわかる。保磁力の増大に効果のあ
った微小な凹凸は、スパッタパワー100Wで処理した
場合、処理時間で20〜50分、深さ0.02〜0.1
μm、幅0.03〜0.5μmの範囲である。この範囲
より処理時間が短いと表面凹凸が小さすぎて充分な保磁
力がでず、一方、処理時間が長くなると表面凹凸が大き
くなりすぎフィルム表面の機械的強度が著しく劣化する
とともに保磁力も低下する傾向がある。従って、本発明
において保磁力を増大させるためにAr雰囲気中でスパッ
タ処理したときに生ずる表面微小凹凸は、深さ0.02
〜0.1μm、幅0.03〜0.5μmの範囲が好まし
い。
In the present invention, in order to increase the coercive force, the nonmagnetic substrate can be sputtered in an Ar atmosphere. FIG. 1 shows the relationship between the coercive force and the sputtering process time. It can be seen that the coercive force increases with the processing time as the sputtering process proceeds. When the film is observed with an electron microscope, it is found that minute unevenness is generated by the sputtering process. The minute irregularities that have been effective in increasing the coercive force have a processing time of 20 to 50 minutes and a depth of 0.02 to 0.1 when processed with a sputtering power of 100 W.
μm, and the width is 0.03 to 0.5 μm. If the treatment time is shorter than this range, the surface irregularities are too small to provide sufficient coercive force.On the other hand, if the treatment time is longer, the surface irregularities become too large and the mechanical strength of the film surface deteriorates significantly and the coercive force also decreases. Tend to do. Therefore, in the present invention, the surface fine unevenness generated when the sputtering treatment is performed in an Ar atmosphere to increase the coercive force has a depth of 0.02.
.About.0.1 .mu.m and width 0.03 to 0.5 .mu.m are preferable.

【0018】また、保磁力を大きくするためにCo−Ni−
Cr膜にSmを添加することができる。図2に保磁力とSm添
加量の関係を示す。Smを添加していくと、保磁力が増大
していくことがわかる。図2より、Sm添加量がCo−Ni−
Crに対して1〜20原子%のとき保磁力増大に効果があ
ることがわかる。従って、Sm添加量は1〜20原子%の
範囲が好ましい。
In order to increase the coercive force, Co-Ni-
Sm can be added to the Cr film. Figure 2 shows the relationship between the coercive force and the amount of Sm added. It can be seen that the coercive force increases as Sm is added. From Fig. 2, the amount of Sm added is Co-Ni-
It can be seen that when it is 1 to 20 atomic% with respect to Cr, it is effective in increasing the coercive force. Therefore, the amount of Sm added is preferably in the range of 1 to 20 atomic%.

【0019】更にまた本発明において、耐久性を高める
ために、Fe−Co合金の部分酸化物層の表面に酸化層を形
成することができる。この表面酸化層の形成には多くの
手法があるが、大気中での熱処理が容易にかつ均質に表
面酸化層を形成できるので好ましい。表面酸化層の厚み
は熱処理温度、時間に依存するが、処理温度が高温すぎ
たり、処理時間が長くなりすぎると、表面酸化層が厚く
なって記録再生時のスペーシングとなり記録再生特性が
劣化したり、Fe−Co合金の部分酸化物自身の磁気特性の
劣化が起こる。従って、処理温度は80〜200℃、処
理時間は30〜600分の範囲が好ましい。この範囲の
条件で熱処理することでFe−Co合金の部分酸化物層の動
摩擦係数が低下し傷が付き難くなり、耐久性が大幅に改
善される。X線光電子分光法での分析によると、上記の
範囲で熱処理したFe−Co合金の部分酸化物層表面にはF
e、Coの酸化物層が形成されており、その厚みは10〜
300Åの範囲にある。
Furthermore, in the present invention, an oxide layer may be formed on the surface of the partial oxide layer of the Fe--Co alloy in order to improve durability. There are many methods for forming the surface oxide layer, but it is preferable because the heat treatment in the atmosphere can be easily and uniformly formed. The thickness of the surface oxide layer depends on the heat treatment temperature and time.However, if the treatment temperature is too high or the treatment time is too long, the surface oxide layer becomes thick and the recording / reproducing spacing is deteriorated. Or the magnetic properties of the partial oxide of the Fe—Co alloy itself deteriorate. Therefore, the treatment temperature is preferably 80 to 200 ° C., and the treatment time is preferably 30 to 600 minutes. By heat-treating under the conditions of this range, the dynamic friction coefficient of the partial oxide layer of the Fe—Co alloy is lowered, scratches are less likely to occur, and durability is significantly improved. According to the analysis by X-ray photoelectron spectroscopy, F was found on the surface of the partial oxide layer of the Fe-Co alloy heat-treated in the above range.
An oxide layer of e and Co is formed and its thickness is 10 to 10.
It is in the range of 300Å.

【0020】[0020]

【実施例】以下、実施例に基づいて本発明を更に具体的
に説明するが、本発明はこれらにより何ら制限されるも
のではない。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited thereto.

【0021】実施例1 厚み30μmのポリイミドフィルムに高周波マグネトロ
ンスパッタリング法により、非磁性下地層としてCr膜を
作製した。スパッタ機として、直径6インチのターゲッ
トを3個備えることができるスパッタ機を用い、Crター
ゲット、Co−Ni−Cr合金ターゲット、及びFe−Co合金タ
ーゲットを装着した。ポリイミドフィルムには適当なテ
ンションをかけて基板ホルダーへ張り付けた。
Example 1 A Cr film was prepared as a non-magnetic underlayer on a polyimide film having a thickness of 30 μm by a high frequency magnetron sputtering method. As the sputtering machine, a sputtering machine capable of including three 6-inch diameter targets was used, and a Cr target, a Co-Ni-Cr alloy target, and an Fe-Co alloy target were attached. The polyimide film was attached to the substrate holder by applying appropriate tension.

