JPS6328972B2 - - Google Patents

Info

Publication number
JPS6328972B2
JPS6328972B2 JP59141889A JP14188984A JPS6328972B2 JP S6328972 B2 JPS6328972 B2 JP S6328972B2 JP 59141889 A JP59141889 A JP 59141889A JP 14188984 A JP14188984 A JP 14188984A JP S6328972 B2 JPS6328972 B2 JP S6328972B2
Authority
JP
Japan
Prior art keywords
copper
lead
alloy
content
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59141889A
Other languages
Japanese (ja)
Other versions
JPS6123738A (en
Inventor
Tatsuo Imamura
Masanori Kato
Kanji Tanaka
Sajiro Shimizu
Takatoki Fukuda
Toshitake Ootaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Tatsuta Electric Wire and Cable Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP14188984A priority Critical patent/JPS6123738A/en
Publication of JPS6123738A publication Critical patent/JPS6123738A/en
Publication of JPS6328972B2 publication Critical patent/JPS6328972B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、耐熱性(特に熱処理後の曲げ強度)
及び導電性に優れた安価な銅合金に関し、より詳
しくは、例えば、抵抗器、コンデンサー、シリコ
ン又はゲルマニウム半導体等の電気・電子・通信
機器部品(以下単に電子機器用部品という)の端
子リード線の素線、リードフレーム等に適した銅
合金に関する。 従来技術 電子機器部品の端子リード線の素線としては、
従来純銅(タフピツチ銅、無酸素銅)、銅―銀系
合金、銅―カドミウム系合金等が使用されてい
る。 上記リード線は、電子機器部品の製造工程にお
いて、種々な熱処理と不可避的な曲げ応力を受け
るので、軟化され、曲げられやすい条件下におか
れる。例えば、抵抗器、コンデンサー等に使用さ
れるリード線は、ろう接、モールド、塗装、安定
化処理などの製造工程で約250℃の熱処理を受け
る。また、半導体素子にあつては、両端リード線
のろう接時に300〜400℃、約10分間の熱処理が施
された後、該ろう接部が合成樹脂でモールドされ
る。特に素線が純銅(タフピツチ銅、無酸素銅)
線である場合、高い導電率と熱伝導性を有する
が、200℃前後の熱処理で再結晶化し、軟化して
曲げ強さが低下するため、銅線上にメツキする次
のバレルメツキ工程で素線に曲がりが生ずる。 これ等の電子機器部品は、自動化による大量生
産方式で製造されているので、端子リード線が軟
化して曲がりが生ずると、これ等の電子機器部品
のプリント基板への実装に際してのトラブルの原
因となる。又、この様に曲がりを生じたリード線
をいちいち人手で選別及び矯正する場合には、自
動化による利点は、完全に失われる。従つて、上
記リード線には、熱処理を受けても軟化し難い、
いわゆる耐熱性が要求されることとなる。 上記した耐熱性やヘツダー打ち等の加工性とい
う電子機器部品の大量生産方式での製造時に要求
される特性に加えて、この種リード線用の素線
は、高い導電率を有し、熱伝導性に優れているこ
と、機械的強度に優れていること、低価格である
こと、成形加工性に優れていること等の要件をも
具備する必要がある。この様な観点からすれば、
公知の銅―カドミウム系合金は、カドミウムの有
する毒性の故に好ましくなく、又銅―銀系合金
は、主に価格及び耐熱性の点で十分満足すべきも
のとは言い難い。 発明の目的 本発明は、耐熱性、成形加工性、導電性、機械
的特性、価格等において、電子機器部品の端子リ
ード線の素線やリードフレーム等に対する要求を
十分に満足する銅合金を提供することを目的とす
る。 発明の構成 本発明者は、電子機器部品材料に求められる高
度の性能を具備する安価な銅合金を得るべく種々
研究を重ねた結果、鉛とスズの添加量及び酸素含
有量を調整することにより、その目的を達成し得
ることを見出し、本発明を完成するに至つた。即
ち、本発明は、鉛の含有量が0.06〜0.10重量%、
アンチモンの含有量が0.04〜0.07重量%であつて
且つ両者の合計含有量が0.10〜0.15重量%、残部
が酸素含有量0.0001〜0.005重量%の銅から実質
的になることを特徴とする曲げ強度に優れた電
気・電子・通信機器部品用銅合金に係るものであ
る。 本発明においては、鉛の含有量を0.06〜0.10重
量%(以下単に%とする)、アンチモンの含有量
を0.04〜0.07%、その合計量を0.10〜0.15%の範
囲内とする。この両者の何れかの含有量が下限量
未満の場合には、耐熱性の改善が十分に行なわれ
得ず、一方上限量を上回る場合には、導電性が低
下する。又、鉛及びスズの合計の含有量が0.10%
未満の場合には、耐熱性が十分に改善されず、
0.15%を上回る場合には、導電性が著るしく低下
する。 また、焼鈍後の曲げ強度、引張強度などの機械
的特性及び成形加工性の改善のために、酸素含有
量が0.0001〜0.005%程度の無酸素銅を使用する。
酸素含有量が0.005%を上回る場合には、鉛及び
アンチモンと酸素との反応により鉛及びアンチモ
ン消耗されて、鉛及びアンチモンの配合による効
果を減少させるので、焼鈍後の合金の曲げ強度及
び引張強度が著るしく低下する。酸素含有量が
0.0001%未満の場合には、合金の物性自体には何
の障害も生じないが、コストが大巾に上昇する。 発明の効果 本発明の銅合金は、機械的強度、耐熱性(特に
熱処理後の曲げ強度及び引張強度)、導電性、導
熱性等の性能に優れているのみならず、成形加工
性にも優れ、製造も容易で、安価なので、電子機
器部品の端子リード線の素線やリードフレームと
して有用である。 実施態様 以下、本発明の特徴とするところを一層明らか
にするため、実施例、比較例及び従来例を示す。 高周波溶解炉において酸素含有量0.0015%の銅
に対して所定量の鉛及びアンチモン、又は銀を投
入し、均一な溶湯を得た。次いで、溶湯をカーボ
ン鋳型に鋳込んで、直径130mm×長さ700mmのイン
ゴツトを得た。この際、合金中の酸素含有量に応
じて出湯口及び湯受け等の雰囲気を制御しつつ作
業を行なつた。鋳造したインゴツトを切断し、表
面仕上げし、熱間押出することにより、直径11mm
の荒引線を得た後、直径0.8mmまで冷間伸線した。 これ等の銅合金線を300℃で1時間焼鈍した後、
曲げ強度及び引張強度を測定し、耐熱性を判定し
た。 更に、上記で得た直径0.8mmの銅合金線の導電
率を測定した。 本発明合金についての結果は、試料No.3及び5
として第1表に示す通りである。尚、第1表に
は、比較として純銅(タフピツチ銅、No.10)及び
本発明の組成範囲外の銅―鉛―アンチモン合金No.
1,2,4及び6〜9並びに11についての結果、
並びに従来例としての銅―銀合金についての結果
を併せて示す。尚、合金No.5〜10及び従来例1に
おける銅の酸素含有量は、0.0015%であり、合金
No.11における銅の酸素含有量は、0.006%であつ
た。
Industrial Application Field The present invention is characterized by heat resistance (especially bending strength after heat treatment).
Regarding low-cost copper alloys with excellent conductivity, more specifically, for example, terminal lead wires of electrical, electronic, and communication equipment parts (hereinafter simply referred to as electronic equipment parts) such as resistors, capacitors, silicon or germanium semiconductors, etc. Concerning copper alloys suitable for wires, lead frames, etc. Prior art The bare wires of terminal lead wires for electronic equipment parts are as follows:
Conventionally, pure copper (tough pitch copper, oxygen-free copper), copper-silver alloy, copper-cadmium alloy, etc. have been used. The lead wires are subjected to various heat treatments and unavoidable bending stress during the manufacturing process of electronic device parts, so they are softened and placed under conditions where they are easily bent. For example, lead wires used in resistors, capacitors, etc. undergo heat treatment at approximately 250°C during manufacturing processes such as brazing, molding, painting, and stabilization. Further, in the case of a semiconductor element, after the lead wires at both ends are heat-treated at 300 to 400° C. for about 10 minutes during soldering, the soldered portion is molded with synthetic resin. Especially the wire is pure copper (tough pitch copper, oxygen-free copper)
If it is a wire, it has high electrical conductivity and thermal conductivity, but it recrystallizes when heat treated at around 200℃, softens and reduces bending strength, so it is difficult to convert it into a bare wire in the next barrel plating process, which is plating on copper wire. A bend occurs. These electronic device parts are manufactured using automated mass production methods, so if the terminal lead wires become soft and bend, it can cause problems when mounting these electronic device parts on printed circuit boards. Become. Furthermore, if the lead wires that have been bent in this manner are manually sorted and corrected one by one, the advantages of automation are completely lost. Therefore, the above-mentioned lead wire has a material that does not easily soften even when subjected to heat treatment.
