JPS62214664A - Driving circuit for charge coupled device - Google Patents

Driving circuit for charge coupled device

Info

Publication number
JPS62214664A
JPS62214664A JP61057462A JP5746286A JPS62214664A JP S62214664 A JPS62214664 A JP S62214664A JP 61057462 A JP61057462 A JP 61057462A JP 5746286 A JP5746286 A JP 5746286A JP S62214664 A JPS62214664 A JP S62214664A
Authority
JP
Japan
Prior art keywords
circuit
capacitance
charge
ccd
coupled device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61057462A
Other languages
Japanese (ja)
Other versions
JPH0533875B2 (en
Inventor
Takashi Ito
俊 伊藤
Sumio Kato
純雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61057462A priority Critical patent/JPS62214664A/en
Publication of JPS62214664A publication Critical patent/JPS62214664A/en
Publication of JPH0533875B2 publication Critical patent/JPH0533875B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To drive a CCD with low power consumption even if a pause time is provided in a driving signal by connecting a series circuit of an inductance and a capacitance between the electrodes of the CCD. CONSTITUTION:Driving electrodes 3, 4 are formed through an oxide insulating film 2 on a silicon substrate 1, and charge is transferred through a potential well of a silicon substrate, generated by applying driving waveforms phi1, phi2. An MOS capacitance C1 is formed of the electrode 3, the film 2 and the substrate 1 in a CCD equivalent circuit of such an electrode structure, and an MOS capacitance C2 is formed of the electrode 4, the film 2, and the substrate 1. An inductance L and a capacitance C are connected in series. Since an energy is concentrated in the frequency of 1/t1 when the driving signal is applied to the circuit in this configuration, if circuit constant are set so that reactance X increases in this frequency, a current which contributes to charging/ discharging of the CCD hardly flows to the driving circuit, thereby alleviating power consumption.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電荷結合素子の駆動回路に関し、特にその
低消費電力化を図ったものに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a drive circuit for a charge-coupled device, and particularly to a drive circuit for reducing power consumption.

〔従来の技術〕[Conventional technology]

電荷結合素子(以下CCDと記す)は、小型。 Charge-coupled devices (hereinafter referred to as CCDs) are small.

軽量、低消費電力といった特徴により近年イメージセン
サ等に数多く利用されているが、電荷の転送を行なう駆
動回路に関しては必ずしも低消費電力とはいえない、そ
の理由は駆動回路がCODの電荷転送電極容量及び電極
間容量を充放電するときに電力を消費するからである。
In recent years, it has been widely used in image sensors etc. due to its features such as light weight and low power consumption.However, the drive circuit that transfers charge cannot necessarily be said to have low power consumption.The reason is that the drive circuit has a COD charge transfer electrode capacitance. This is also because power is consumed when charging and discharging the interelectrode capacitance.

そこでこうした問題を解決するために、例えば特開昭5
6−80893号公報に示されたi荷転送素子の結合方
式では電極間にインダクタンスを配設し、インダクタン
スと電極間容量による共振点を転送周波数と等しくする
ことで低消費電極化を図っている。
Therefore, in order to solve these problems, for example,
In the coupling method of the i-charge transfer element disclosed in Publication No. 6-80893, an inductance is provided between the electrodes, and the resonance point due to the inductance and inter-electrode capacitance is made equal to the transfer frequency, thereby reducing electrode consumption. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この駆動方法ではCCD遅延線のように
、連続して信号を転送する用途には有用であるが、駆動
信号が周期的に休止するイメージセンサ等におけるCC
Dでは、駆動信号休止中にインダクタンスを通して電流
が流れるため、かえって消費電力が増加するという問題
があった。
However, although this driving method is useful for applications that continuously transfer signals, such as a CCD delay line, it is useful for applications such as image sensors where the driving signal is periodically paused.
In D, current flows through the inductance while the drive signal is paused, so there is a problem that power consumption increases on the contrary.

この発明は上記のような問題を解消するためになされた
もので、駆動信号に休止期間があるものであっても、低
消費電力でCCDを駆動できる電荷結合素子の駆動回路
を提供せんとするものである。
This invention has been made to solve the above-mentioned problems, and aims to provide a charge-coupled device drive circuit that can drive a CCD with low power consumption even if the drive signal has a pause period. It is something.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る電荷結合素子の駆動回路はインダクタン
スとキャパシタンスとの直列回路をCODの電極間に接
続したものである。
A charge-coupled device drive circuit according to the present invention has a series circuit of an inductance and a capacitance connected between electrodes of a COD.

〔作用〕[Effect]

この発明においては、直列回路中のキャパシタンスによ
り駆動信号の休止期間中に流れるCOD電極電流が阻止
されるから、電荷結合素子の低消費電力化が達成される
In this invention, the capacitance in the series circuit prevents the COD electrode current from flowing during the pause period of the drive signal, thereby achieving low power consumption of the charge coupled device.

