JPH03101484A - Drive method for solid-state image pickup element - Google Patents

Drive method for solid-state image pickup element

Info

Publication number
JPH03101484A
JPH03101484A JP1237031A JP23703189A JPH03101484A JP H03101484 A JPH03101484 A JP H03101484A JP 1237031 A JP1237031 A JP 1237031A JP 23703189 A JP23703189 A JP 23703189A JP H03101484 A JPH03101484 A JP H03101484A
Authority
JP
Japan
Prior art keywords
ccd
voltage value
voltage
electrodes
vertical ccd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1237031A
Other languages
Japanese (ja)
Inventor
Toshibumi Ozaki
俊文 尾崎
Atsushi Hiraiwa
篤 平岩
Haruhiko Tanaka
田中 治彦
Hideyuki Ono
秀行 小野
Kazuya Tokumasu
徳升 一也
Hajime Akimoto
肇 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1237031A priority Critical patent/JPH03101484A/en
Publication of JPH03101484A publication Critical patent/JPH03101484A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the transfer maximum charge quantity per unit area of a vertical CCD by decreasing a voltage applied to an insulation film between polysilicon electrodes and making a gate oxide film of the vertical CCD thin. CONSTITUTION:A voltage applied to an insulation film between vertical CCD polysilicon electrodes is (VH-VM) or (VM-VL). The voltage amplitude (VM-VL) required for charge transfer in the vertical CCD and the voltage amplitude (VH-VM) required for signal readout from a photodiode to the vertical CCD are nearly equal to each other and the voltage applied to the insulation film between the electrodes is nearly 1/2 of a conventional (VH-VL). As a result, when the permissible electric field strength in the insulation film between the electrodes is constant, since the insulation film between the electrodes is nearly halved, the thickness of the vertical CCD gate oxide film formed simultaneously to the insulation film between the electrodes is nearly halved, the transfer maximum charge quantity per unit area of the vertical CCD is increased.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明はCCD型固体撮像素子における垂直CCDの最
大転送電荷量向上のための駆動法に関する。
The present invention relates to a driving method for increasing the maximum transfer charge amount of a vertical CCD in a CCD solid-state image sensor.

