JPS59167185A - Signal read circuit of solid-state device - Google Patents

Signal read circuit of solid-state device

Info

Publication number
JPS59167185A
JPS59167185A JP58039259A JP3925983A JPS59167185A JP S59167185 A JPS59167185 A JP S59167185A JP 58039259 A JP58039259 A JP 58039259A JP 3925983 A JP3925983 A JP 3925983A JP S59167185 A JPS59167185 A JP S59167185A
Authority
JP
Japan
Prior art keywords
output
signal
solid
voltage
inductance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58039259A
Other languages
Japanese (ja)
Other versions
JPH059988B2 (en
Inventor
Toshiyuki Akiyama
俊之 秋山
Moriji Izumida
守司 泉田
Naoki Ozawa
直樹 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58039259A priority Critical patent/JPS59167185A/en
Publication of JPS59167185A publication Critical patent/JPS59167185A/en
Publication of JPH059988B2 publication Critical patent/JPH059988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To read a signal without attenuating an output level and without using a high power supply voltage by inserting an inductance in parallel with a parasitic capacitance and setting its resonance point in a band of a fundamental wave of harmonic of an output pulse train of an AMP for extracting signal. CONSTITUTION:A resonance point f0 depending on an inductance L36 and a parasitic capacitance C34 is adjusted so as to be located in a band of the fundamental wave or the harmonics used in this case. Thus, a load impedance Z of a source follower MOSFET 31 is expressed as Z(f)=jX2pifXL{1-(2pi)<2>f<2>XLC}. and the value ¦Z¦ near the f0 is a value sufficiently high than an output impedance (r) of the FET 31, thereby causing a voltage dividing effect of the output voltage by the resistor (r) and the ¦Z¦ to be very low. Further, the impedance to a DC deciding a bias current of the FET 31 is nearly zero and no voltage due to the bias current is generated between the impedances ¦Z¦. Thus, no high voltage of power supply is required.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は固体撮像装置の信号読出し回路に関する。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a signal readout circuit for a solid-state imaging device.

〔従来技術〕[Prior art]

第1図は従来のCCDW固体撮像装置の原理図である。 FIG. 1 is a diagram showing the principle of a conventional CCDW solid-state imaging device.

マ) IJラックス状配列された光ダイオード2からな
る感光部9と、光ダイオードに蓄積された光信号を耽出
すための縦方向のC0D11〜INおよび水平方向のC
CD3と、転送された信号を増幅して出力する出力AM
P4から成っている。
M) A photosensitive section 9 consisting of photodiodes 2 arranged in an IJ rack, and C0D11 to IN in the vertical direction and C0 in the horizontal direction for outputting optical signals accumulated in the photodiodes.
CD3 and an output AM that amplifies and outputs the transferred signal
It consists of P4.

第2図は出力AMP4の回路例である。30は水平方向
のCCD3で転送した信号電荷量Qsを電圧量に変換す
る小さい静電容量C□、31は容量CO間に信号電荷量
QSに比例して生じる信号′電圧VO:Q8/Coを低
インピーダンスで出力するソース・フォロア用MO8型
PET、s2は容門CO内の信号電荷1icQsを外部
に取シ除くためのりセット用MO8型FETである。
FIG. 2 is a circuit example of the output AMP4. 30 is a small electrostatic capacitor C□ that converts the signal charge amount Qs transferred by the horizontal CCD 3 into a voltage amount, and 31 is a signal voltage VO:Q8/Co generated between the capacitor CO in proportion to the signal charge amount QS. The source follower MO8-type PET s2, which outputs low impedance, is a glue-set MO8-type FET for removing the signal charge 1icQs in the gate CO to the outside.

この第1図、第2図の桐造の素子において、信号は次の
様にして読出される。すなわちまず1フレ一ム期間で光
ダイオード2に蓄積した信号電荷を、垂直帰線期間の間
に縦方向のCCDII〜IN内に移す。縦方向のCOD
は水平帰線期間ととに1ラインづつ転送し、信号電荷を
水平方向のCCD3に順次移す。水平帰線期間に水平方
向のCODに移した信号電荷は、それに続く1水平期間
の曲に水平方向のCODにクロックパルスを加えること
によって順次容置CO内に転送する。を奮目のクロック
パルスで容量COに移した信号電荷Q″:)は、容kc
o間に電圧If、)を生じ、ソースフォロア出力端33
から電圧振幅V(′)の信号パルス第3図4tを出力す
る。この後(M号電荷Q(Z)をリセット用MO8WF
ETを通して外部に取シ除く。また次のt+1番目のク
ロックパルスで再び次の信号電荷ciL+1 )を容量
COに移し、電圧振幅y (11)の信号パルス第3図
4(t’+1)を出力する。以下同様の操作を繰シ返す
ことによって、順持つ信号パルス列第3図(C)として
出力する。i第4図は第3図(C)出力信号パルス列の
周波数分布の説明図である。すなわち出力信号パルス列
の振幅を変調する信号電荷の列・・・ψ+”(tz−+
) s4図(a)に示す分布を持つとき、第3図<C)
の出力信号パルス列の周波数分布は第4図(b)の様に
なる。
In the Kirizo element shown in FIGS. 1 and 2, signals are read out in the following manner. That is, first, the signal charge accumulated in the photodiode 2 during one frame period is transferred to CCDII-IN in the vertical direction during the vertical retrace period. Vertical COD
is transferred one line at a time during the horizontal retrace period, and the signal charges are sequentially transferred to the CCD 3 in the horizontal direction. The signal charges transferred to the horizontal COD during the horizontal retrace period are sequentially transferred into the container CO by applying a clock pulse to the horizontal COD during the following one horizontal period of music. The signal charge Q″:) transferred to the capacitor CO by the clock pulse is the capacity kc
A voltage If, ) is generated between the source follower output terminal 33
outputs a signal pulse 4t in FIG. 3 with voltage amplitude V('). After this (MO8WF for resetting the M charge Q(Z)
Externally removed through ET. Furthermore, at the next t+1th clock pulse, the next signal charge ciL+1) is transferred to the capacitor CO again, and a signal pulse (t'+1) of FIG. 3 with voltage amplitude y (11) is output. Thereafter, by repeating the same operation, a sequential signal pulse train is output as shown in FIG. 3(C). FIG. 4 is an explanatory diagram of the frequency distribution of the output signal pulse train in FIG. 3(C). In other words, a train of signal charges that modulates the amplitude of the output signal pulse train...ψ+"(tz-+
) When the distribution shown in s4 diagram (a) is obtained, Figure 3<C)
The frequency distribution of the output signal pulse train is as shown in FIG. 4(b).