So-called heat resistance is required. In addition to the above-mentioned properties such as heat resistance and processability such as header hammering, which are required when manufacturing electronic device parts in mass production, the strands for this type of lead wire have high electrical conductivity and thermal conductivity. It is also necessary to meet requirements such as excellent properties such as excellent properties, excellent mechanical strength, low price, and excellent moldability. From this perspective,
Known copper-cadmium alloys are not preferred due to the toxicity of cadmium, and copper-silver alloys are not fully satisfactory mainly in terms of cost and heat resistance. Purpose of the Invention The present invention provides a copper alloy that fully satisfies the requirements for terminal lead wires, lead frames, etc. of electronic equipment components in terms of heat resistance, moldability, conductivity, mechanical properties, price, etc. The purpose is to Structure of the Invention As a result of repeated research in order to obtain an inexpensive copper alloy that has the high performance required for electronic device component materials, the present inventor discovered that by adjusting the amounts of lead and tin added and the oxygen content. The inventors have discovered that the object can be achieved, and have completed the present invention. That is, in the present invention, the lead content is 0.06 to 0.10% by weight,
Bending strength characterized in that the content of antimony is 0.04 to 0.07% by weight, the total content of both is 0.10 to 0.15% by weight, and the balance is substantially made of copper with an oxygen content of 0.0001 to 0.005% by weight. This relates to copper alloys for electrical, electronic, and communication equipment parts that have excellent properties. In the present invention, the lead content is 0.06 to 0.10% by weight (hereinafter simply referred to as %), the antimony content is 0.04 to 0.07%, and the total amount is within the range of 0.10 to 0.15%. If the content of either of these is less than the lower limit amount, the heat resistance cannot be sufficiently improved, while if it exceeds the upper limit amount, the conductivity will decrease. In addition, the total content of lead and tin is 0.10%
If it is less than that, the heat resistance will not be improved sufficiently,
When it exceeds 0.15%, the conductivity decreases significantly. Further, in order to improve mechanical properties such as bending strength and tensile strength after annealing, and moldability, oxygen-free copper with an oxygen content of about 0.0001 to 0.005% is used.
If the oxygen content exceeds 0.005%, lead and antimony will be consumed by the reaction between lead and antimony and oxygen, reducing the effect of the combination of lead and antimony, which will reduce the bending strength and tensile strength of the alloy after annealing. decreases significantly. Oxygen content
If it is less than 0.0001%, there will be no problem with the physical properties of the alloy itself, but the cost will increase significantly. Effects of the Invention The copper alloy of the present invention not only has excellent properties such as mechanical strength, heat resistance (especially bending strength and tensile strength after heat treatment), electrical conductivity, and heat conductivity, but also has excellent formability. Since it is easy to manufacture and inexpensive, it is useful as strands of terminal lead wires and lead frames for electronic equipment parts. Embodiments Hereinafter, Examples, Comparative Examples, and Conventional Examples will be shown in order to further clarify the features of the present invention. A predetermined amount of lead, antimony, or silver was added to copper with an oxygen content of 0.0015% in a high-frequency melting furnace to obtain a uniform molten metal. Next, the molten metal was poured into a carbon mold to obtain an ingot with a diameter of 130 mm and a length of 700 mm. At this time, the work was carried out while controlling the atmosphere at the tap tap, the hot water pan, etc. according to the oxygen content in the alloy. The cast ingot is cut, surface finished, and hot extruded to a diameter of 11 mm.
After obtaining a rough drawn wire, it was cold drawn to a diameter of 0.8 mm. After annealing these copper alloy wires at 300℃ for 1 hour,
Bending strength and tensile strength were measured to determine heat resistance. Furthermore, the conductivity of the copper alloy wire with a diameter of 0.8 mm obtained above was measured. The results for the alloys of the present invention are samples No. 3 and 5.
As shown in Table 1. For comparison, Table 1 shows pure copper (Tuffpitch Copper, No. 10) and copper-lead-antimony alloy No. 1, which is outside the composition range of the present invention.
Results for 1, 2, 4 and 6 to 9 and 11,
The results for a copper-silver alloy as a conventional example are also shown. In addition, the oxygen content of copper in Alloy Nos. 5 to 10 and Conventional Example 1 is 0.0015%, and the
The oxygen content of copper in No. 11 was 0.006%.