【従来の技術1 従来、家庭用ビデオカメラ等に用いられる固体撮像素子
には、CCD型固体撮像素子が広く用いられている。こ
の種のCCD型固体撮像素子については、アイ・ニス・
ニス・シー・シー ダイジェスト オブ テクニカル 
ペーパーズ第96頁から第97頁(1985)(ISS
CCDIGEST  OF  TECHNICAL  
PAPER8,p、96−97 (1985))におい
て論じられている。 上記文献に記載されているCCD型固体撮像素子の画素
の構造は第9図に示すように第1ポリシリコン22並び
に第2層ポリシリコン21を駆動電極とする垂直CCD
とホトダイオードからなる。 本構造においては、垂直CCDの転送動作を確実に行う
ため、2層のポリシリコン電極はオーバーラツプ部を有
する。さらに、2層のポリシリコン電極間の絶縁を高い
信頼性で行うため、電極間の絶縁膜には、第2層ポリシ
リコン21のゲート酸化膜形成時に第1層ポリシリコン
22上に形成される酸化膜が用いられている。 また、垂直CCDは画素構造を複雑にすることなく信号
の読みだしを行うため、第10図に示す三値パルスで駆
動される。垂直ブランキング期間にv2もしくは■4端
子に最高電圧VHが印加され、ホトダイオードの信号電
荷は垂直CCDに転送される。この時、Vlとv3端子
には最低電圧VLが印加され、信号電荷が垂直CCD内
で混ざりあうのを防いでいる。垂直走査期間にはvlか
らv4端子lこ中間電圧VMと最低小電圧VLが交互に
印加され、信号電荷は垂直CCD内を転送される。 【発明が解決しようとする課題】 上記従来技術は、ホトダイオードから垂直CCDへの信
号電荷の転送時に、ポリシリコン電極間の絶縁膜に駆動
最高電圧VHと最低電圧VLの高い電圧差が加わるとい
う点について考慮がされておらず、高信頼性を得るため
にポリシリコン電極間の絶縁膜、ひいては垂直CCDの
ゲート酸化膜を薄くすることができないという問題があ
った。 本発明は、ポリシリコン電極間の絶縁膜に加わる電圧を
小さくすることにより、垂直CCDのゲート酸化膜を薄
くシ、垂直CCDの単位面積あたりの転送最大電荷量を
大きくすることを目的としている。
[Prior Art 1] Conventionally, CCD type solid-state image sensors have been widely used as solid-state image sensors used in home video cameras and the like. Regarding this type of CCD type solid-state image sensor, eye, varnish,
Niss C C Digest of Technical
Papers, pages 96 to 97 (1985) (ISS
CCDIGEST OF TECHNICAL
PAPER 8, p, 96-97 (1985)). As shown in FIG. 9, the pixel structure of the CCD solid-state image sensor described in the above-mentioned document is a vertical CCD in which the first polysilicon layer 22 and the second layer polysilicon layer 21 are used as drive electrodes.
and a photodiode. In this structure, the two layers of polysilicon electrodes have an overlapping portion in order to ensure the vertical CCD transfer operation. Furthermore, in order to provide highly reliable insulation between the two layers of polysilicon electrodes, the insulating film between the electrodes is formed on the first layer polysilicon 22 when forming the gate oxide film of the second layer polysilicon 21. An oxide film is used. Further, the vertical CCD is driven by a ternary pulse shown in FIG. 10 in order to read out signals without complicating the pixel structure. During the vertical blanking period, the highest voltage VH is applied to the v2 or 4 terminal, and the signal charge of the photodiode is transferred to the vertical CCD. At this time, the lowest voltage VL is applied to the Vl and v3 terminals to prevent signal charges from mixing within the vertical CCD. During the vertical scanning period, the intermediate voltage VM and the lowest voltage VL are alternately applied to terminals v1 to v4, and signal charges are transferred within the vertical CCD. [Problems to be Solved by the Invention] The problem with the above conventional technology is that a large voltage difference between the highest driving voltage VH and the lowest voltage VL is applied to the insulating film between the polysilicon electrodes when signal charges are transferred from the photodiode to the vertical CCD. However, there was a problem in that the insulating film between the polysilicon electrodes, and even the gate oxide film of the vertical CCD, could not be made thinner in order to obtain high reliability. The present invention aims to reduce the voltage applied to the insulating film between polysilicon electrodes, thereby making the gate oxide film of the vertical CCD thinner and increasing the maximum amount of charge transferred per unit area of the vertical CCD.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するために本発明においては。 ホトダイオードから垂直CCDへの信号電荷の転送時に
ある垂直CCD電極に駆動最高電圧VHを印加する時、
該電極に隣接する電極には垂直CCD内の信号電荷転送
時の高い電圧である中間電圧値VMを印加したものであ
る。 さらに、上記駆動法で信号電荷が垂直CCD内で混ざり
あうのを防ぐために、最高電圧VHを印加した電極並び
に該電極に隣接している電極を除いた少なくとも1電極
に垂直CCD内の信号電荷転送時の低い電圧である最低
電圧値VLを印加したものである。
In order to achieve the above object, the present invention. When applying the highest driving voltage VH to a certain vertical CCD electrode during transfer of signal charges from the photodiode to the vertical CCD,
An intermediate voltage value VM, which is a high voltage during signal charge transfer in the vertical CCD, is applied to an electrode adjacent to this electrode. Furthermore, in order to prevent signal charges from mixing within the vertical CCD in the above driving method, signal charges within the vertical CCD are transferred to at least one electrode excluding the electrode to which the highest voltage VH is applied and the electrode adjacent to the electrode. The lowest voltage value VL, which is the lowest voltage at that time, is applied.

【作用】[Effect]

