JPS62230016A - Manufacture of terminal lead wires for electronic equipment parts - Google Patents

Manufacture of terminal lead wires for electronic equipment parts

Info

Publication number
JPS62230016A
JPS62230016A JP61074922A JP7492286A JPS62230016A JP S62230016 A JPS62230016 A JP S62230016A JP 61074922 A JP61074922 A JP 61074922A JP 7492286 A JP7492286 A JP 7492286A JP S62230016 A JPS62230016 A JP S62230016A
Authority
JP
Japan
Prior art keywords
wire
lead wires
terminal lead
copper alloy
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61074922A
Other languages
Japanese (ja)
Other versions
JPH0459970B2 (en
Inventor
兼造 井手
清水 左次郎
西浦 蒼生也
正憲 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Tatsuta Electric Wire and Cable Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP61074922A priority Critical patent/JPS62230016A/en
Publication of JPS62230016A publication Critical patent/JPS62230016A/en
Publication of JPH0459970B2 publication Critical patent/JPH0459970B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、抵抗器、コンデンサ、シリコン又はゲルマニ
ウム半導体素子などに使用される銅合金端子リード線の
製造方法に関し、特に端子リード線が素子部品のリード
線端子として片端圧縮成形加工を施されても、又素子部
品と共に熱処理されても、すぐれたa械特性を保持する
電子機器部品用端子リード線の製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing copper alloy terminal lead wires used in resistors, capacitors, silicon or germanium semiconductor devices, etc., and particularly relates to a method for manufacturing copper alloy terminal lead wires used in resistors, capacitors, silicon or germanium semiconductor devices, etc. The present invention relates to a method for producing a terminal lead wire for an electronic device component, which maintains excellent a-mechanical properties even when one end is subjected to compression molding processing as a lead wire terminal or heat treated together with an element component.

(従来技術) 電子機器部品用端子リード線には純銅線、耐熱性銅合金
線などが使用されている。これらのリード線は部品の端
子リード線として使用するため、リード線の片端を圧縮
成型加工(以下、ヘッダー加工という)し、一定長さで
切断される高速自動化装置にかけられて大量生産される
(Prior Art) Pure copper wire, heat-resistant copper alloy wire, etc. are used for terminal lead wires for electronic device parts. These lead wires are used as terminal lead wires for components, so one end of the lead wire is compression molded (hereinafter referred to as header processing) and then cut into a fixed length using high-speed automated equipment for mass production.

従って線材が硬いとヘッダー加工が困難となり、成型加
工部にクランクを生じ大量生産工程に支障を起す。その
ため線材の硬さを用途に応じて調質する必要がある。
Therefore, if the wire is hard, it will be difficult to process the header, causing cranks in the molding process, which will hinder the mass production process. Therefore, it is necessary to temper the hardness of the wire depending on the application.

又、電子機器部品の製造工程中、素子部品にリード線を
取付ける際、又は取付後において種々な熱処理と不可避
的な曲げる応力を受けるのでリード線は軟化され、且つ
曲げられる。
Further, during the manufacturing process of electronic device parts, when or after the lead wire is attached to the element component, the lead wire is subjected to various heat treatments and unavoidable bending stress, so that the lead wire is softened and bent.

例えば、抵抗器、コンデンサに使用されるリード線はろ
う接、モールド、塗装、安定化処理などの製造工程で約
250℃程度の熱処理を受ける。又、半導体素子にあっ
ては素子部品と端子リード線のろう接に300℃〜40
0℃、約10分間の熱処理が施された後、該ろう接部は
合成樹脂材でモールド成形される。
For example, lead wires used in resistors and capacitors undergo heat treatment at about 250° C. during manufacturing processes such as brazing, molding, painting, and stabilization. In addition, for semiconductor devices, the temperature is 300℃ to 40℃ for soldering between device parts and terminal lead wires.
After heat treatment at 0° C. for about 10 minutes, the soldered portion is molded with a synthetic resin material.

特に、リード線が純銅である場合、高い導電率と熱伝導
性を存するが、200℃前後の熱処理で再結晶化し軟化
されて曲げ強さが低下するため、次工程への素子部品の
移動中、又は銅線上にメッキする工程でリード線が曲げ
られる。
In particular, when the lead wire is made of pure copper, it has high electrical conductivity and thermal conductivity, but heat treatment at around 200°C recrystallizes and softens it, reducing its bending strength. , or the lead wire is bent during the plating process on the copper wire.