【0022】まずCr膜をスパッタした。到達真空度2×
10-6Torrの状態からアルゴンガスを導入して15mTor
r とした。基板温度は150℃とした。基板温度の調整
は基板ホルダーに150℃のオイルを流して行った。ス
パッタパワー300Wで2分20秒間スパッタした。膜
厚は1000Åであった。
First, a Cr film was sputtered. Ultimate vacuum 2 ×
Argon gas was introduced from the state of 10 -6 Torr to 15 mTor
It was r. The substrate temperature was 150 ° C. The substrate temperature was adjusted by flowing oil at 150 ° C. into the substrate holder. Sputtering was performed at a sputtering power of 300 W for 2 minutes and 20 seconds. The film thickness was 1000Å.

【0023】引き続き真空を破ることなくCo−Ni−Cr合
金磁性膜を堆積した。組成はCo62.5at.%、Ni30a
t.%、Cr7.5at.%の合金ターゲットを用い、アルゴン
ガス圧1.2mTorr として、基板温度150℃、スパッ
タパワー500Wで1分間スパッタした。膜厚は100
0Åであった。
Subsequently, a Co—Ni—Cr alloy magnetic film was deposited without breaking the vacuum. The composition is Co62.5 at.%, Ni30a
Using an alloy target containing t.% and Cr at 7.5 at.%, the argon gas pressure was 1.2 mTorr, the substrate temperature was 150 ° C., and the sputtering power was 500 W for 1 minute. Film thickness is 100
It was 0Å.

【0024】更に、真空を保持したままFe−Co部分酸化
物を堆積した。Co60at.%のFe−Co合金ターゲットを使
用し、アルゴンガスを導入して2.4mTorr とした。更
に酸素ガスを7CCM 導入し、基板ホルダーは水冷しなが
らスパッタパワー900Wで30秒間スパッタした。膜
厚は500Åであった。得られたシートより直径2イン
チのディスクを切り出し、2インチのデータディスクド
ライブで記録再生特性を試料振動型磁力計で磁気特性を
測定した。記録再生特性は、書き込み周波数を変えて各
周波数域の再生出力をモニターした。参考データとし
て、市販の塗付型媒体の記録再生特性も同様にして測定
した。結果を図3、表1及び表2に示す。本発明の媒体
は、塗付型媒体に比べ全周波数領域で再生出力が大きい
ことがわかる。
Further, a Fe-Co partial oxide was deposited while maintaining the vacuum. An Fe-Co alloy target with Co of 60 at.% Was used, and argon gas was introduced to obtain 2.4 mTorr. Further, 7 CCM of oxygen gas was introduced, and the substrate holder was sputtered at a sputter power of 900 W for 30 seconds while cooling with water. The film thickness was 500Å. A disc with a diameter of 2 inches was cut out from the obtained sheet, and the recording / reproducing characteristics were measured with a 2-inch data disk drive and the magnetic characteristics were measured with a sample vibrating magnetometer. For the recording / reproducing characteristics, the reproducing output in each frequency range was monitored by changing the writing frequency. As reference data, the recording / reproducing characteristics of a commercially available coated medium were also measured in the same manner. The results are shown in FIG. 3, Table 1 and Table 2. It can be seen that the medium of the present invention has a larger reproduction output in the entire frequency range than the coated medium.

【0025】比較例1 Fe−Co部分酸化物膜を堆積しない以外は実施例1と同様
な方法で媒体を作製した。記録再生特性の結果を表1及
び表2に示した。
Comparative Example 1 A medium was prepared in the same manner as in Example 1 except that the Fe—Co partial oxide film was not deposited. The results of recording / reproducing characteristics are shown in Tables 1 and 2.

【0026】実施例2〜5 Co−Ni−Cr合金磁性膜の堆積時間を変えて膜厚みを変え
た以外は実施例1と同様な方法で媒体を作製し、記録再
生特性を測定した。結果を表1及び表2に示す。Co−Ni
−Cr合金磁性膜の膜厚が厚いほど再生出力は大きい傾向
を示すが、厚すぎると安定した回転が得られないことが
わかる。
Examples 2 to 5 A medium was prepared in the same manner as in Example 1 except that the deposition time of the Co—Ni—Cr alloy magnetic film was changed to change the film thickness, and the recording / reproducing characteristics were measured. The results are shown in Tables 1 and 2. Co-Ni
The reproduction output tends to increase as the thickness of the -Cr alloy magnetic film increases, but it is clear that stable rotation cannot be obtained if the thickness is too large.

【0027】実施例6〜8 Fe−Co合金の部分酸化物膜の堆積時間を変えて膜厚みを
変えた以外は実施例1と同様な方法で媒体を作製し、記
録再生特性を測定した。結果を表1及び表2に示す。Fe
−Co合金の部分酸化物膜を設けない媒体、あるいは設け
ても極めて薄い媒体は、特に高密度での出力が小さく、
かつ耐久性がない。一方、厚すぎると耐久性は優れてい
るが、記録再生特性が低下することがわかる。
Examples 6 to 8 A medium was prepared in the same manner as in Example 1 except that the deposition time of the partial oxide film of Fe—Co alloy was changed to change the film thickness, and the recording / reproducing characteristics were measured. The results are shown in Tables 1 and 2. Fe
-A medium without a partial oxide film of a Co alloy, or an extremely thin medium even if provided, has a small output especially at high density,
And it is not durable. On the other hand, if the thickness is too thick, the durability is excellent, but the recording / reproducing characteristics deteriorate.

【0028】実施例9〜11 Fe−Co合金の部分酸化物膜作製時における酸素導入量を
変えて飽和磁化を変えた以外は実施例1と同様な方法で
媒体を作製し、記録再生特性を測定した。結果を表1及
び表2に示す。Fe−Co合金の部分酸化膜の飽和磁化が一
定の範囲にある媒体が、優れた記録再生特性を有してい
ることがわかる。
Examples 9 to 11 A medium was manufactured in the same manner as in Example 1 except that the amount of oxygen introduced during the preparation of the partial oxide film of the Fe-Co alloy was changed to change the saturation magnetization, and the recording / reproducing characteristics were measured. It was measured. The results are shown in Tables 1 and 2. It can be seen that the medium in which the saturation magnetization of the partial oxide film of the Fe-Co alloy is in a certain range has excellent recording / reproducing characteristics.