垂直CCDポリシリコン電極間の絶縁膜に加わる電圧は
、信号電荷の転送される垂直CCD電極と該電極に隣接
する電極間では最高電圧VHと中間電圧VMの差、該電
極に隣接している電極と信号電荷が垂直CCD内で混ざ
りあうのを防ぐための電極間では中間電圧VMと最低電
圧VLの差となる。これらの電圧は、従来開動法におけ
る電極間の絶縁膜に加わる最大電圧VH−VLの約1/
2であり。 電極間の絶縁膜内の電界強度を一定とし信頼性を従来と
同等に保ちながら電極間の絶縁膜を約172にできるの
で、電極間の絶縁膜と同時に形成される垂直CCDゲー
ト酸化膜を約1/2にし、垂直CCDの単位面積あたり
の転送最大電荷量を大きくすることができる。
The voltage applied to the insulating film between the vertical CCD polysilicon electrodes is the difference between the highest voltage VH and the intermediate voltage VM between the vertical CCD electrode to which signal charges are transferred and the electrode adjacent to this electrode, and the difference between the highest voltage VH and the intermediate voltage VM between the vertical CCD electrode where signal charges are transferred and the electrode adjacent to this electrode. There is a difference between the intermediate voltage VM and the lowest voltage VL between the electrodes to prevent the signal charges from mixing within the vertical CCD. These voltages are approximately 1/1/1 of the maximum voltage VH-VL applied to the insulating film between the electrodes in the conventional open method.
It is 2. Since the electric field strength in the insulating film between the electrodes can be kept constant and the reliability can be maintained at the same level as before, the thickness of the insulating film between the electrodes can be reduced to about 172 cm, so the vertical CCD gate oxide film formed at the same time as the insulating film between the electrodes can be reduced to about 172 cm. 1/2, and the maximum amount of charge transferred per unit area of the vertical CCD can be increased.