そのため高温の熱処理を受ける場合、純銅線は使用でき
ない。
Therefore, pure copper wire cannot be used when undergoing high-temperature heat treatment.

これらの電子機器部品の製造は自動化による大量生産方
式が採用されているので、端子リード線が軟化されて曲
げられると、人手で曲がりを選別したり、矯正すること
は最早不可能で自動化に支障をきたすと共に素子部品を
プリント基板に実装する場合にもトラブルを惹起するこ
とになる。
Automated mass production methods are used to manufacture these electronic device parts, so if the terminal lead wires become softened and bent, it is no longer possible to manually sort out or correct the bends, which hinders automation. This also causes trouble when mounting the element components on a printed circuit board.

このため、高温で熱処理を受けるリード線には、例えば
Ag、Sn、Inなどの元素を僅かに含有させた耐熱性
銅合金線が使用されている。
For this reason, heat-resistant copper alloy wires containing a small amount of elements such as Ag, Sn, and In are used as lead wires that undergo heat treatment at high temperatures.

該合金線は冷間伸線加工をした後、連続軟化又はハツチ
軟化を施して線材の硬さを調質しているが、ヘッダー加
工性および高温熱処理後の曲げ強さのバラツキがまだ解
消されていないため、素子部品の特性が信頼性の高いも
のであっても端子リード線の欠陥によって自動化対応に
は問題が残されている。
After cold wire drawing, the alloy wire is subjected to continuous softening or hatch softening to improve the hardness of the wire, but variations in header workability and bending strength after high-temperature heat treatment have yet to be resolved. Therefore, even if the characteristics of the element parts are highly reliable, defects in the terminal lead wires still pose problems for automation.

(発明が解決しようとする問題点) 電子機器部品の自動生産方式に適合するリード線の具備
すべき特性は、■ヘッダー加工性が良好であること、■
工程熱処理(400℃×10分)に対し耐熱性があるこ
と、095%以上の導電率があり、放熱に対する熱伝導
性がよいこと、■曲げ応力に対する耐曲げ性が強いこと
、である。
(Problems to be Solved by the Invention) The characteristics that a lead wire that is suitable for the automatic production system of electronic device parts should have are: ■Good header workability;■
It has heat resistance against process heat treatment (400° C. x 10 minutes), it has an electrical conductivity of 0.95% or more and has good thermal conductivity for heat radiation, and (1) it has strong bending resistance against bending stress.

これらの要求特性において■と■と■については耐熱高
導電性銅合金であることが好ましく、その合金組成は銅
に対して、Ag、Sn、In、Pb、Bi、Cr、Co
、Ni、Fe、Zr。
Regarding these required characteristics, it is preferable to use a heat-resistant and highly conductive copper alloy, and the alloy composition is Ag, Sn, In, Pb, Bi, Cr, Co.
, Ni, Fe, Zr.

Se、Te、HE、、B、TtSPなどの元素の一種又
は二種以上を0.02〜0.2wt%の範囲に添加した
銅合金線が使用されることになる。■については、耐曲
げ性を具備させると、線材が硬くなるためにヘッダー加
工性に問題を生じ、線材を柔らかにすると耐曲げ性が低
下するという互に相反する関係にある。
A copper alloy wire to which one or more of elements such as Se, Te, HE, B, and TtSP is added in a range of 0.02 to 0.2 wt% is used. Regarding (2), there is a mutually contradictory relationship in that if the wire is made to have bending resistance, the wire becomes hard, which causes problems in header workability, and if the wire is made soft, the bending resistance decreases.

本発明の目的はかかる問題を解決し、線材の硬さと耐曲
げ性を具備するように前記銅合金線材について、より安
定した製造方法を提供することにある。
An object of the present invention is to solve this problem and provide a more stable manufacturing method for the copper alloy wire so that the wire has good hardness and bending resistance.

