JPS62245650A - Manufacture of multilayer interconnection structure - Google Patents

Manufacture of multilayer interconnection structure

Info

Publication number
JPS62245650A
JPS62245650A JP8793786A JP8793786A JPS62245650A JP S62245650 A JPS62245650 A JP S62245650A JP 8793786 A JP8793786 A JP 8793786A JP 8793786 A JP8793786 A JP 8793786A JP S62245650 A JPS62245650 A JP S62245650A
Authority
JP
Japan
Prior art keywords
dry etching
mask
film
polyimide resin
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8793786A
Other languages
Japanese (ja)
Inventor
Takeki Fukushima
福島 毅樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8793786A priority Critical patent/JPS62245650A/en
Publication of JPS62245650A publication Critical patent/JPS62245650A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive improvement in the effect of cleaning, to reduce the resistance of a through hole, and to obtain a microscopic multilayer interconnection structure by a method wherein polyimide resin is covered by the mask to be used for dry etching when a sputtering etching is performed. CONSTITUTION:The first layer of Al wiring, to be used for the lower electrode 3 to be connected in low resistance to the diffusion layer of a circuit element, is formed on the surface oxide film 2 of an Si semiconductor substrate 1. An interlayer insulating film 4 of polyimide resin is formed on the electrode 3. Besides, an Al thin film 5 of the prescribed thickness is formed on the surface of the film 4 as the mask to be used for dry etching. A patterning is performed by dry etching using a photoresist 6 on the thin film 5 and also using O2 gas on the part 7 for window to be used to perforate a through hole 8 on the electrode 3. When a dry etching is performed, the thin film 5 of polyimide resin is used as the mask for the dry etching, the cleaning to be conducted after dry etching is effectively performed, and the resistance of the through hole 8 can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は有機膜を層間絶縁膜として用(・、下部電極(
配線)と上部電極(配線)との電気的導通なスルーホー
ル(透孔)を通しておこなう多層配線構造体の製造法に
関し、特に微小なスルーホールを有する半導体集積回路
装置(IC,LSI)の製造法に適用して有効な電極形
成技術に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is directed to the use of an organic film as an interlayer insulating film (・lower electrode (
This invention relates to a method for manufacturing a multilayer wiring structure in which electrically conductive through-holes are formed between wires (wirings) and upper electrodes (wirings), and in particular, methods for manufacturing semiconductor integrated circuit devices (ICs, LSIs) having minute through-holes. This invention relates to electrode formation technology that is effective when applied to.

〔従来技術〕[Prior art]

ポリイミド系樹脂などの有機膜な層間絶縁膜として使う
多層アルミニウム配線技術につし・て)よ、本出願人に
かかわる特開昭55−59741公報に記載されている
A multilayer aluminum interconnection technique using an organic film such as a polyimide resin as an interlayer insulating film is described in Japanese Unexamined Patent Publication No. 55-59741 filed by the present applicant.

その概要は、下部It電極の上に層間絶縁膜としてポリ
イミド系樹脂膜を形成したのち、上部A、6電極との電
気的導通な得るために上記絶縁膜の必要部分にスルーホ
ールをあけて、このスルーホール部を真空状態でスノく
ツタリングによりエソチングし、その後、真空を破るこ
となく連続して上部AA電極形成のための金属(A4)
生成を行うものであり、これにより、スルーホールエッ
チ時にポリイミド系樹脂から生じる有機物等によるスル
ーホール内の汚染物質を除去し、もってスルーホール抵
抗を低く保持するものである。
The outline is that after forming a polyimide resin film as an interlayer insulating film on the lower It electrode, through holes are made in the necessary parts of the insulating film to obtain electrical continuity with the upper A and 6 electrodes. This through-hole part is etched in a vacuum state by slatting, and then the metal (A4) for forming the upper AA electrode is continuously etched without breaking the vacuum.
This removes contaminants in the through hole due to organic substances generated from the polyimide resin during through hole etching, thereby keeping the through hole resistance low.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した従来方法では、第1図乃至第3図及び第6図乃
至第8図を参照し、下部Aa電極3の上に形成したポリ
イミド系樹脂膜4のスルーホールエッチにあたって(第
1図)、ポリイミド系樹脂膜4の表面にSi系の無機薄
膜5をドライエッチ用マスクとして被覆しく第2図)、
このドライエッチ用マスク5の窓開パターンを通してポ
リイミド系樹脂膜4をドライエッチしく第3図)、その
後に上記ドライエッチ用マスク5をCF系ガスまたはH
F系エッチ液を使用して除去しく第6図)、その後、A
rガスでスパッタエッチ(クリーニング)を行いながら
(第7図)、上部A、6電極9のためのA石スパッタを
行う(第8図)ものである。
In the conventional method described above, referring to FIGS. 1 to 3 and 6 to 8, when etching through holes in the polyimide resin film 4 formed on the lower Aa electrode 3 (FIG. 1), The surface of the polyimide resin film 4 is coated with a Si-based inorganic thin film 5 as a mask for dry etching (Fig. 2).
The polyimide resin film 4 is dry-etched through the window opening pattern of this dry-etching mask 5 (Fig. 3), and then the dry-etching mask 5 is exposed to a CF-based gas or H
Remove using F-based etchant (Fig. 6), then remove A.
While performing sputter etching (cleaning) with r gas (FIG. 7), A stone sputtering for the upper A and six electrodes 9 is performed (FIG. 8).