【0029】実施例12 Cr膜を堆積する工程を省略した他は実施例1と同様にし
て媒体を作製し、磁気特性、記録再生特性を測定した。
結果を表1及び表2に示す。Cr下地が存在しない場合
は、面内保磁力が低下し、再生出力レベルは低下するこ
とがわかる。
Example 12 A medium was prepared in the same manner as in Example 1 except that the step of depositing the Cr film was omitted, and the magnetic characteristics and recording / reproducing characteristics were measured.
The results are shown in Tables 1 and 2. It can be seen that when the Cr underlayer does not exist, the in-plane coercive force decreases and the reproduction output level decreases.

【0030】実施例13 実施例1と同様にしてCr膜、Co−Ni−Cr合金磁性膜の順
に堆積した。引き続きCo部分酸化物膜を堆積した。Coの
ターゲットを使用し、アルゴンガスを導入して10mTor
r とした。さらに酸素ガスを6.5CCM 導入し、基板ホ
ルダーは水冷しながらDCスパッタパワー900Wで2
5秒間スパッタした。膜厚は500Åであった。実施例
1と同様にして磁気特性、記録再生特性を測定した。そ
の結果を表1及び表2に示す。安定した運転性と優れた
再生出力を示した。
Example 13 In the same manner as in Example 1, a Cr film and a Co—Ni—Cr alloy magnetic film were deposited in this order. Subsequently, a Co partial oxide film was deposited. Using Co target, introducing argon gas, 10mTor
It was r. Furthermore, 6.5 CCM of oxygen gas was introduced, and the substrate holder was cooled with water and the DC sputtering power was 900 W.
Sputtered for 5 seconds. The film thickness was 500Å. Magnetic characteristics and recording / reproducing characteristics were measured in the same manner as in Example 1. The results are shown in Tables 1 and 2. It showed stable drivability and excellent regeneration output.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】実施例14 高周波マグネトロンスパッタリング法により媒体を作製
した。ターゲットは直径6インチのCr、Co−Ni−Cr、Fe
−Coターゲットを用い、Sm添加はCo−Ni−Crターゲット
上にSmチップをおいてスパッタすることで行なった。ま
た、Sm添加量はチップ数で制御した。基板材料であるベ
ースフィルムには、厚み30μmのポリイミドフィルム
を用いた。フィルムは適当なテンションをかけて基板ホ
ルダーに張り付けた。作製条件は、到達真空度約5×1
-6Torr、Cr層は、アルゴンガス圧15mTorr 、基板温
度150℃、スパッタパワー300W、膜厚1000Å
であった。引き続いて真空を破ることなく、Smを添加し
たCo−Ni−Cr合金磁性膜を堆積した。Sm添加はCo−Ni−
Cr合金ターゲット上に面積1cm2 Smチップを2枚のせて
行なった。組成は、(Co−Ni−Cr)−SmにおいてCo−Ni
−Crに対してSm8at.%で、更にCo−Ni−Crでは、Co6
2.5at.%、Ni30at.%、Cr7.5at.%であった。アル
ゴンガス圧1.2mTorr 、基板温度150℃、スパッタ
パワー260W、膜厚は1500Åであった。更に、真
空を保持した状態でFe−Co部分酸化物を堆積した。Co6
0at.%のFe−Co合金ターゲットを使用し、アルゴンガス
を導入して2.4mTorr とした。更に、酸素ガスを7cc
M 導入し、基板ホルダーは水冷しながらスパッタパワー
900Wでスパッタした。膜厚は500Åであった。得
られたシートより直径2インチのディスクを切り出し、
2インチのデータディスクドライブで記録再生特性を測
定した。また、試料振動型磁力計で磁気特性を測定し
た。記録再生特性は、書き込み周波数を変えて各周波数
での再生出力をモニターした。書き込み電流は最適電流
を測定し、最適電流値で記録再生特性を評価した。参考
データとして、市販の塗布型媒体の記録再生特性も同様
にして測定した。結果を図4、表3に示す。本発明の媒
体は、塗布型媒体、Sm無添加Co−Ni−Cr媒体(参考例
1)に比べ全周波数領域で再生出力が大きいことがわか
る。
Example 14 A medium was prepared by a high frequency magnetron sputtering method. The target is 6 inch diameter Cr, Co-Ni-Cr, Fe
Using a —Co target, Sm was added by placing an Sm chip on the Co—Ni—Cr target and sputtering. The amount of Sm added was controlled by the number of chips. A polyimide film having a thickness of 30 μm was used as a base film as a substrate material. The film was attached to the substrate holder with appropriate tension. The manufacturing conditions are the ultimate vacuum of about 5 x 1
0 -6 Torr, Cr layer, argon gas pressure 15 mTorr, substrate temperature 150 ° C, sputtering power 300 W, film thickness 1000 Å
Met. Subsequently, a Co—Ni—Cr alloy magnetic film containing Sm was deposited without breaking the vacuum. Sm addition is Co-Ni-
Two 1 cm.sup.2 Sm chips were placed on a Cr alloy target. The composition is (Co-Ni-Cr) -Sm
-Cr is Sm 8 at.%, And Co-Ni-Cr is Co6
It was 2.5 at.%, Ni30 at.%, Cr 7.5 at.%. The argon gas pressure was 1.2 mTorr, the substrate temperature was 150 ° C., the sputtering power was 260 W, and the film thickness was 1500 Å. Further, the Fe-Co partial oxide was deposited while the vacuum was maintained. Co6
A Fe-Co alloy target of 0 at.% Was used, and argon gas was introduced to obtain 2.4 mTorr. Furthermore, oxygen gas 7cc
M was introduced, and the substrate holder was sputtered at a sputter power of 900 W while cooling with water. The film thickness was 500Å. A 2 inch diameter disc was cut out from the obtained sheet,
Recording / reproducing characteristics were measured with a 2-inch data disk drive. Moreover, the magnetic characteristics were measured with a sample vibrating magnetometer. Regarding the recording / reproducing characteristics, the reproduction output at each frequency was monitored by changing the writing frequency. The optimum write current was measured, and the recording / reproducing characteristics were evaluated with the optimum current value. As reference data, the recording / reproducing characteristics of a commercially available coating medium were also measured in the same manner. The results are shown in FIG. 4 and Table 3. It can be seen that the medium of the present invention has a larger reproduction output in the entire frequency range than the coating type medium and the Sm-free Co—Ni—Cr medium (Reference Example 1).