(発明が解決するための手段) 本発明者らは、上記の要求特性を満足させる線材の調質
方法を更に検討した結果、前記の銅合金線材について熱
処理前の引張り強さの値が27〜35 kg/mm”で
、且つ伸びの値が7〜32%の範囲になるように調質す
れば、ヘッダー加工性と耐曲げ性の両特性を具備するこ
とを見出して本発明を完成させたものである。
(Means for Solving the Invention) As a result of further investigation into a method of refining a wire rod that satisfies the above-mentioned required characteristics, the present inventors found that the tensile strength value of the copper alloy wire rod before heat treatment is 27 to 27. 35 kg/mm'' and an elongation value in the range of 7 to 32%, the present invention was completed by discovering that it has both header workability and bending resistance properties. It is something.

すなわち、本発明の構成は銅合金の荒引線を冷間伸線加
工し、完全に焼鈍した後、減面率60〜90%の範囲で
冷間伸線加工を行ない、再び該線材を完全に焼鈍した後
、減面率2〜20%の範囲で冷間伸線加工することを特
徴とするものである。
That is, the structure of the present invention is to cold-draw a copper alloy wire, completely anneale it, then cold-draw it with an area reduction in the range of 60 to 90%, and then completely draw the wire again. After annealing, it is characterized by cold wire drawing with an area reduction in the range of 2 to 20%.

以下に、本発明の詳細な説明 本発明で使用する銅合金線材とは、Cu−を基材として
これにAg,Sn,In,Pbs Bi。
Detailed Description of the Present Invention The copper alloy wire used in the present invention is made of Cu as a base material, and is coated with Ag, Sn, In, and Pbs Bi.

CrSCo.、” NiSFe,、Zr,、Se,Te
CrSCo. ,”NiSFe,,Zr,,Se,Te
.

HE、B,Ti,Pなどの元素の一種または二種以上を
Cuに対して0.02〜0.2Wt%の範囲に添加した
合金組成のものである。
It has an alloy composition in which one or more of elements such as HE, B, Ti, and P are added in an amount of 0.02 to 0.2 wt% relative to Cu.

本発明は、銅合金の荒引線を伸線加工した後、該線材を
1次焼鈍し、減面率60〜90%の範囲で再度伸線加工
した後、該線材を2次焼鈍して減面率2〜20%の範囲
で伸線加工すると、機械特性として引張強さ、27〜3
 5 kg/mm”と伸び、7〜32%を有する線材に
調質することができるものである。
In the present invention, after wire-drawing a rough drawn copper alloy wire, the wire is first annealed, and the wire is drawn again with an area reduction rate in the range of 60 to 90%, and then the wire is secondarily annealed to reduce the area reduction. When wire drawing is performed in the range of area ratio 2 to 20%, mechanical properties such as tensile strength, 27 to 3
It has an elongation of 5 kg/mm" and can be tempered into a wire having a tensile strength of 7 to 32%.

前記において、1次焼鈍後、減面率を60〜90%の範
囲の伸線加工とするのは、減面率が60%未満では、得
られる銅合金線が硬化されず、素子部品に取付けられた
リード線が実際の生産工程で、400℃XIO分間の熱
処理を受けて、種々の工程でリード線が曲げられるため
である。逆に90%を越えるときは、得られる銅合金線
が硬くなりすぎて、端子リード線のヘッダー加工がわる
くなると共に、ヘッダー加工部にクランクを生じるもの
ができるので好ましくないためである。
In the above, after the primary annealing, wire drawing is performed with an area reduction rate in the range of 60 to 90%, because if the area reduction rate is less than 60%, the resulting copper alloy wire will not be hardened and it will be difficult to attach it to element parts. This is because the lead wires are subjected to heat treatment at 400° C. for XIO minutes in the actual production process, and the lead wires are bent in various steps. On the other hand, if it exceeds 90%, the resulting copper alloy wire becomes too hard, making it difficult to process the header of the terminal lead wire, and creating a crank in the header process, which is not preferable.

次に、2次焼鈍後、減面率を2〜20%の伸線加工とす
るのは、減面率が2%未満では、得られる銅合金線が硬
化されず、素子部品に取付けられたリード線が実際の生
産工程で、400℃×IO分間の熱処理を受けて、種々
の工程でリード線が曲げられるためである。逆に20%
を越えるときは、得られる銅合金線が硬くなりすぎて、
端子リード線のヘングー加工性がわるくなると共に、ヘ
ッダー加工部にクランクを生じるものができるので好ま
しくないためである。
Next, after secondary annealing, wire drawing is performed with an area reduction rate of 2 to 20%.If the area reduction rate is less than 2%, the resulting copper alloy wire will not be hardened and will not be attached to the element parts. This is because the lead wires are subjected to heat treatment at 400° C. for IO minutes in the actual production process, and the lead wires are bent in various steps. On the contrary, 20%
When exceeding , the resulting copper alloy wire becomes too hard,
This is because the processability of the terminal lead wire becomes poor, and the header processed portion is undesirably cranked.