【実施例】【Example】

以下2本発明の一実施例を第1図から第3図により説明
する0本実施例では上記従来例と同様に。 素子構成はインターライン型CCDであり、垂直CCD
電極構造はオーバーラツプ部を有する2Nポリシリコン
電極よりなり、垂直CCDは4相のJ=<ルスにより駆
動される。 第1図は第9図のvlからv4端子に加える駆動パルス
の垂直ブランキング期間のタイミング。 第2図(、)は第9図A−A’の断面構造図、同図(b
)は第1図の時刻t1からt8の各電極下の電位図、第
3図は電極間絶縁膜の許容電界強度を一定としたときの
ゲート酸化膜厚と電極間絶縁膜の耐圧の関係を示す図で
ある。 垂直ブランキング期間に入るとv3端子電圧が最低電圧
VLから中間電圧VMになった後(時刻tl)、V2端
子電圧が中間電圧VMから最高電圧VHになり、n行の
ホトダイオードの信号電荷が垂直CCDに転送される(
時刻t2)、ついでv2端子電圧がVHからVMになり
、信号電荷はvlからv3端子電極下に蓄積される。こ
の時V4端子には最低電圧VLが印加され、信号電荷が
垂直CCD内で混ざりあうのを防いでいる(時刻t3)
。 この後v1端子電圧がVMからVLとなった後(時刻t
4)、V2端子電圧がVMからVLになると同時にv4
端子電圧がVMからVLとなり。 さらにv1端子電圧がVLからVMとなり、信号電荷は
垂直CCD内を2電極分移動する(時刻t5)、ついで
v4端子電圧が中間電圧VMから最高電圧VHになり、
n+1行のホトダイオードの信号電荷が垂直CCDに転
送される(時刻t6)。 ついでv4端子電圧がVHからVMになり、信号電荷は
v3からv1端子電極下に蓄積される。 この時v2端子には最低電圧VLが印加され、信号電荷
が垂直CCD内で混ざりあうのを防いでいる(時刻t7
)、この後v3端子電圧がVMからVLとなった後、V
4端子電圧がVMからVLなると同時にv2端子電圧が
VMからVLとなり。 信号電荷はvlとv2端子電極下に蓄積される(時刻t
8)。 垂直走査期間にはvlからv4端子に中間電圧VMと最
低小電圧VLが交互に印加され、信号電荷は垂直CCD
内を転送される。 本実施例によれば電極間の絶縁膜に加わる電圧はVH−
VMもしくはVM−VLとなる0通例垂直CCD内の電
荷転送に必要な電圧振@VM−VLとホトダイオードか
ら垂直CCDへの信号読みだしに必要な電圧振111V
H−VMはほぼ等しく。 電極間の絶縁膜に加わる電圧は従来のVH−VLの約1
72となる。 この結果、第3図に示すように電極間の絶縁膜内の許容
電界強度を一定とすると電極間の絶縁膜を約172にで
きるので、電極間の絶縁膜と同時に形成される垂直CC
Dゲート酸化膜も約172にすることができる。 また、ホトダイオードから垂直CCDへの信号読みだし
時に最高電圧VHのかかるv2もしくはv4端子につな
がる電極に隣接しないv4もしくは■2端子につながる
電極に最低電圧VLを加えることにより、上記能動条件
を保ちながら信号電荷が垂直CCD内で混ざりあうのを
防いでいる。 なお、垂直CCD[動電横配線下で発生する暗電流が問
題となるときには、中間電圧を垂直CCD1!動電極配
線下の半導体内の不純物と同型の電荷が蓄積状態となる
ように設定すれば良い、上記+41の実施例において中
間電圧をpウェル25の電圧に対し負にすることにより
、垂直CCDII動電極配線電極配線下蓄積され、低暗
電流化ができる。 さて、第1の実施例において垂直CCD 駆動電極とP
ウェルとの容量結合により駆動時にPウェルの電位変動
が起きシェーディングといわれる疑信号が生じることが
ある。第2.第3の実施例は。 このシェーディングを低減したものである。 以下、第2の実施例を第4図により説明する。 第4図は、第9図B−B’−B”に相当する部分の本実
施例の断面構造図である。本実施例においては、ホトダ
イオード間分離領域B−B’に厚い酸化膜27を形成し
、垂直c CD IH動動電上なる第1層ポリシリコン
層22とPウェル25との結合容量を小さくシ、シェー
ディングを低減した。 なお、垂直CCDの飽和信号電荷の劣化要因となる垂直
CCDの狭チャネル効果の増加を防ぐために、ホトダイ
オードと垂直CCD間の分離領域B′−B”には厚い酸
化膜は形成しない。 さらに1本実施例では、垂直CCDn−チャネル層23
とn基板26間のpウェル層25は少なくとも垂直CC
D IIK動電極電極低電圧VLが印加された時には空
乏化せず、X方向のPウェル層25の抵抗が増加するの
を防ぎシェーディングを低減している。 第3の実施例を第5図により説明する。 第5図は、素子駆動パルスを発生する素子外部の駆動回
路のブロック図である。本実施例においては、素子は垂
直走査期間は低出力インピーダンスの垂直走査期間ドラ
イバ31により、垂直ブランキング期間は高出力インピ
ーダンスの垂直ブランキング期間ドライバ32により駆
動される。これにより相補型の駆動パルスによりウェル
電位変動を抑圧できる垂直走査期間はもう一つの要求で
ある高速性を有する駆動パルスを実現し、高速性の要求
されない垂直ブランキング−期間はパルスを鈍らせるこ
とによりウェルの電位変動を抑圧できシェーディングを
低減できる。 なお、垂直走査期間と垂直ブランキング期間のインピー
ダンスの切り替えは素子外部のドライバを1個にし素子
内部で行っても良い、さらに9本実施例では駆動パルス
の各相の駆動電極とウェル間の結合容量をほぼ同一とし
、相補型の駆動パルスによるウェル電位変動を抑圧効果
を高め、シェーディングを低減している。 また2本発明は、垂直CCDの駆動パルスの相数に依ら
ず実施できる。以下、TV学会技報13巻11号ED8
9−17第73頁から第78頁(1989)に記載され
た6相駆動の垂直CCDに適用した第4の実施例を、第
6図により説明する。 第6図(a)は駆動パルスタイミング、同図(b)は同
図(a)の時刻TIA、T2A、TIB、T2Bの各電
極下の電位図である。本実施例においてもホトダイオー
ドから垂直CCDへの信号読みだし時に最高電圧のかか
る電極に隣接した電極には中間電圧を加えることにより
電極間絶縁膜にかかる電圧を低減しゲート酸化膜を薄く
することができる。 さらに2本発明は、素子構成に依らず実施できる。第7
図は9本発明をTV学会全国大会予稿集3−6 (19
87)に記載されたフレームインターライン型CCDに
適用した第5の実施例の駆動パルスタイミング図である
。 本実施例においても電極間絶縁膜にかかる電圧を低減し
ゲート酸化膜を薄くすることができる。 また、第6の実施例は2本発明を、上記フレームインタ
ーライン型CCDの電子シャッタ駆動でも実施したもの
である。第8図は2本実施例の駆動パルスタイミング図
である。本実施例においては水平ブランキング期間の不
要電荷掃きたしのためのホトダイオードから垂直CCD
への信号読みだし時には垂直CCD内で電荷が混ざって
も良いのでφA4は一定の中間電圧になっている。 【発明の効果) 本発明に依れば、信頼性を従来と同等に保ちながら、垂
直CCDゲート酸化膜を約1/2とし、垂直CCDの単
位面積あたりの転送最大電荷量を大きくすることができ
る。 第1図、第6図(a)、第7図、第8図は本発明の一実
施例の湘動パルスタイミング図、第2図(a)、第4図
は本発明の一実施例の第9図A−A′、第9図B−B’
 −B” (7)断面構造図、第2図(b)、第6図(
b)はそれぞれ第1図の時刻t1からt8の、第6図(
a)の時刻T−IA、T2A、TIB、T2Bの各電極
下の電位図、第3図はゲー・ト酸化膜厚と電極間絶縁膜
の耐圧の関係を示す図、第5図は本発明の一実施例の素
子即動パルスを発生する素子外部の駆動回路のブロック
図、第9図は従来のCCD型固体撮像素子の画素の平面
構造図、第10図は従来のCCD型固体撮像素子の駆動
パルスタイミング図である。 符号の説明 Vl、V2.V3.V4.ΦVIA、ΦV2゜1!1V
3A、(tlV4.(りVIB、 ΦV3B、(+)Δ
1゜ΦA2.ΦA3.ΦA4・・・駆動パルス端子、V
L・・・最低電圧、VM・・・中間電圧、VH・・・最
高電圧。 21・・・第2層ポリシリコン、22・・・第1層ポリ
シリコン、23・・・n−チャネル、24・・・p十層
、25・・・pウェル、26・・・n基板、27・・・
厚い酸化膜。 28・・・p+チャネルストップ、31・・・垂直走査
期間ドライバ、32・・・垂直ブランキング期間ドライ
バ を二t? 。−90 乎 図 半br′jJ 〃 qO6ρ   とρ γ′”−ト帆化穫4(’h#I) 0 不 図 峯y 図 φAl1− 率 ? 図 際7図
Two embodiments of the present invention will be described below with reference to FIGS. 1 to 3. This embodiment is similar to the conventional example described above. The element configuration is an interline type CCD, and a vertical CCD.
The electrode structure consists of 2N polysilicon electrodes with overlapping portions, and the vertical CCD is driven by four-phase J=<Rus. FIG. 1 shows the timing of the vertical blanking period of the drive pulses applied to the vl to v4 terminals in FIG. 9. Figure 2 (,) is a cross-sectional structural diagram of Figure 9 A-A', and the same figure (b
) is the potential diagram under each electrode from time t1 to t8 in Fig. 1, and Fig. 3 shows the relationship between the gate oxide film thickness and the breakdown voltage of the interelectrode insulating film when the allowable electric field strength of the interelectrode insulating film is constant. FIG. When entering the vertical blanking period, after the V3 terminal voltage changes from the lowest voltage VL to the intermediate voltage VM (time tl), the V2 terminal voltage changes from the intermediate voltage VM to the highest voltage VH, and the signal charge of the photodiode in the n row becomes vertical. transferred to CCD (