【0034】実施例15〜18 実施例14と同様な条件でCo−Ni−CrへのSm添加量のみ
を変化させて媒体を作製し、記録再生特性を測定した。
添加量は3at.%、12at.%、20at.%とした。結果を表
3に示す。これらのSm添加量の範囲ではいずれも保磁力
が大きく、記録再生特性も塗布型媒体、Sm無添加Co−Ni
−Cr媒体(参考例1)に比べて優れていることがわか
る。
Examples 15 to 18 Under the same conditions as in Example 14, media were prepared by changing only the amount of Sm added to Co-Ni-Cr, and the recording / reproducing characteristics were measured.
The added amounts were 3 at.%, 12 at.% And 20 at.%. The results are shown in Table 3. The coercive force is large in the range of these Sm addition amounts, and the recording / reproducing characteristics are also the coating type medium and the Sm-free Co-Ni
It can be seen that it is superior to the -Cr medium (Reference Example 1).

【0035】参考例1 Co−Ni−CrにSmを添加しない以外は実施例14と同様な
方法で媒体を作製した。記録再生特性、磁気特性の結果
を図4、表3に示した。
Reference Example 1 A medium was prepared in the same manner as in Example 14 except that Sm was not added to Co-Ni-Cr. The results of recording / reproducing characteristics and magnetic characteristics are shown in FIG. 4 and Table 3.

【0036】実施例19 実施例14において、Fe-Co ターゲットの代わりに、Co
-CoO(6:4, 原子比) のターゲットを使用し、アルゴンガ
スを導入し 8mTorr とし、基板ホルダーは水冷しながら
パワー900Wでスパッタした。得られた特性は表3に記す
とおりであった。
Example 19 In Example 14, instead of the Fe--Co target, Co was used.
A target of -CoO (6: 4, atomic ratio) was used, argon gas was introduced to 8 mTorr, and the substrate holder was sputtered at a power of 900 W while cooling with water. The characteristics obtained were as shown in Table 3.

【0037】[0037]

【表3】 [Table 3]

【0038】実施例20、21 基板材料であるベースフィルムとして厚み30μmのポ
リイミドフィルムを用い、陰極上に固定しアルゴンガス
圧3mTorr 、RFスパッタパワー100Wで40分間処
理をした。フィルムは適当なテンションをかけて基板ホ
ルダーに張り付けた。更に、その上に媒体を高周波マグ
ネトロンスパッタリング法により作製した。ターゲット
は直径6インチのCr、Co−Ni−Cr、Fe−Coターゲットを
用い、Sm添加はCo−Ni−Crターゲット上にSmチップをお
いてスパッタすることにより行なった。また、Sm添加量
はチップ数で制御した。作製条件は、到達真空度約5×
10-6Torr、Cr層は、アルゴンガス圧15mTorr 、基板
温度150℃、スパッタパワー300W、膜厚1000
Åであった。引き続いて真空を破ることなく、Smを添加
したCo−Ni−Cr合金磁性膜を堆積した。Sm添加はCo−Ni
−Cr合金ターゲット上に面積1cm2 Smチップを2枚のせ
て行なった。組成は、(Co−Ni−Cr)−SmにおいてCo−
Ni−Crに対してSm8at.%で、更にCo−Ni−Crでは、Co6
2.5at.%、Ni30at.%、Cr7.5at.%であった。アル
ゴンガス圧1.2mTorr 、基板温度150℃、スパッタ
パワー260W、膜厚は1500Åであった。
Examples 20 and 21 A polyimide film having a thickness of 30 μm was used as a base film as a substrate material, fixed on the cathode and treated with an argon gas pressure of 3 mTorr and an RF sputtering power of 100 W for 40 minutes. The film was attached to the substrate holder with appropriate tension. Further, a medium was formed thereon by a high frequency magnetron sputtering method. The target used was a Cr, Co-Ni-Cr, Fe-Co target with a diameter of 6 inches, and Sm was added by spattering an Sm chip on the Co-Ni-Cr target. The amount of Sm added was controlled by the number of chips. The manufacturing condition is the ultimate vacuum of about 5 ×
10 −6 Torr, Cr layer, argon gas pressure 15 mTorr, substrate temperature 150 ° C., sputtering power 300 W, film thickness 1000
It was Å. Subsequently, a Co—Ni—Cr alloy magnetic film containing Sm was deposited without breaking the vacuum. Sm addition is Co-Ni
Two 1 cm.sup.2 Sm chips were placed on a --Cr alloy target. The composition is (Co-Ni-Cr) -Sm
Sm8at.% For Ni-Cr, and Co6 for Co-Ni-Cr
It was 2.5 at.%, Ni30 at.%, Cr 7.5 at.%. The argon gas pressure was 1.2 mTorr, the substrate temperature was 150 ° C., the sputtering power was 260 W, and the film thickness was 1500 Å.