【表】 度で曲げるのに必要な荷重をトルク値
で示す。
第1表に示す各合金についての結果から、本発
明の銅合金(No.3及び5)は、高温での熱処理後
においても、十分な曲げ強度及び引張強度を有
し、しかも高い導電性をも保持していることが明
らかである。即ち、本発明の銅合金は、銀に比し
て極めて安価な鉛及びアンチモンを使用しながら
も、耐熱性及び導電性の総合特性において、銅―
銀合金に優る性能を備えていることが明らかであ
る。これに対して、鉛及び/又はアンチモンの含
有量が本発明の範囲外である合金No.1,2,4,
6〜10は、耐熱性が十分でない。また、鉛とアン
チモンの含有量は本発明合金No.3と同様であるが
酸素含有量が高い合金No.11では、導電率は変わり
ないものの、酸素との反応により鉛とアンチモン
が消耗されるので、焼鈍後の曲げ強度及び引張強
度が著るしく低下している。
[Table] Shows the torque value required for bending in degrees.
From the results for each alloy shown in Table 1, the copper alloys of the present invention (Nos. 3 and 5) have sufficient bending strength and tensile strength even after heat treatment at high temperatures, and also have high electrical conductivity. It is clear that it also holds. In other words, the copper alloy of the present invention uses lead and antimony, which are extremely cheap compared to silver, but has better heat resistance and conductivity than copper.
It is clear that it has superior performance to silver alloys. On the other hand, alloy No. 1, 2, 4, whose content of lead and/or antimony is outside the range of the present invention,
6-10, heat resistance is not sufficient. In addition, in alloy No. 11, which has the same content of lead and antimony as inventive alloy No. 3 but a high oxygen content, although the conductivity remains the same, lead and antimony are consumed by the reaction with oxygen. Therefore, the bending strength and tensile strength after annealing are significantly reduced.