しかしながら、上記方法によれば、スパッタエッチ時に
スルーホール8内のポリイミド系樹脂膜5の側面がエッ
チされるため、ガスが発生し、スパッタクリーニングが
不充分であり、微細なスルーホールではスルーホール抵
抗の低減効果が充分でないことがわかってきた。また、
スルーホールのドライエッチからA、6スパツタまでの
プロセスが一貫することなく工程の数が多くなることも
問題であった。
However, according to the above method, since the side surface of the polyimide resin film 5 inside the through hole 8 is etched during sputter etching, gas is generated, sputter cleaning is insufficient, and the through hole resistance It has become clear that the reduction effect is not sufficient. Also,
Another problem was that the process from through-hole dry etching to A and 6 sputtering was not consistent and required a large number of steps.

本発明は上記した問題点を克服するためになされたもの
である。したがって本発明の一つの目的は、微細なスル
ーホールにおいても、導通抵抗を低くできる有機層間絶
縁膜使用の多層配線形成法を提供することにある。
The present invention has been made to overcome the above-mentioned problems. Therefore, one object of the present invention is to provide a method for forming multilayer wiring using an organic interlayer insulating film, which can reduce conduction resistance even in minute through holes.

本発明の前記並びにそのほかの目的と新規な特徴は、本
明細書の記述及び添付図面から明らかになろう。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔問題点を解決するための手段〕[Means for solving problems]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、基体の一主面上に第1層配線を形成し、この
上に上記配線を埋め込んで層間絶縁膜となる有機膜を形
成し、上記有機膜上にドライエッチ用マスクとしてAA
(アルミニウム)薄膜を形成し、このドライエッチ用マ
スクを通して上記有機膜をドライエッチして上記第1層
配線に達するスルーホール(透孔)をあけ、このあと上
記ドライエッチ用マスクを残したままスパッタエッチを
行うことにより、上記スルーホール内の汚染物を除去し
、上記ドライエッチ用マスクとしてのAk薄膜を残した
ままで、そのうえに第2層配線のための配線材料である
AAのスパッタを行うものである。
That is, a first layer wiring is formed on one main surface of the base, an organic film is formed by embedding the wiring thereon to serve as an interlayer insulating film, and AA is used as a dry etching mask on the organic film.
Form a thin (aluminum) film, dry-etch the organic film through this dry-etching mask to create a through hole that reaches the first layer wiring, and then sputter with the dry-etching mask left in place. By performing etching, the contaminants in the through holes are removed, leaving the Ak thin film as a mask for the dry etching, and sputtering AA, which is the wiring material for the second layer wiring, on top of it. be.

〔作用〕[Effect]

上記I−だ手段によれば、スパッタエッチ時にポリイミ
ド系樹脂がドライエッチ用マスクで覆われているために
、クリーニング効率が向上し、したがってスルーホール
導通抵抗の低減効果が得られ、一方、上部電極と眉間絶
縁膜との接着性が強化され、また、工程も簡略化されて
前記目的を達成するものである。
According to the above-mentioned means, since the polyimide resin is covered with a dry etching mask during sputter etching, the cleaning efficiency is improved and the through-hole conduction resistance is reduced. The adhesion between the glabella insulating film and the glabellar insulating film is strengthened, and the process is simplified, thereby achieving the above object.

〔実施例〕〔Example〕

第1図乃至第5図は本発明の一実施例を示すものであっ
て、ポリイミド系樹脂を層間絶縁膜とする2層配線構造
プロセスにおける要部工程断面図である。以下、各工程
に沿って詳述する。
1 to 5 show an embodiment of the present invention, and are cross-sectional views of main parts in a two-layer wiring structure process using polyimide resin as an interlayer insulating film. Each step will be explained in detail below.