【0039】更に、真空を保持した状態でFe−Co部分酸
化物を堆積した。Co60at.%のFe−Co合金ターゲットを
使用し、アルゴンガスを導入して2.4mTorr とした。
更に、酸素ガスを7ccm 導入し、基板ホルダーは水冷し
ながらスパッタパワー900Wでスパッタした。膜厚は
500Åであった。得られたシートより直径2インチの
ディスクを切り出し、2インチのデータディスクドライ
ブで記録再生特性を測定した。また、試料振動型磁力計
で磁気特性を測定した。記録再生特性は、書き込み周波
数を変えて各周波数での再生出力をモニターした。書き
込み電流は最適電流を測定し、最適電流値で記録再生特
性を評価した。参考データとして、市販の塗布型媒体の
記録再生特性も同様にして測定した。結果を図5、表4
に示す。本発明の媒体は、塗布型媒体、無処理基板を用
いた媒体(参考例2)に比べ全周波数領域で再生出力が
大きいことがわかる。
Further, a Fe-Co partial oxide was deposited while maintaining a vacuum. An Fe-Co alloy target with Co of 60 at.% Was used, and argon gas was introduced to obtain 2.4 mTorr.
Further, oxygen gas was introduced at 7 ccm, and the substrate holder was sputtered at a sputter power of 900 W while cooling with water. The film thickness was 500Å. A disc with a diameter of 2 inches was cut out from the obtained sheet, and the recording / reproducing characteristics were measured with a 2-inch data disc drive. Moreover, the magnetic characteristics were measured with a sample vibrating magnetometer. Regarding the recording / reproducing characteristics, the reproduction output at each frequency was monitored by changing the writing frequency. The optimum write current was measured, and the recording / reproducing characteristics were evaluated with the optimum current value. As reference data, the recording / reproducing characteristics of a commercially available coating medium were also measured in the same manner. The results are shown in FIG.
Shown in. It can be seen that the medium of the present invention has a larger reproduction output in the entire frequency range than the coating type medium and the medium using the untreated substrate (Reference Example 2).

【0040】実施例22〜24 実施例21と同様な条件でベースフィルムのスパッタ処
理時間のみを変化させて媒体を作製し、記録再生特性を
測定した。スパッタ処理時間は30分、50分、10分
とした。結果を表4に示す。これらのスパッタ処理時間
の範囲ではいずれも保磁力が大きく、記録再生特性も塗
布型媒体、無処理基板を用いた媒体(参考例2)に比べ
て優れていることがわかる。
Examples 22 to 24 Under the same conditions as in Example 21, media were prepared by changing only the sputtering treatment time of the base film, and the recording / reproducing characteristics were measured. The sputtering treatment time was 30 minutes, 50 minutes, and 10 minutes. The results are shown in Table 4. It can be seen that the coercive force is large in any of these sputtering treatment time ranges and the recording / reproducing characteristics are superior to those of the coating type medium and the medium using the untreated substrate (Reference Example 2).

【0041】実施例25 実施例20において、Fe−Coターゲットの代わりにCo-C
o0(6:4, 原子比) のターゲットを使用し、アルゴンガス
を導入し8mTorr とし、基板ホルダーは水冷しながらパ
ワー900Wでスパッタした。得られた特性を表4に示
した。
Example 25 In Example 20, Co—C was used instead of the Fe—Co target.
A target of 0 (6: 4, atomic ratio) was used, argon gas was introduced to 8 mTorr, and the substrate holder was sputtered at a power of 900 W while cooling with water. The obtained characteristics are shown in Table 4.

【0042】参考例2 ベースフィルムのスパッタ処理を行わないこと以外は実
施例20と同様な方法で媒体を作製した。記録再生特
性、磁気特性の結果を図5、表4に示した。
Reference Example 2 A medium was prepared in the same manner as in Example 20 except that the base film was not sputtered. The results of recording / reproducing characteristics and magnetic characteristics are shown in FIG. 5 and Table 4.

【0043】[0043]

【表4】 [Table 4]

【0044】実施例26 基板材料であるベースフィルムとして厚み30μmのポ
リイミドフィルムを用い、アルゴンガス圧3mTorr 、ス
パッタパワー100Wで40分間処理をした。フィルム
は適当なテンションをかけて基板ホルダーに張り付け
た。更に、その上に媒体を高周波マグネトロンスパッタ
リング法により作製した。ターゲットは直径6インチの
Cr、Co−Ni−Cr、Fe−Coターゲットを用い、Sm添加はCo
−Ni−Crターゲット上にSmチップをおいてスパッタする
ことにより行なった。作製条件は、到達真空度約5×1
-6Torr、Cr層はアルゴンガス圧15mTorr、基板温度
150℃、スパッタパワー300W、膜厚1000Åで
あった。
Example 26 A polyimide film having a thickness of 30 μm was used as a base film as a substrate material, and was treated for 40 minutes at an argon gas pressure of 3 mTorr and a sputtering power of 100 W. The film was attached to the substrate holder with appropriate tension. Further, a medium was formed thereon by a high frequency magnetron sputtering method. The target has a diameter of 6 inches
Cr, Co-Ni-Cr, Fe-Co targets are used, and Sm addition is Co
It was performed by placing an Sm chip on a -Ni-Cr target and performing sputtering. The manufacturing conditions are the ultimate vacuum of about 5 x 1
0 -6 Torr, Cr layer is an argon gas pressure of 15 mTorr, a substrate temperature of 0.99 ° C., sputtering power 300 W, and a film thickness of 1000 Å.

【0045】引き続いて真空を破ることなく、Smを添加
したCo−Ni−Cr合金磁性膜を堆積した。Sm添加は、Co−
Ni−Cr合金ターゲット上に面積1cm2 Smチップを2枚の
せて行なった。組成は、(Co−Ni−Cr)−SmにおいてCo
−Ni−Crに対してSm8at.%で、更にCo−Ni−Crでは、Co
62.5at.%、Ni30at.%、Cr7.5at.%であった。ア
ルゴンガス圧1.2mTorr 、基板温度150℃、スパッ
タパワー260W、膜厚は1750Åであった。尚、Sm
添加は再生出力に影響するが、耐久性には影響しないた
めSm添加有無の区別はしていない。
Subsequently, a Co—Ni—Cr alloy magnetic film containing Sm was deposited without breaking the vacuum. Sm addition is Co-
Two 1 cm.sup.2 Sm chips were placed on a Ni--Cr alloy target. The composition is (Co-Ni-Cr) -Sm
-Ni-Cr with Sm 8 at.%, And with Co-Ni-Cr, Co
It was 62.5 at.%, Ni30 at.%, Cr 7.5 at.%. The argon gas pressure was 1.2 mTorr, the substrate temperature was 150 ° C., the sputtering power was 260 W, and the film thickness was 1750Å. Incidentally, Sm
The addition of Sm does not affect the durability but does not affect the durability, so it is not distinguished whether Sm is added or not.