At time t2), the v2 terminal voltage then changes from VH to VM, and the signal charge is accumulated from vl to under the v3 terminal electrode. At this time, the lowest voltage VL is applied to the V4 terminal to prevent signal charges from mixing within the vertical CCD (time t3).
. After this, the v1 terminal voltage changes from VM to VL (time t
4) At the same time as the V2 terminal voltage changes from VM to VL, v4
The terminal voltage changes from VM to VL. Further, the v1 terminal voltage changes from VL to VM, and the signal charge moves by two electrodes in the vertical CCD (time t5).Then, the v4 terminal voltage changes from the intermediate voltage VM to the highest voltage VH.
The signal charge of the photodiode in the n+1 row is transferred to the vertical CCD (time t6). Then, the v4 terminal voltage changes from VH to VM, and the signal charge is accumulated from v3 to under the v1 terminal electrode. At this time, the lowest voltage VL is applied to the v2 terminal to prevent signal charges from mixing within the vertical CCD (time t7
), then after the v3 terminal voltage changes from VM to VL, V
At the same time as the 4-terminal voltage changes from VM to VL, the v2 terminal voltage changes from VM to VL. Signal charges are accumulated under the vl and v2 terminal electrodes (at time t
8). During the vertical scanning period, the intermediate voltage VM and the lowest voltage VL are applied alternately from vl to v4 terminals, and the signal charge is applied to the vertical CCD.
Transferred within. According to this embodiment, the voltage applied to the insulating film between the electrodes is VH-
VM or VM-VL is 0, which is usually the voltage swing required for charge transfer in the vertical CCD @VM-VL, and the voltage swing 111V required for reading the signal from the photodiode to the vertical CCD.
H-VM is almost equal. The voltage applied to the insulating film between the electrodes is approximately 1 of the conventional VH-VL.
It becomes 72. As a result, as shown in Fig. 3, if the allowable electric field strength in the insulating film between the electrodes is kept constant, the insulating film between the electrodes can be approximately 172 cm, so the vertical CC is formed simultaneously with the insulating film between the electrodes.
The D gate oxide can also be about 172 mm. In addition, when reading signals from the photodiode to the vertical CCD, by applying the lowest voltage VL to the electrode connected to the v4 or ■2 terminal that is not adjacent to the electrode connected to the v2 or v4 terminal to which the highest voltage VH is applied, it is possible to maintain the above active condition. This prevents signal charges from mixing within the vertical CCD. Note that when the dark current generated under the vertical CCD [electrodynamic horizontal wiring becomes a problem, the intermediate voltage is set to the vertical CCD1! Vertical CCD II movement can be achieved by making the intermediate voltage negative with respect to the voltage of the p-well 25 in the +41 embodiment described above. Electrode wiring Accumulates under the electrode wiring, resulting in low dark current. Now, in the first embodiment, the vertical CCD drive electrode and P
Due to capacitive coupling with the well, the potential of the P well may fluctuate during driving, resulting in a false signal called shading. Second. The third example is. This shading is reduced. The second embodiment will be explained below with reference to FIG. FIG. 4 is a cross-sectional structural diagram of this embodiment of a portion corresponding to BB'-B'' in FIG. This reduces the coupling capacitance between the first layer polysilicon layer 22 on the vertical CCD IH electrodynamic and P well 25 and reduces shading. To prevent an increase in the narrow channel effect of the CCD, no thick oxide film is formed in the isolation region B'-B'' between the photodiode and the vertical CCD. Furthermore, in this embodiment, the vertical CCD n-channel layer 23
The p-well layer 25 between the n-substrate 26 and the vertical CC