(実施例) 次に、実施例と比較例および参考例をあげて本発明を更
に詳細に説明するが、本発明はかかる実施例にのみ限定
されるものでない。
(Examples) Next, the present invention will be explained in more detail with reference to Examples, Comparative Examples, and Reference Examples, but the present invention is not limited only to these Examples.

第1表および第2表に示すように、Cu−0,1A g
、 Cu −0,05S n、 Cu −0,13I 
n。
As shown in Tables 1 and 2, Cu-0,1A g
, Cu-0,05S n, Cu-0,13I
n.

の3種類の耐熱高導電性銅合金荒引線を製造し、それぞ
れ冷間伸線加工を施した後、1次焼鈍と2次焼鈍につい
て、前者では400℃×3時間、後者では380℃×3
時間のバッチ焼鈍として、第1表および第2表に示す波
面率による伸線加工を行なって線径0.8mmφの線材
に仕上げた。
Three types of heat-resistant, highly conductive copper alloy rough drawn wires were manufactured, and after each was subjected to cold wire drawing, primary annealing and secondary annealing were performed at 400°C for 3 hours for the former, and at 380°C for 3 hours for the latter.
As batch annealing for several hours, wire drawing was carried out using the wave front ratios shown in Tables 1 and 2 to produce wire rods with a wire diameter of 0.8 mmφ.

そして、該線材を高速自動へラダー加工機にかけてヘッ
ダー加工を行なって、ヘッダー加工の適性とヘングー加
工部にクラックを生ずるかどうかを調べた。更に、電子
機器素子部品にリード線を取付けて、実際の生産工程で
400℃×10分間の熱処理を施こし、素子部品の最終
生産工程までに、該リード線が工程中で曲げ応力を受け
て生産上支障を生じるかどうかを調べた。これらの結果
を第1表および第2表に併記した。
Then, the wire rod was subjected to header processing using a high-speed automatic ladder processing machine, and the suitability of header processing and whether or not cracks were generated in the hengoku-processed portion were investigated. Furthermore, lead wires are attached to electronic device element parts and subjected to heat treatment at 400°C for 10 minutes in the actual production process. We investigated whether this would cause problems in production. These results are also listed in Tables 1 and 2.

結果かられかるように、実施例1〜27については、ヘ
ッダー加工性、すなわち、線材の柔らかさが適切に調質
されているので、良好な結果を示し、又熱処理後の耐曲
げ性も、線材の硬さが適切に調質されているので、素子
部品の生産工程に適合し、リード線が曲げられることも
なく良好である。
As can be seen from the results, Examples 1 to 27 showed good results because the header workability, that is, the softness of the wire rod, was properly tempered, and the bending resistance after heat treatment was also good. Since the hardness of the wire is appropriately tempered, it is suitable for the production process of element parts, and the lead wire is not bent.

比較例28〜42では、線材の柔かさおよび硬さが適切
に調質されてないので、ヘッダー加工性が良好であって
も熱処理後の耐曲げ性が好ましくなく、又前記の逆とな
っていずれも適切な線材に調質し得ないことがわかる。
In Comparative Examples 28 to 42, the softness and hardness of the wire rods were not properly tempered, so even if the header workability was good, the bending resistance after heat treatment was unfavorable, and the opposite was true. It can be seen that neither of these materials can be tempered into a suitable wire material.

参考例43〜5Iは、線材を2次焼鈍のみ、すなわち、
1次焼鈍を欠く調質であるため、ヘッダー加工性と熱処
理後の耐曲げ性の双方を満足するものもあるが、そのど
ちらか一方を欠く場合があるため、線材の調質方法にお
いて調質範囲が限定されることになる。
In Reference Examples 43 to 5I, the wire rod was only subjected to secondary annealing, that is,
Since thermal refining does not require primary annealing, some wire rods satisfy both header workability and bending resistance after heat treatment, but there are cases where either one is lacking, so thermal refining is used in wire refining methods. The scope will be limited.