〔実施例〕〔Example〕

以下、本発明の一実施例を図について説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

まず、本発明の一実施例による電荷結合素子の駆動回路
の説明に先立ってCCDの構造について説明する。
First, prior to explaining a drive circuit for a charge coupled device according to an embodiment of the present invention, the structure of a CCD will be explained.

第3図は2相CCDの電極断面図を示している。FIG. 3 shows a cross-sectional view of the electrodes of a two-phase CCD.

図中3.4は駆動電極であり、これらは酸化絶縁膜2を
介してシリコン基板1上に形成されており、電荷は電極
に駆動波形φ1.φ2を印加することにより生じた、シ
リコン基板中のポテンシャル井戸の中を転送される。
In the figure, reference numeral 3.4 denotes drive electrodes, which are formed on the silicon substrate 1 via the oxide insulating film 2, and charges are transferred to the electrodes using a drive waveform φ1. It is transferred through a potential well in the silicon substrate created by applying φ2.

このような電極構造を持ったCODの等価回路は、第4
図で示される。第4図(alにおいて、C8は電極3.
絶縁酸化膜2.シリコン基板1で形成されるMOSキャ
パシタンス、C2は電極4.絶縁酸化膜2.シリコン基
板lで形成されるMOSキャパシタンスである。又、C
3は電極3.4のオーバーラツプ等により形成される電
極間容量である。
The equivalent circuit of a COD with such an electrode structure is the fourth
Illustrated in the figure. In FIG. 4 (al), C8 is electrode 3.
Insulating oxide film 2. A MOS capacitance C2 formed of a silicon substrate 1 is an electrode 4. Insulating oxide film 2. This is a MOS capacitor formed from a silicon substrate. Also, C
3 is an interelectrode capacitance formed by the overlap of electrodes 3.4, etc.

ここでc、hc2とするとC,+C3=C2十c3=c
@なる容量が仮定でき、これを2相ccDの等価容量と
考える。第4図(blはこの等価容量C,を用いて表示
した等価回路である。
Here, if c and hc2, then C, +C3=C2 plus c3=c
A capacitance of @ can be assumed, and this is considered to be the equivalent capacitance of a two-phase CCD. FIG. 4 (bl is an equivalent circuit expressed using this equivalent capacitance C).

次に電極3,4に印加する駆動信号φ直、φtを第5図
に示す。
Next, drive signals φt and φt applied to the electrodes 3 and 4 are shown in FIG.

第5図(a)は転送期間t1.休止体間tよ、繰り返し
周期Tの駆動信号φ3.φ2を示しており、φ1とφ2
とで180’位相が異なる。この信号波形をイメージセ
ンサの水平転送CODにあてはめると、t、は1画素転
送期間、1.は水平ブランキング期間、Tは1水平周期
に対応する。第5図(b)は同図(a)の駆動信号のエ
ネルギー分布を周波数領域にて解析したもので、1/T
及び1/l。
FIG. 5(a) shows the transfer period t1. Between the resting bodies t, the drive signal φ3. with a repetition period T. φ2 is shown, and φ1 and φ2
The phase differs by 180'. Applying this signal waveform to the horizontal transfer COD of the image sensor, t is one pixel transfer period, 1. is a horizontal blanking period, and T corresponds to one horizontal period. Figure 5(b) is an analysis of the energy distribution of the drive signal in Figure 5(a) in the frequency domain, with 1/T
and 1/l.

の周波数にエネルギーが集中していることが分かる。It can be seen that energy is concentrated at the frequency of

第1図は本発明の一実施例による電荷結合素子の駆動回
路を示す。同図は第4図(blの等価回路を用いてその
構成を示したものである。第1図中のし及びCは直列接
続されたインダクタンス及びキャパシタンスで、電極3
,4より見たインピーダンスZは抵抗骨を無視した場合
、リアクタンスXのみとなり、 で表わされる。
FIG. 1 shows a drive circuit for a charge-coupled device according to an embodiment of the present invention. This figure shows its configuration using the equivalent circuit of FIG. 4 (bl). In FIG.
, 4, if the resistance bones are ignored, the impedance Z becomes only the reactance X, which is expressed as .

第2図(a)は上式の関係をグラフで表わしたもので、
リアクタンスXの“+”は誘導性、−”は容量性を示す
。又、fooはリアクタンスXが±■となる周波数、即
ちインダクタンスし、キャパシタンスC,Coによる反
共振点であり、これはで与えられる。
Figure 2 (a) is a graphical representation of the relationship in the above equation,
"+" of reactance X indicates inductive property, and "-" indicates capacitive property. Also, foo is the frequency at which reactance It will be done.