D IIK active electrode electrode When low voltage VL is applied, it is not depleted, preventing the resistance of the P well layer 25 in the X direction from increasing and reducing shading. The third embodiment will be explained with reference to FIG. FIG. 5 is a block diagram of a drive circuit outside the device that generates device drive pulses. In this embodiment, the element is driven by a vertical scanning period driver 31 with low output impedance during the vertical scanning period, and by a vertical blanking period driver 32 with high output impedance during the vertical blanking period. As a result, during the vertical scanning period during which well potential fluctuations can be suppressed using complementary drive pulses, a drive pulse with high speed, which is another requirement, can be realized, and during the vertical blanking period, where high speed is not required, the pulse is made dull. As a result, potential fluctuations in the well can be suppressed and shading can be reduced. Note that the impedance switching between the vertical scanning period and the vertical blanking period may be performed inside the device by using one driver outside the device.Furthermore, in this embodiment, the switching between the drive electrode of each phase of the drive pulse and the well The capacitances are made almost the same, increasing the effect of suppressing well potential fluctuations caused by complementary drive pulses, and reducing shading. Furthermore, the present invention can be implemented regardless of the number of phases of the driving pulses of the vertical CCD. The following is TV Society Technical Report Volume 13 No. 11 ED8
A fourth embodiment applied to the six-phase drive vertical CCD described in 9-17, pages 73 to 78 (1989) will be described with reference to FIG. FIG. 6(a) is a drive pulse timing, and FIG. 6(b) is a potential diagram under each electrode at times TIA, T2A, TIB, and T2B in FIG. 6(a). In this embodiment as well, when reading signals from the photodiode to the vertical CCD, an intermediate voltage is applied to the electrode adjacent to the electrode to which the highest voltage is applied, thereby reducing the voltage applied to the interelectrode insulating film and thinning the gate oxide film. can. Furthermore, the present invention can be implemented regardless of the device configuration. 7th
Figure 9 shows the present invention in the proceedings of the TV Society National Conference 3-6 (19
87) is a drive pulse timing diagram of the fifth embodiment applied to the frame interline type CCD described in 87). In this embodiment as well, the voltage applied to the interelectrode insulating film can be reduced and the gate oxide film can be made thinner. Further, in the sixth embodiment, the two aspects of the present invention are implemented in the electronic shutter drive of the above-mentioned frame interline type CCD. FIG. 8 is a drive pulse timing diagram of the two embodiments. In this embodiment, the vertical CCD is connected from the photodiode to sweep away unnecessary charges during the horizontal blanking period.
Since charges may be mixed in the vertical CCD when reading a signal to , φA4 is set to a constant intermediate voltage. [Effects of the Invention] According to the present invention, it is possible to reduce the vertical CCD gate oxide film to about 1/2 and increase the maximum amount of charge transferred per unit area of the vertical CCD, while maintaining the same reliability as the conventional one. can. 1, 6(a), 7, and 8 are floating pulse timing diagrams of one embodiment of the present invention, and FIG. 2(a), and 4 are diagrams of one embodiment of the present invention. Figure 9 A-A', Figure 9 B-B'
-B” (7) Cross-sectional structure diagram, Fig. 2 (b), Fig. 6 (
b) from time t1 to t8 in FIG. 1 and FIG. 6 (
The potential diagram under each electrode at times T-IA, T2A, TIB, and T2B in a), FIG. 3 is a diagram showing the relationship between the gate oxide film thickness and the withstand voltage of the interelectrode insulating film, and FIG. A block diagram of a drive circuit outside the device that generates instantaneous pulses in one embodiment of the device; FIG. 9 is a plan view of a pixel structure of a conventional CCD solid-state image sensor; and FIG. 10 is a diagram of a conventional CCD solid-state image sensor. FIG. 3 is a drive pulse timing diagram of FIG. Explanation of symbols Vl, V2. V3. V4. ΦVIA, ΦV2゜1!1V
3A, (tlV4.(RIVIB, ΦV3B, (+)Δ
1゜ΦA2. ΦA3. ΦA4...Drive pulse terminal, V
L: lowest voltage, VM: intermediate voltage, VH: highest voltage. 21... Second layer polysilicon, 22... First layer polysilicon, 23... N-channel, 24... P ten layer, 25... P well, 26... N substrate, 27...
thick oxide film. 28...p+channel stop, 31...vertical scanning period driver, 32...vertical blanking period driver 2t? . -90 乎囯halfbr'jJ 〃 qO6ρ and ρ γ′''-Tohokaretsu 4 ('h#I) 0 Futumine y FigureφAl1- Rate? Figure 7