次に、本実施例では焼鈍をバッチ焼鈍としたが、連続伸
線軟化装置で行なえることはいうまでもない。
Next, in this example, batch annealing was performed, but it goes without saying that continuous wire drawing and softening equipment can be used for annealing.

(発明の効果) 本発明によって製造されるリード線は、高温熱処理に対
する曲げ強さの信頼性がすぐれているのみならず、機械
的特性、高い導電性、良好な熱伝導性、ヘッダー加工性
にもすぐれ、製造も容易で且つ安価であるため、自動生
産方式の採用されているシリコン、ゲルマニウムなどの
半導体素子、抵抗器、コンデンサ、スイッチ、コネクタ
ー、コイル部品などの電子機器部品の端子リード線とし
て顕著な効果を奏するものである。
(Effects of the Invention) The lead wire manufactured by the present invention not only has excellent reliability in bending strength against high-temperature heat treatment, but also has excellent mechanical properties, high electrical conductivity, good thermal conductivity, and header processability. Because it is excellent in quality, easy to manufacture, and inexpensive, it is used as a terminal lead wire for electronic equipment parts such as semiconductor elements such as silicon and germanium, resistors, capacitors, switches, connectors, and coil parts, which are manufactured using automatic production methods. This has a remarkable effect.

特許出願人  タック電線株式会社 日本鉱業線株式会社Patent applicant: TAC Electric Wire Co., Ltd. Japan Mining Line Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  銅合金線材を完全に焼鈍した後、減面率60〜90%
の範囲で冷間伸線加工を行ない、再び該線材を完全に焼
鈍した後、減面率2〜20%の範囲で冷間伸線加工する
ことを特徴とする電子機器部品用端子リード線の製造方
法。
After completely annealing the copper alloy wire, the area reduction rate is 60-90%
A terminal lead wire for electronic device parts, characterized in that the wire is cold-drawn in a range of 2 to 20%, and then the wire is completely annealed again, and then cold-drawn to a reduction in area of 2 to 20%. Production method.
JP61074922A 1986-03-31 1986-03-31 Manufacture of terminal lead wires for electronic equipment parts Granted JPS62230016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61074922A JPS62230016A (en) 1986-03-31 1986-03-31 Manufacture of terminal lead wires for electronic equipment parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61074922A JPS62230016A (en) 1986-03-31 1986-03-31 Manufacture of terminal lead wires for electronic equipment parts

Publications (2)

Publication Number Publication Date
JPS62230016A true JPS62230016A (en) 1987-10-08
JPH0459970B2 JPH0459970B2 (en) 1992-09-24

Family

ID=13561347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61074922A Granted JPS62230016A (en) 1986-03-31 1986-03-31 Manufacture of terminal lead wires for electronic equipment parts

Country Status (1)

Country Link
JP (1) JPS62230016A (en)

Also Published As

Publication number Publication date
JPH0459970B2 (en) 1992-09-24

Similar Documents

Publication Publication Date Title
JPS60245754A (en) High strength copper alloy having high electric conductivity
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPS6220265B2 (en)
JPS62230016A (en) Manufacture of terminal lead wires for electronic equipment parts
JPS6242977B2 (en)
JPS6246618B2 (en)
JPH01139742A (en) Manufacture of high-strength and high-conductivity copper alloy
JPS6289520A (en) Manufacture of terminal lead wire for electronic equipment
JPS613856A (en) Copper alloy having superior heat resistance, workability and electric conductivity
JPS6245297B2 (en)
JPS6328972B2 (en)
JPS5949293B2 (en) Copper alloy for electrical and electronic parts and its manufacturing method
JP2514926B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPS6220263B2 (en)
JP2945208B2 (en) Method for producing copper alloy for electrical and electronic equipment
JPS6220262B2 (en)
JPS5952231B2 (en) Manufacturing method for electronic component lead material with good hedging processability
JPH0356294B2 (en)
JPS63192835A (en) Lead material for ceramic package
JPH03191043A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment
KR830001139B1 (en) Soft copper alloy conductors
JPH03199357A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment
JPH0644413B2 (en) Copper alloy composite wire for extra fine wire