またfoはリアクタンスXがOになる周波数、即ちイン
ダクタンスL、キャ7パシタンスCによる直列共振点で
、これは 「。−□ 2πττで で与えられる。
Further, fo is the frequency at which the reactance X becomes O, that is, the series resonance point between the inductance L and the capacitance C, which is given by ".-□ 2πττ.

第5図の駆動信号を第1図の回路に加えた場合、第5図
(b)よりエネルギーは1 / t lの周波数に集中
していることが分かっているので、この周波数における
リアクタンスXが大となるように第1図の回路定数を設
定すると、CCDの充放電に寄与する電流はほとんど本
駆動回路に流れこまず、消費電力が軽減される。即ち、
この1/11におけるリアクタンスXを大きくすること
は並列共振点を転送周波数に設定することを意味し、こ
の場合の定数は次式を満足するり、Cで与えられる。
When the drive signal in Figure 5 is applied to the circuit in Figure 1, it is known from Figure 5(b) that the energy is concentrated at a frequency of 1/tl, so the reactance X at this frequency is If the circuit constants shown in FIG. 1 are set so as to be large, almost no current contributing to charging and discharging the CCD will flow into this drive circuit, reducing power consumption. That is,
Increasing the reactance X at 1/11 means setting the parallel resonance point at the transfer frequency, and the constant in this case satisfies the following equation or is given by C.

■ f  oo −− 1゜ 次にリアクタンスXが0となる周波数(直列共振点)は
、第5図(b)のパワーが最も少ない周波数に設定する
とよい。駆動信号をイメージセンサの水平駆動信号とし
た場合の消費電力Pと、直列共振点f0との関係を第2
図(b)に示す。これからroは転送周波数と休止繰り
返し周波数との中央に設定すればよいことが分かり、こ
の場合の定数は次式を満足するり、Cで与えられる。
■ f oo -- The frequency at which the reactance X becomes 0 in the 1° order (series resonance point) is preferably set to the frequency at which the power is the least as shown in FIG. 5(b). The relationship between the power consumption P when the drive signal is the horizontal drive signal of the image sensor and the series resonance point f0 is expressed as the second
Shown in Figure (b). From this, it can be seen that ro should be set at the center between the transfer frequency and the pause repetition frequency, and the constant in this case satisfies the following equation or is given by C.

以上のように並列共振点を転送周波数に、直列共振点を
転送周波数と休止繰り返し周波数の中央に設定すること
で、第1図の回路は低消費電力となることがわかる。
It can be seen that by setting the parallel resonance point at the transfer frequency and the series resonance point at the center between the transfer frequency and the pause repetition frequency as described above, the circuit shown in FIG. 1 achieves low power consumption.

なお、上記実施例では2相CCDの場合について説明し
たが、4相CCDや3相CCDであっても第4図と同じ
要領で駆動電極の等価容量変換を行ない、等価容tco
のそれぞれに直列接続したインダクタンスとキャパシタ
ンスを接続すればよく、上記実施例と同様の効果を奏す
る。
In the above embodiment, the case of a two-phase CCD was explained, but even in the case of a four-phase CCD or a three-phase CCD, the equivalent capacitance conversion of the drive electrode is performed in the same manner as in FIG. 4, and the equivalent capacitance tco
It is only necessary to connect an inductance and a capacitance connected in series to each of the above, and the same effect as in the above embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る電荷結合素子の駆動回路
によれば、直列接続したインダクタンスとキャパシタン
スを駆動電極に接続することにより、イメージセンサ等
に使用するCCDを、少ない消費電力で駆動することが
できる。
As described above, according to the charge-coupled device drive circuit according to the present invention, by connecting an inductance and a capacitance connected in series to a drive electrode, a CCD used in an image sensor or the like can be driven with low power consumption. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による電荷結合素子の駆動回
路の等価回路図、第2図は第1図の特性を説明する図、
第3図はCODの電極断面図、第4図は2相CCDの等
価容量を示す図、第5図は駆動信号波形とそのエネルギ
ー分布を示す図である。 図において、Lはインダクタンス、Cはキャパシタンス
、C0はCCDの等価容量である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is an equivalent circuit diagram of a drive circuit for a charge-coupled device according to an embodiment of the present invention, and FIG. 2 is a diagram illustrating the characteristics of FIG. 1.
FIG. 3 is a sectional view of the electrodes of the COD, FIG. 4 is a diagram showing the equivalent capacitance of a two-phase CCD, and FIG. 5 is a diagram showing the drive signal waveform and its energy distribution. In the figure, L is inductance, C is capacitance, and C0 is the equivalent capacitance of the CCD. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)休止期間を有し位相の相異なる複数の駆動信号を
発生して電荷結合素子を駆動する回路において、 電荷結合素子の駆動電極に接続され上記複数の駆動信号
が印加される各駆動信号線間に接続された、インダクタ
ンス及びキャパシタンスからなる直列回路を備えたこと
を特徴とする電荷結合素子の駆動回路。
(1) In a circuit that drives a charge-coupled device by generating a plurality of drive signals having a rest period and different phases, each drive signal is connected to a drive electrode of the charge-coupled device and to which the plurality of drive signals are applied. A charge-coupled device drive circuit comprising a series circuit including an inductance and a capacitance connected between lines.
(2)上記直列回路は、その直列共振点が上記駆動信号
の休止繰り返し周波数と転送周波数との間に設定される
とともに該直列回路と電荷結合素子の等価容量からなる
並列回路の並列共振点が上記転送周波数の近傍に設定さ
れるようにその回路定数が設定されていることを特徴と
する特許請求の範囲第1項記載の電荷結合素子の駆動回
路。
(2) The series circuit has a series resonance point set between the pause repetition frequency and the transfer frequency of the drive signal, and a parallel resonance point of the parallel circuit consisting of the series circuit and the equivalent capacitance of the charge-coupled device. 2. The drive circuit for a charge-coupled device according to claim 1, wherein circuit constants thereof are set to be near the transfer frequency.
JP61057462A 1986-03-14 1986-03-14 Driving circuit for charge coupled device Granted JPS62214664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61057462A JPS62214664A (en) 1986-03-14 1986-03-14 Driving circuit for charge coupled device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61057462A JPS62214664A (en) 1986-03-14 1986-03-14 Driving circuit for charge coupled device