(1)半導体基体1、たとえばSi半導体ウつノ・表面
に周知の選択拡散技術により、回路素子を形成し、表面
酸化膜2の上に、上記回路素子の拡散層に低抵抗接続す
る下層電極のためのAnアルミニウム)を蒸着(スパッ
タ)シ、ホトレジストマスクによるパターニングを行っ
て第1層A4配線(電極)3を形成する。この人p配線
はたとえばAlに2%のSiを含むものであり、APの
厚さは1μm程度である。この上に層間絶縁膜4として
ポリイミド系樹脂、たとえばポリイミド・イソインドロ
キナゾリンジオンのごとき高分子重合物をフェス状態で
スピンナ塗布し、300〜400Cの高温ベークにより
、キーア後の厚さ2μm程度に形成する。このポリイミ
ド系樹脂の表面にドライエッチ用マスクのために、A、
6(アルミニウム)を蒸着(又はスパッタ)して厚さ1
00OA若しくはそれ以上の厚さのAl薄膜5を形成す
る(第1図)。
(1) A circuit element is formed on the surface of a semiconductor substrate 1, for example, a Si semiconductor, by a well-known selective diffusion technique, and a lower layer electrode is formed on the surface oxide film 2 to connect the diffusion layer of the circuit element with low resistance. The first layer A4 wiring (electrode) 3 is formed by vapor deposition (sputtering) of An aluminum (for aluminum) and patterning using a photoresist mask. This human p wiring is made of Al containing 2% Si, for example, and the thickness of the AP is about 1 μm. On top of this, a polyimide resin, for example, a high molecular polymer such as polyimide isoindoroquinazolinedione, is applied as an interlayer insulating film 4 using a spinner, and baked at a high temperature of 300 to 400C to a thickness of about 2 μm after quenching. Form. A for dry etching mask on the surface of this polyimide resin.
6 (aluminum) is deposited (or sputtered) to a thickness of 1
An Al thin film 5 having a thickness of 000 OA or more is formed (FIG. 1).

(2)上記ドライエッチ用マスクのためのAA薄膜5は
、ホトレジストマスク6を使用して第2層A4配線2上
のスルーホール(透孔)をあける部分7をO7系ガスを
用いてドライエッチすることによりパターニングする(
第2図)。
(2) The AA thin film 5 for the dry etching mask is dry-etched using an O7 gas to form a through-hole portion 7 on the second layer A4 wiring 2 using a photoresist mask 6. Patterning is done by (
Figure 2).

(3)上記ドライエッチ用マスクを使用してポリイミド
系樹脂をドライエッチしスルーホール8をあける。
(3) Dry-etch the polyimide resin using the dry-etching mask described above to open through holes 8.

(4)従来プロセスでは、ここにドライエッチ用マスク
を取り除く工程が入るところであるが、本発明ではこの
除去工程をなくし、同じスパッタ装置内でドライエッチ
用マスク5をそのまま存在させて、0.(ガス圧5 x
 10−3cWLTorr、 )によるスパッタクリー
ニング(スパッタエッチ)を行う(第4図)。
(4) In the conventional process, a step of removing the dry etching mask is included here, but in the present invention, this removing step is eliminated, and the dry etching mask 5 is left as it is in the same sputtering apparatus. (Gas pressure 5 x
Sputter cleaning (sputter etch) is performed at 10-3 cWLTorr (Figure 4).

このスパッタクリーニングは、スルーホール8内で前記
ドライエッチの際にポリイミド系樹脂から発生した有機
物による汚染物を取り除く程度で、同時にドライエッチ
用マスクとしてのAA薄膜は全ては取り除かれないよう
にする。
This sputter cleaning is performed only to remove organic contaminants generated from the polyimide resin during the dry etching in the through holes 8, but at the same time, the AA thin film serving as a dry etching mask is not completely removed.

(5)クリーニング終了後、清浄になったスルーホール
部の下部電極の表面を大気にさらすことなく、連続して
速やかにABをスパッタして、全面にA/?被膜を形成
し、最後にホトレジストマスクを使用するパターニング
を行って、第2層A4配線に導通する第2層A4配線(
上部電極)9を形成する。
(5) After cleaning, without exposing the surface of the lower electrode of the cleaned through-hole to the atmosphere, AB is quickly and continuously sputtered to cover the entire surface with A/? A film is formed and finally patterned using a photoresist mask to form the second layer A4 wiring (
Upper electrode) 9 is formed.