【0046】更に、真空を保持した状態でFe−Co合金の
部分酸化物を堆積した。Co60at.%のFe−Co合金ターゲ
ットを使用し、アルゴンガスを導入して2.4mTorr と
した。更に、酸素ガスを7ccm 導入し、基板ホルダーは
水冷しながらスパッタパワー900Wでスパッタした。
膜厚は500Åであった。
Further, a partial oxide of Fe--Co alloy was deposited while the vacuum was maintained. An Fe-Co alloy target with Co of 60 at.% Was used, and argon gas was introduced to obtain 2.4 mTorr. Further, oxygen gas was introduced at 7 ccm, and the substrate holder was sputtered at a sputter power of 900 W while cooling with water.
The film thickness was 500Å.

【0047】次いで、上述のように順次薄膜を積層した
後、積層シートを大気中に取り出し、この積層シートか
ら直径2インチのディスクを切り出して乾燥機中で大気
中熱処理を施し、Fe−Co合金の部分酸化物の表面に酸化
層を形成した。熱処理温度は100℃、処理時間は30
0分であった。熱処理後に更に液体潤滑剤を200Å程
度塗布した。
Next, after laminating the thin films in sequence as described above, the laminated sheet was taken out into the atmosphere, and a disc having a diameter of 2 inches was cut out from this laminated sheet and heat-treated in the atmosphere in a drier to obtain a Fe--Co alloy. An oxide layer was formed on the surface of the partial oxide. Heat treatment temperature is 100 ° C, treatment time is 30
It was 0 minutes. After the heat treatment, a liquid lubricant of about 200Å was further applied.

【0048】得られた媒体の耐久性試験は2インチのデ
ータディスクドライブで行い、初期再生出力が70%以
下となった時点で、その媒体の耐久性パス回数とした。
媒体表面の観察は目視と光学顕微鏡で行った。結果を図
6、表5に示す。100℃、300分熱処理することに
より耐久性が大幅に向上していることが分かる。また、
1000万回パス後も媒体表面での傷の発生は認められ
なかった。
The durability test of the obtained medium was conducted with a 2-inch data disk drive, and when the initial reproduction output was 70% or less, the durability pass number of the medium was defined.
The surface of the medium was observed visually and with an optical microscope. The results are shown in Fig. 6 and Table 5. It can be seen that durability is significantly improved by heat treatment at 100 ° C. for 300 minutes. Also,
No scratches were found on the medium surface even after 10 million passes.

【0049】実施例27〜29 実施例26と同様な条件で熱処理温度、時間のみを変化
させて媒体を作製し、耐久性試験及び観察を行った。結
果を表5に示す。これらの熱処理温度、時間の範囲では
いずれも耐久性が優れていて、1000万回以上パスし
ており、パス後の傷が発生していないことが分かる。
Examples 27 to 29 Under the same conditions as in Example 26, only the heat treatment temperature and time were changed to prepare media, and durability tests and observations were conducted. The results are shown in Table 5. It can be seen that the durability was excellent in all of these heat treatment temperatures and time ranges and that 10 million or more passes were made and no scratches were generated after the passes.

【0050】実施例30〜32 Co−Ni−Cr合金層の膜厚以外は実施例26と同様な条件
で媒体を作製し、耐久性試験及び観察を行った。結果を
表5に示す。Co−Ni−Cr合金層の膜厚を500Å、10
00Å、3000Åと変えても耐久性、パス後の表面状
態ともに優れていることが分かる。
Examples 30 to 32 A medium was manufactured under the same conditions as in Example 26 except for the film thickness of the Co-Ni-Cr alloy layer, and the durability test and observation were conducted. The results are shown in Table 5. Co-Ni-Cr alloy layer thickness of 500Å, 10
It can be seen that the durability and the surface condition after passing are excellent even when changed to 00Å and 3000Å.

【0051】実施例33、34 熱処理時間を変えた以外は実施例26と同様にして媒体
を作製し、且つ耐久性試験及び観察を行った。結果を表
5に示す。
Examples 33 and 34 A medium was prepared in the same manner as in Example 26 except that the heat treatment time was changed, and durability tests and observations were conducted. The results are shown in Table 5.

【0052】実施例35 Co−Ni−Cr合金層の膜厚を厚くしたこと以外は実施例2
6と同様な方法で媒体を作製した。耐久性試験及び観察
の結果を表5に示す。Co−Ni−Cr合金層の膜厚が厚くな
ると媒体自身が硬くなり、耐久性が劣化するとともに媒
体表面に傷が発生した。また、回転不良であった。
Example 35 Example 2 except that the thickness of the Co—Ni—Cr alloy layer was increased.
A medium was prepared in the same manner as in 6. Table 5 shows the results of the durability test and the observation. When the film thickness of the Co-Ni-Cr alloy layer becomes thick, the medium itself becomes hard, the durability is deteriorated, and the medium surface is scratched. Also, the rotation was defective.

【0053】実施例36〜38 媒体の熱処理温度、時間を変化させたこと以外は実施例
26と同様な方法で媒体を作製し、耐久性試験及び観察
を行った。結果を表5に示す。熱処理温度を200℃よ
り高くしたり、また熱処理温度が低くて表面酸化層厚み
が不充分になると、媒体表面に傷が発生する。
Examples 36 to 38 A medium was prepared in the same manner as in Example 26 except that the heat treatment temperature and time of the medium were changed, and the durability test and observation were performed. The results are shown in Table 5. If the heat treatment temperature is higher than 200 ° C. or if the heat treatment temperature is low and the thickness of the surface oxide layer becomes insufficient, scratches occur on the medium surface.

【0054】実施例39、40 Fe−Co合金の部分酸化物層の膜厚、Co−Ni−Cr合金層の
膜厚を変化させた以外は実施例26と同様な方法で媒体
を作製し耐久性試験及び観察を行った。結果を表5に示
す。Fe−Co合金の部分酸化物層の膜厚を厚くすると耐久
性が悪くなり、媒体表面に傷が発生する。また、再生出
力も低下する。
Examples 39 and 40 A medium was manufactured by the same method as in Example 26 except that the film thickness of the partial oxide layer of the Fe—Co alloy and the film thickness of the Co—Ni—Cr alloy layer were changed, and durability was obtained. A sex test and observation were performed. The results are shown in Table 5. If the thickness of the partial oxide layer of the Fe—Co alloy is increased, the durability deteriorates and scratches occur on the medium surface. Also, the reproduction output is reduced.