Publications (2)

Publication Number Publication Date
JPS62214664A true JPS62214664A (en) 1987-09-21
JPH0533875B2 JPH0533875B2 (en) 1993-05-20

Family

ID=13056343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61057462A Granted JPS62214664A (en) 1986-03-14 1986-03-14 Driving circuit for charge coupled device

Country Status (1)

Country Link
JP (1) JPS62214664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022290A (en) * 1988-06-15 1990-01-08 Toshiba Corp Drive system and drive for charge coupling element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680893A (en) * 1979-12-05 1981-07-02 Matsushita Electric Ind Co Ltd Driving system of electric charge element
JPS59167185A (en) * 1983-03-11 1984-09-20 Hitachi Ltd Signal read circuit of solid-state device
JPS6017070U (en) * 1983-07-12 1985-02-05 シャープ株式会社 Solid-state imaging device drive circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017070B2 (en) * 1979-06-27 1985-04-30 アロカ株式会社 Continuous measurement method and device for radon in water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5680893A (en) * 1979-12-05 1981-07-02 Matsushita Electric Ind Co Ltd Driving system of electric charge element
JPS59167185A (en) * 1983-03-11 1984-09-20 Hitachi Ltd Signal read circuit of solid-state device
JPS6017070U (en) * 1983-07-12 1985-02-05 シャープ株式会社 Solid-state imaging device drive circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022290A (en) * 1988-06-15 1990-01-08 Toshiba Corp Drive system and drive for charge coupling element

Also Published As

Publication number Publication date
JPH0533875B2 (en) 1993-05-20

Similar Documents

Publication Publication Date Title
JPH09297563A (en) Circuit and method for driving capacitive load
JPS62214664A (en) Driving circuit for charge coupled device
US5731722A (en) Low power capacitive load driving circuit
US5019884A (en) Charge transfer device
US9595835B2 (en) Methods for manufacturing and operating a semiconductor device
JPS60187054A (en) Charge transfer device and driving method thereof
JP3036250B2 (en) CCD element
JPH01303756A (en) Drive circuit for element equipped with capacitive impedance
JP2549650B2 (en) Solid-state imaging device
JPS6316670A (en) Delay element using charge coupled device
JPS63296276A (en) Method of driving charge transfer device
JPS63117574A (en) Drive circuit charge coupling element
JPH09149319A (en) Method and device for driving electrode of ccd
JPS63136777A (en) Drive method for solid-state image pickup device
JP2514486B2 (en) Image sensor
JPH0471280B2 (en)
JPS6258592B2 (en)
JPH06105719B2 (en) Charge transfer device and driving method thereof
JPH02105782A (en) Method for driving charge transferring device
JPS63219277A (en) Solid-state image pickup device
JPS5817787A (en) Solid-state image pickup device
JPH0520892A (en) Ccd element
JPH02272742A (en) Charge transfer device
JPH03101484A (en) Drive method for solid-state image pickup element
JPH01303758A (en) Drive circuit for element equipped with capacitive impedance

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term