Claims (1)

【特許請求の範囲】 1、同一半導体基板上に光学情報を取り出す光電変換素
子群と、該素子に蓄積された光信号電荷を順次転送する
CCDを集積化した固体撮像素子において、該CCDを
構成する電極に第一の電圧値と第二の電圧値を印加する
ことにより該CCD内を信号電荷を転送し、該CCDを
構成する電極に第三の電圧値を印加することにより該光
電変換素子から該CCDへの信号電荷を転送する際に、
該CCDの隣接する2電極に該第一から第三の電圧値の
うち電圧差が最大となる2電圧値を同時に印加しないこ
とを特徴とする固体撮像素子の駆動法。 2、同一半導体基板上に光学情報を取り出す光電変換素
子群と、該素子に蓄積された光信号電荷を順次転送する
CCDを集積化した固体撮像素子において、該CCDを
構成する電極に第一の電圧値と第二の電圧値を印加する
ことにより該CCD内を信号電荷を転送し、該CCDを
構成する電極に第三の電圧値を印加することにより該光
電変換素子から該CCDへの信号電荷を転送する際に、
該CCDを構成する電極に第三の電圧値を印加する時、
該電極に隣接する電極に第一の電圧値と第二の電圧値の
うち第三の電圧値との電圧差の小さい電圧値を印加する
ことを特徴する固体撮像像素子の駆動法。 3、請求項1もしくは2記載の固体撮像像素子の駆動法
において、第三の電圧値を印加する電極に隣接していな
い電極には、第一の電圧値と第二の電圧値のうち第三の
電圧値との電圧差の大きい電圧値を印加することを特徴
とする固体撮像像素子の駆動法。
[Claims] 1. In a solid-state imaging device in which a group of photoelectric conversion elements for extracting optical information and a CCD for sequentially transferring optical signal charges accumulated in the elements are integrated on the same semiconductor substrate, the CCD is configured. A signal charge is transferred within the CCD by applying a first voltage value and a second voltage value to the electrodes forming the photoelectric conversion element, and a third voltage value is applied to the electrodes constituting the CCD. When transferring signal charges from to the CCD,
A method for driving a solid-state imaging device, characterized in that two voltage values having the maximum voltage difference among the first to third voltage values are not simultaneously applied to two adjacent electrodes of the CCD. 2. In a solid-state image sensor that integrates a group of photoelectric conversion elements that extract optical information on the same semiconductor substrate and a CCD that sequentially transfers optical signal charges accumulated in the element, a first electrode is attached to the electrode constituting the CCD. A signal charge is transferred within the CCD by applying a voltage value and a second voltage value, and a signal is transferred from the photoelectric conversion element to the CCD by applying a third voltage value to the electrodes constituting the CCD. When transferring charge,
When applying a third voltage value to the electrodes constituting the CCD,
A method for driving a solid-state imaging device, comprising applying a voltage value having a small voltage difference between a first voltage value and a third voltage value among the second voltage values to an electrode adjacent to the electrode. 3. In the method for driving a solid-state imaging device according to claim 1 or 2, the electrode that is not adjacent to the electrode to which the third voltage value is applied is supplied with the first voltage value of the first voltage value and the second voltage value. A method for driving a solid-state imaging device, characterized by applying a voltage value having a large voltage difference from the voltage value of the third voltage value.
JP1237031A 1989-09-14 1989-09-14 Drive method for solid-state image pickup element Pending JPH03101484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1237031A JPH03101484A (en) 1989-09-14 1989-09-14 Drive method for solid-state image pickup element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1237031A JPH03101484A (en) 1989-09-14 1989-09-14 Drive method for solid-state image pickup element