【0055】参考例3 媒体の熱処理を行わないこと以外は実施例26と同様な
方法で媒体を作製した。耐久性試験及び観察の結果を図
6、表5に示した。
Reference Example 3 A medium was prepared in the same manner as in Example 26 except that the medium was not heat-treated. The results of the durability test and the observation are shown in FIG. 6 and Table 5.

【0056】[0056]

【表5】 [Table 5]

【0057】[0057]

【発明の効果】叙上の通り、本発明は面内異方性をもつ
Co−Ni−Cr合金からなる磁性膜と、その上に設けたFe−
Co合金又はCoの部分酸化物からなる垂直磁気異方性膜と
により、従来の金属薄膜型媒体の欠点である耐久性を大
巾に向上させ、両者の磁気特性と膜厚を最適化すること
によって高い記録密度特性と再生出力を備えた磁気記録
媒体を提供することができる。また、面内異方性をもつ
Co−Ni−Cr合金からなる磁性膜にSmを添加することによ
り保磁力を大幅に増大させ、更に、非磁性基板材をアル
ゴンガス雰囲気中でスパッタ処理することによりCr下地
層を介したCo−Ni−CrもしくはCo−Ni−Cr−Sm合金から
なる磁性膜の保磁力を大幅に増大させることができる。
更にまた、Fe−Co部分酸化物からなる垂直記録層の表面
に酸化層を形成することにより、耐久性を1000万回
パス以上と大幅に向上させ、パス後の媒体表面の傷の発
生をなくすことができる。
As mentioned above, the present invention has in-plane anisotropy.
Magnetic film made of Co-Ni-Cr alloy and Fe-
A perpendicular magnetic anisotropy film consisting of a Co alloy or a partial oxide of Co should be used to significantly improve the durability, which is a drawback of conventional metal thin film media, and to optimize the magnetic properties and film thickness of both media. Thus, it is possible to provide a magnetic recording medium having high recording density characteristics and reproduction output. It also has in-plane anisotropy
The coercive force was significantly increased by adding Sm to the magnetic film made of Co-Ni-Cr alloy, and further, the non-magnetic substrate material was sputtered in an argon gas atmosphere so that Co- The coercive force of a magnetic film made of a Ni-Cr or Co-Ni-Cr-Sm alloy can be significantly increased.
Furthermore, by forming an oxide layer on the surface of the perpendicular recording layer made of Fe-Co partial oxide, the durability is greatly improved to 10 million passes or more, and scratches on the medium surface after the pass are eliminated. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】Fe−Co部分酸化物/Co−Ni−Cr−Sm/Cr/ポリ
イミドフィルム系媒体における面内方向の保磁力とポリ
イミドフィルムのスパッタ処理時間との関係を示す図で
ある。
FIG. 1 is a diagram showing the relationship between the coercive force in the in-plane direction of a Fe—Co partial oxide / Co—Ni—Cr—Sm / Cr / polyimide film medium and the sputtering time of a polyimide film.

【図2】Co−Ni−Cr−Sm系における面内方向の保磁力と
Sm添加量との関係を示す図である。
[Fig. 2] Coercive force in the in-plane direction in the Co-Ni-Cr-Sm system
It is a figure which shows the relationship with the Sm addition amount.

【図3】Co−Ni−Cr合金磁性膜とFe−Co合金の部分酸化
物膜を積層した本発明の媒体と、市販の2インチフロッ
ピーディスクの各記録再生特性を示すグラフである。
FIG. 3 is a graph showing respective recording / reproducing characteristics of a medium of the present invention in which a Co—Ni—Cr alloy magnetic film and a partial oxide film of Fe—Co alloy are laminated and a commercially available 2-inch floppy disk.

【図4】Sm添加、無添加媒体と市販の塗布媒体の記録密
度特性を比較した図である。
FIG. 4 is a diagram comparing the recording density characteristics of a medium with and without Sm added and a commercially available coating medium.

【図5】ポリイミドフィルムをスパッタ処理した媒体と
無処理媒体、市販の塗布型媒体の記録密度特性を比較し
た図である。
FIG. 5 is a diagram comparing recording density characteristics of a medium obtained by sputtering a polyimide film, a non-treated medium, and a commercially available coating medium.

【図6】実施例26及び参考例3で得られた、Fe−Co合
金の部分酸化物/Co−Ni−Cr−Sm/Cr/ポリイミドフィ
ルム系媒体における記録信号8MHzでの耐久性特性を
示す図である。
FIG. 6 shows durability characteristics at a recording signal of 8 MHz in a partial oxide of Fe—Co alloy / Co—Ni—Cr—Sm / Cr / polyimide film medium obtained in Example 26 and Reference Example 3. It is a figure.

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平4−22129 (32)優先日 平4(1992)1月10日 (33)優先権主張国 日本(JP) ─────────────────────────────────────────────────── ─── Continuation of the front page (31) Priority claim number Japanese patent application No. 4-22129 (32) Priority date Hei 4 (1992) January 10 (33) Priority claim country Japan (JP)