上記実施例で述べたプロセスでは、ポリイミド系樹脂が
スパッタクリーニング時に、ドライエッチ用マスクで覆
われているために、エッチされることなく、したがって
、ポリイミド系樹脂から出る有機物がスルーホール内を
汚染しにくく、そのタメにスルーホール抵抗を低減でき
、しかもドライエッチ用マスク除去工程を省略できるこ
とになり、工程の簡略化が実現する。
In the process described in the above example, the polyimide resin is covered with a dry etch mask during sputter cleaning, so it is not etched, and therefore the organic matter emitted from the polyimide resin does not contaminate the inside of the through hole. This makes it possible to reduce the through-hole resistance, and also to omit the step of removing the dry etching mask, which simplifies the process.

ポリイミド系樹脂をエッチするためのドライエッチ用マ
スクには、Ap以外にSiNやSin、のごときSi系
無機膜を使用することができるが、これら無機膜はポリ
イミド系樹脂のごとき有機膜やAB膜に対し熱的整合性
及び接着性が必ずしも良くなく、スルーホールエッチ後
に眉間絶縁膜上にそのまま残存させた場合に、第2層配
線が層間絶縁膜から剥離するおそれがある。しかし、ド
ライエッチ用マスクとして残したA2の場合は、ポリイ
ミド系樹脂との接合性が良く剥離のおそれは全くなく、
多層配線構造における耐湿性や強度を確保し得る。
In addition to Ap, a Si-based inorganic film such as SiN or Sin can be used as a dry-etching mask for etching polyimide resin. However, the thermal consistency and adhesion are not necessarily good, and if the second layer wiring is left as is on the glabella insulating film after through-hole etching, there is a risk that the second layer wiring will peel off from the interlayer insulating film. However, in the case of A2, which was left as a dry-etching mask, it bonded well with the polyimide resin and there was no risk of peeling.
Moisture resistance and strength can be ensured in multilayer wiring structures.

以上本発明によってなされた発明を実施例に基づき具体
的に説明したが、本発明は上記実施例に限定されるもの
ではなく、その要旨を逸脱しない範囲で種々変更可能で
あることはいうまでもない。
Although the invention made by the present invention has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the above-mentioned Examples and can be modified in various ways without departing from the gist thereof. do not have.

本発明はポリイミド系樹脂を眉間膜に使用する多層配線
構造のICの全てに適用することができる。
The present invention can be applied to all ICs having a multilayer wiring structure using polyimide resin for the glabellar membrane.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち、代表的なものによ
って得られる効果を簡単に説明すれば下記のとおりであ
る。
Among the inventions disclosed in this application, the effects obtained by typical inventions are briefly explained below.

即ち、スルーホール抵抗を低減し、より微細な多層配線
構造の形成が可能となり、IC集積度の向上を実現でき
る。
That is, through-hole resistance can be reduced, a finer multilayer wiring structure can be formed, and the degree of IC integration can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は本発明の一実施例を示す多層配線
形成プロセスの工程断面図である。 第6図乃至第8図は従来の多層配線形成プロセスの例を
示す一部工程断面図である。 1・・・基体(Si半導体基体)、2・・・表面酸化膜
(Sin、膜)、3・・・下部電極(第2層A4配線)
、4・・・層間絶縁膜(ポリイミド系樹脂)、5・・・
ドライエッチ用マスクとしてのAk薄膜、6・・・ホト
レジスト、7・・・窓開部、8・・・スルーホール、9
・・・上部電極(第2層A4配線)。 代理人 弁理士  小 川 勝 男。 第  4  図 斤 第  5  図 第  7  図 第  8  図
1 to 5 are process cross-sectional views of a multilayer interconnection forming process showing one embodiment of the present invention. FIGS. 6 to 8 are partial process sectional views showing an example of a conventional multilayer wiring formation process. 1... Base (Si semiconductor base), 2... Surface oxide film (Sin, film), 3... Lower electrode (second layer A4 wiring)
, 4... interlayer insulating film (polyimide resin), 5...
Ak thin film as a mask for dry etching, 6... Photoresist, 7... Window opening, 8... Through hole, 9
...Top electrode (second layer A4 wiring). Agent: Patent attorney Katsuo Ogawa. Figure 4 Figure 5 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1、基体の一主面上に第1層配線を形成し、この上に上
記配線を埋め込んで層間絶縁膜となる有機膜を形成し、
上記有機膜上にドライエッチング用マスクとして薄膜を
形成し、このドライエッチング用マスクを通して上記有
機膜をドライエッチングして上記第1層配線に達する透
孔をあけ、このあと上記ドライエッチング用マスクをマ
スクとして上記透孔内を清浄化し、上記ドライエッチ用
マスクとしての薄膜上に第2層配線のための配線材料を
堆積することを特徴とする多層配線構造体の製造法。 2、上記透孔内の清浄化及び配線材料の堆積は同一装置
内で連続して行う特許請求の範囲第1項記載の多層配線
構造体の製造法。 3、上記有機膜はポリイミド系樹脂であり、上記薄膜及
び上記配線材料はアルミニウムを主体とする金属である
特許請求の範囲第1項又は第2項に記載の多層配線構造
体の製造法。
[Claims] 1. Forming a first layer wiring on one main surface of a substrate, embedding the wiring thereon to form an organic film serving as an interlayer insulating film,
A thin film is formed on the organic film as a dry etching mask, and the organic film is dry etched through the dry etching mask to form a through hole reaching the first layer wiring, and then the dry etching mask is applied as a mask. A method for manufacturing a multilayer wiring structure, characterized in that the inside of the through hole is cleaned as described above, and a wiring material for a second layer wiring is deposited on the thin film serving as a mask for dry etching. 2. The method for manufacturing a multilayer wiring structure according to claim 1, wherein the cleaning of the through holes and the deposition of the wiring material are performed continuously in the same apparatus. 3. The method of manufacturing a multilayer wiring structure according to claim 1 or 2, wherein the organic film is a polyimide resin, and the thin film and the wiring material are metals mainly consisting of aluminum.
JP8793786A 1986-04-18 1986-04-18 Manufacture of multilayer interconnection structure Pending JPS62245650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8793786A JPS62245650A (en) 1986-04-18 1986-04-18 Manufacture of multilayer interconnection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8793786A JPS62245650A (en) 1986-04-18 1986-04-18 Manufacture of multilayer interconnection structure