Publications (1)

Publication Number Publication Date
JPH03101484A true JPH03101484A (en) 1991-04-26

Family

ID=17009371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1237031A Pending JPH03101484A (en) 1989-09-14 1989-09-14 Drive method for solid-state image pickup element

Country Status (1)

Country Link
JP (1) JPH03101484A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038723B1 (en) 1999-04-26 2006-05-02 Matsushita Electric Industrial Co., Ltd. Solid state imaging device, method for driving the same and camera using the same
JP2009153057A (en) * 2007-12-21 2009-07-09 Panasonic Corp Solid-state imaging device and method of driving the same, and camera

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038723B1 (en) 1999-04-26 2006-05-02 Matsushita Electric Industrial Co., Ltd. Solid state imaging device, method for driving the same and camera using the same
JP2009153057A (en) * 2007-12-21 2009-07-09 Panasonic Corp Solid-state imaging device and method of driving the same, and camera

Similar Documents

Publication Publication Date Title
JP2525781B2 (en) Driving method for solid-state imaging device
US20010023919A1 (en) Solid-state image pickup device
JPS6115475A (en) Image pickup element and image pickup device
US5757427A (en) Image pick-up apparatus having a charge coupled device with multiple electrodes, a buffer layer located below some of the electrodes
JPS5983477A (en) Image pickup system
US4903284A (en) Accordion-type charge-coupled devices
EP0621726A1 (en) Method of and apparatus for solid state imaging device
JPH03101484A (en) Drive method for solid-state image pickup element
JPS63124686A (en) Driver for solid-state image pickup element
KR100339294B1 (en) Solid-State Image Sensing Device and Method of Driving the Same
Fujikawa et al. A 1/3-inch 630 k-pixel IT-CCD image sensor with multi-function capability
US5943095A (en) Method for operating charge-coupled device at high speed
JP2517882B2 (en) Solid-state imaging device
JPH06339081A (en) Driving method for solid-state image pickup element
JPH06268923A (en) Drive method for solid-state image pickup device
JPS63234677A (en) Drive method of charge coupling element
JP2618939B2 (en) Solid-state imaging device
JP5211072B2 (en) Driving method of solid-state imaging device
JP2894489B2 (en) Driving method of solid-state imaging device
JPS6345097Y2 (en)
JP4593751B2 (en) Linear sensor and driving method thereof
JP2703944B2 (en) Driving method of solid-state imaging device
JPS59105778A (en) Solid-state image pickup device
JPS631680B2 (en)
JPS60130978A (en) Solid-state image sensor