Claims (1)

【特許請求の範囲】[Claims] 1 鉛の含有量が0.06〜0.10重量%、アンチモン
の含有量が0.04〜0.07重量%であつて且つ両者の
合計含有量が0.10〜0.15重量%、残部が酸素含有
量0.0001〜0.005重量%の銅から実質的になるこ
とを特徴とする曲げ強度に優れた電気・電子・通
信機器部品用銅合金。
1. Copper with a lead content of 0.06 to 0.10% by weight, an antimony content of 0.04 to 0.07% by weight, and a total content of both of 0.10 to 0.15% by weight, the balance being an oxygen content of 0.0001 to 0.005% by weight. A copper alloy for electrical, electronic, and communication equipment parts that has excellent bending strength and is characterized by a substantially
JP14188984A 1984-07-09 1984-07-09 Copper alloy having superior heat resistance and electric conductivity Granted JPS6123738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14188984A JPS6123738A (en) 1984-07-09 1984-07-09 Copper alloy having superior heat resistance and electric conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14188984A JPS6123738A (en) 1984-07-09 1984-07-09 Copper alloy having superior heat resistance and electric conductivity

Publications (2)

Publication Number Publication Date
JPS6123738A JPS6123738A (en) 1986-02-01
JPS6328972B2 true JPS6328972B2 (en) 1988-06-10

Family

ID=15302518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14188984A Granted JPS6123738A (en) 1984-07-09 1984-07-09 Copper alloy having superior heat resistance and electric conductivity

Country Status (1)

Country Link
JP (1) JPS6123738A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267389A (en) * 1991-02-22 1992-09-22 Tatsuta Electric Wire & Cable Co Ltd Flexible printed board
JPH04290288A (en) * 1991-03-19 1992-10-14 Tatsuta Electric Wire & Cable Co Ltd Flexible printed circuit board with electromagnetic wave shield
JPH0547230A (en) * 1991-08-12 1993-02-26 Tatsuta Electric Wire & Cable Co Ltd Heat resisting, bending resisting and wear resisting insulated cable

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896840A (en) * 1981-12-02 1983-06-09 Hitachi Cable Ltd Fin material for radiator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896840A (en) * 1981-12-02 1983-06-09 Hitachi Cable Ltd Fin material for radiator

Also Published As

Publication number Publication date
JPS6123738A (en) 1986-02-01

Similar Documents

Publication Publication Date Title
JPS60245754A (en) High strength copper alloy having high electric conductivity
JPH0372691B2 (en)
JPS59170231A (en) High tension conductive copper alloy
JPS6220265B2 (en)
JPS6160846A (en) Lead material of copper alloy for semiconductor device
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPS6328972B2 (en)
JPS6164834A (en) Copper alloy having high strength, heat resistance and electric conductivity
JPS6242977B2 (en)
JPS6245297B2 (en)
JPS613858A (en) Copper alloy having superior heat resistance, workability and electric conductivity
JPS613856A (en) Copper alloy having superior heat resistance, workability and electric conductivity
JPS6220263B2 (en)
JPS6220262B2 (en)
JPH01159337A (en) High tensile and high electric conductive copper alloy
JPS5853700B2 (en) Copper alloy for lead material of semiconductor equipment
JPH06172896A (en) High-strength and high-conductivity copper alloy
JPH06184666A (en) High strength and high electric conductivity copper alloy
JPS6283441A (en) High strength alloy copper having high electric conductivity and superior resistance to stripping of solder by heat
JPS6256218B2 (en)
JP2683903B2 (en) High strength and high conductivity copper alloy with excellent solder heat resistance
JPS6256217B2 (en)
JPS6396232A (en) Copper alloy for plastic pin grid array ic lead pin and its production
JPS62230016A (en) Manufacture of terminal lead wires for electronic equipment parts
JPH03191043A (en) Manufacture of high strength and high conductivity copper alloy for electronic equipment