Publications (1)

Publication Number Publication Date
JPS62245650A true JPS62245650A (en) 1987-10-26

Family

ID=13928815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8793786A Pending JPS62245650A (en) 1986-04-18 1986-04-18 Manufacture of multilayer interconnection structure

Country Status (1)

Country Link
JP (1) JPS62245650A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373647A (en) * 1986-09-17 1988-04-04 Sanyo Electric Co Ltd Manufacture of multilayer interconnection
JPH03262148A (en) * 1990-03-13 1991-11-21 Fujitsu Ltd Manufacture of semiconductor device
JP2001305576A (en) * 2000-04-19 2001-10-31 Nec Corp Transmission type liquid crystal display device and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373647A (en) * 1986-09-17 1988-04-04 Sanyo Electric Co Ltd Manufacture of multilayer interconnection
JPH03262148A (en) * 1990-03-13 1991-11-21 Fujitsu Ltd Manufacture of semiconductor device
JP2001305576A (en) * 2000-04-19 2001-10-31 Nec Corp Transmission type liquid crystal display device and its manufacturing method
JP4677654B2 (en) * 2000-04-19 2011-04-27 日本電気株式会社 Transmission type liquid crystal display device and manufacturing method thereof
US7973867B2 (en) 2000-04-19 2011-07-05 Nec Corporation Transmission liquid crystal display and method of forming the same

Similar Documents

Publication Publication Date Title
JPS62245650A (en) Manufacture of multilayer interconnection structure
JPS62249451A (en) Manufacture of multilayer interconnection structure
JPH0485829A (en) Semiconductor device and manufacture thereof
JPH0823028A (en) Semiconductor device having multilayer interconnect and manufacture thereof
JP2808401B2 (en) Method for manufacturing semiconductor device
JP3033171B2 (en) Method for manufacturing semiconductor device
JPH11251433A (en) Semiconductor device and manufacture thereof
JPH0570301B2 (en)
JPS62155537A (en) Manufacture of semiconductor device
JP3036086B2 (en) Method for manufacturing semiconductor device
JPH036045A (en) Manufacture of semiconductor device
JPH0697299A (en) Semiconductor device
JPS6378552A (en) Formation of throughhole
JPH04307737A (en) Manufacture of semiconductor device
JPH04171745A (en) Manufacture of integrated circuit
JPH0645453A (en) Manufacture of semiconductor device
KR0173178B1 (en) Etching process for metal layer of semiconductor
JPH03248533A (en) Semiconductor integrated circuit device
JPH02304929A (en) Manufacture of semiconductor device
JPS60154539A (en) Forming process of aluminium wiring
JP2000208552A (en) Semiconductor manufacturing device for high quality bonding characteristic
JPH06342849A (en) Manufacture of semiconductor device
JPS6336547A (en) Manufacture of semiconductor device
JPH06204344A (en) Manufacture of semiconductor device
JPS62166547A (en) Formation of multilayer interconnection structure