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板上に、面内異方性をもつCo−
Ni−Cr合金からなる磁性膜を設け、更にその上にFe−Co
合金の部分酸化物またはCoの部分酸化物からなる垂直磁
気異方性膜を設けてなる磁気記録媒体。
1. A Co- having in-plane anisotropy on a non-magnetic substrate.
A magnetic film made of Ni-Cr alloy is provided, and Fe-Co is further formed on it.
A magnetic recording medium provided with a perpendicular magnetic anisotropy film comprising a partial oxide of an alloy or a partial oxide of Co.
【請求項2】 Co−Ni−Cr合金からなる磁性膜の下に非
磁性下地層としてCr膜を設けた請求項1記載の磁気記録
媒体。
2. The magnetic recording medium according to claim 1, wherein a Cr film is provided as a non-magnetic underlayer under the magnetic film made of a Co—Ni—Cr alloy.
【請求項3】 Co−Ni−Cr合金からなる磁性膜にSmが1
〜20原子%添加されてなる請求項1又は2記載の磁気
記録媒体。
3. A Sm of 1 in a magnetic film made of a Co-Ni-Cr alloy.
The magnetic recording medium according to claim 1 or 2, wherein the magnetic recording medium is added in an amount of -20 atom%.
【請求項4】 非磁性基板がポリイミドフィルムからな
り、Ar雰囲気中でスパッタ処理されてなる請求項1〜3
記載の磁気記録媒体。
4. The non-magnetic substrate is made of a polyimide film and is sputtered in an Ar atmosphere.
The magnetic recording medium described.
【請求項5】 スパッタ処理されたポリイミドフィルム
表面の凹凸において、深さ0.02〜0.1ミクロン、
幅0.03〜0.5ミクロンである請求項1〜4記載の
磁気記録媒体。
5. The unevenness on the surface of the polyimide film which is sputtered, has a depth of 0.02 to 0.1 micron,
The magnetic recording medium according to claim 1, which has a width of 0.03 to 0.5 micron.
【請求項6】 垂直磁気異方性膜がFe−Coの部分酸化物
からなり、表面が30〜300Å酸化されることを特徴
とする請求項1〜5記載の磁気記録媒体。
6. The magnetic recording medium according to claim 1, wherein the perpendicular magnetic anisotropy film is made of a partial oxide of Fe—Co and the surface is oxidized by 30 to 300 Å.
【請求項7】 Fe−Co合金の部分酸化物又はCoの部分酸
化物からなる垂直磁気異方性膜の飽和磁化が300〜7
00emu/cm3 である請求項1〜6記載の磁気記録媒体。
7. The saturation magnetization of a perpendicular magnetic anisotropy film made of a partial oxide of Fe—Co alloy or a partial oxide of Co is 300 to 7
The magnetic recording medium according to any one of claims 1 to 6, wherein the magnetic recording medium has a density of 00 emu / cm 3 .
【請求項8】 Fe−Co合金の部分酸化物又はCoの部分酸
化物からなる垂直磁気異方性膜の厚みが300〜100
0Åである請求項1〜7記載の磁気記録媒体。
8. A perpendicular magnetic anisotropy film made of a partial oxide of Fe—Co alloy or a partial oxide of Co has a thickness of 300 to 100.
The magnetic recording medium according to claim 1, wherein the magnetic recording medium is 0Å.
【請求項9】 Co−Ni−Cr合金からなる磁性膜の厚みが
500〜4000Åである請求項1〜8記載の磁気記録
媒体。
9. The magnetic recording medium according to claim 1, wherein the magnetic film made of a Co—Ni—Cr alloy has a thickness of 500 to 4000 Å.
【請求項10】 厚み25〜30μmのポリイミドフィ
ルムの少なくとも片面に、非磁性下地層としてCr膜、面
内異方性をもつCo−Ni−Cr合金からなる磁性膜、Fe−Co
合金の部分酸化物又はCoの部分酸化物からなる垂直磁気
異方性膜を2000〜4000Åの合計膜厚になるよう
に順次形成してなる電子スチルカメラ用磁気記録媒体。
10. A polyimide film having a thickness of 25 to 30 μm, on at least one side of which is a Cr film as a non-magnetic underlayer, a magnetic film made of a Co—Ni—Cr alloy having in-plane anisotropy, and Fe—Co.
A magnetic recording medium for an electronic still camera, comprising a perpendicular magnetic anisotropy film consisting of a partial oxide of an alloy or a partial oxide of Co sequentially formed to have a total film thickness of 2000 to 4000Å.
JP11400192A 1991-04-10 1992-04-06 Magnetic recording medium Withdrawn JPH05258271A (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP10669191A JPH04311811A (en) 1991-04-10 1991-04-10 Magnetic recording medium
JP34808991 1991-12-03
JP34808891 1991-12-03
JP3-348088 1992-01-10
JP2212992 1992-01-10
JP3-106691 1992-01-10
JP3-348089 1992-01-10
JP4-22129 1992-01-10

Publications (1)

Publication Number Publication Date
JPH05258271A true JPH05258271A (en) 1993-10-08

Family

ID=27457699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11400192A Withdrawn JPH05258271A (en) 1991-04-10 1992-04-06 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH05258271A (en)

Similar Documents

Publication Publication Date Title
JP2834392B2 (en) Metal thin film type magnetic recording medium and method of manufacturing the same
JP3143611B2 (en) Ultrathin nucleation layer for magnetic thin film media and method of making the layer
US20050142388A1 (en) Perpendicular magnetic recording media and magnetic storage apparatus using the same
US6197367B1 (en) Magnetic recording medium, method of fabricating magnetic recording medium, and magnetic storage
JPH0363919A (en) Magnetic thin film recording medium and method of manufacturing the same
EP0710949B1 (en) Magnetic recording medium and its manufacture
JPS63237210A (en) Magnetic recording medium
WO2006030961A1 (en) Method for manufacturing perpedicular magnetic recording medium, perpendicular magnetic recording medium, and magnetic recording/ reproducing apparatus
JPH09288818A (en) Magnetic recording medium
EP1508895A1 (en) Information recording medium and information storage device
JP2005174531A (en) Magnetic body for non-reactive treatment for use in granular perpendicular recording
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
JPH05258271A (en) Magnetic recording medium
KR100639620B1 (en) Magnetic recording medium, method of manufacture thereof, and magnetic disk device
JPH0817032A (en) Magnetic recording medium and its production
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
US7166320B1 (en) Post-deposition annealed recording media and method of manufacturing the same
JP2989820B2 (en) Magnetic recording medium and method of manufacturing the same
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JPH05325163A (en) Magnetic recording medium
JP2989821B2 (en) Magnetic recording medium and method of manufacturing the same
EP1111595A1 (en) Base for magnetic recording medium, magnetic recording medium, method for producing the same, and magnetic recorder
JPH05135342A (en) Magnetic recording medium
JP2002025044A (en) Perpendicular magnetic recording medium and method for manufacturing the same
JPS61224120A (en) Magnetic recording medium and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608