図において50はベースバンド成分で、パルス振幅変調
することによる周波数特性sinπfτ/πf(ただし
て=パルス幅)を第4図(a)の変脚信号に掛けた周波
数分布を示している。また51は基本阪成分で、リセッ
トパルスと同じ周波数frの搬送波とその側波帯から成
っている。以下5mは第3図(C)の第m次高調波成分
で、周波数mxfrの搬送波とその側波帯から成ってい
る。
In the figure, reference numeral 50 denotes a baseband component, which shows the frequency distribution obtained by multiplying the variable leg signal of FIG. 4(a) by the frequency characteristic sinπfτ/πf (where = pulse width) obtained by pulse amplitude modulation. Further, 51 is a basic wave component, which consists of a carrier wave having the same frequency fr as the reset pulse and its sidebands. Below, 5m is the m-th harmonic component in FIG. 3(C), which consists of a carrier wave of frequency mxfr and its sidebands.

゛第3図(C)の出力信号パルス列から信号成分を読出
すには、餓4図0)の周波数分布のベースバンド成分5
0をLPFで取シ出す方法、基本波成分あるいは高調波
成分をBPFで取シ用して検波する方法などがある。
゛To read out the signal components from the output signal pulse train in Figure 3 (C), the baseband component 5 of the frequency distribution of Figure 4 (Figure 0) must be read out.
There are methods of extracting 0 using an LPF, and detecting fundamental wave components or harmonic components using a BPF.

ところで固体撮像装置では、出力AMPの初段のトラン
ジスタ第2図31は一般にMO8型F’ETで構成する
。またIC化されたMO8型FETの電圧電流変換パラ
メータgmは、約1 m vと小さい。そのためgmの
逆数で決まるソース・フォロアの出力インピーダンスr
は犬きくなシ、約IKΩにも達する。従ってソース・フ
ォロアであっても、出力インピーダンスrと外部抵抗R
(第2図35)による分圧効果で生じる出力信号レベル
の減衰を無視できない。実際例えば固体撮像装置出力を
抵抗R=、2にΩで受けても約2/3の信号レベルの減
衰が生じる。そのため外部回路の雑音に対する信号レベ
ルが減少し、読出しだ信号のSN比が劣化する。
By the way, in a solid-state imaging device, the first stage transistor of the output AMP (FIG. 2) is generally constituted by an MO8 type F'ET. Further, the voltage-current conversion parameter gm of the MO8 type FET integrated into an IC is as small as about 1 mv. Therefore, the output impedance r of the source follower is determined by the reciprocal of gm.
The dog's strength reaches approximately IKΩ. Therefore, even if it is a source follower, the output impedance r and the external resistance R
The attenuation of the output signal level caused by the voltage division effect (FIG. 2, 35) cannot be ignored. In fact, for example, even if the solid-state imaging device output is received by a resistor R=2Ω, the signal level will be attenuated by about 2/3. Therefore, the signal level relative to external circuit noise is reduced, and the S/N ratio of the read signal is degraded.

計算式(1)によると、この信号レベルの減衰は外部抵
抗Rを大きく、例えば十数にΩに設定することによって
減衰証を10%以下におさえることができる。しかし実
際の回路においては第2図34に示す様に配線環による
数ppの寄生容量Cがあるため、抵抗Rを大きくすると
出力1ぎ号の周波数特性が著しく劣化する。またMO8
壓F’ET31ogm(従って出力インピーダンスr)
は、そのバイアス電流が低下すると減小(rは増大)す
るため、一定バイアス電流を確保するための大きな電源
電圧が必要になる。前者の周波数特性劣化の影響は、出
力信号パルス列の基本波成分あるいは高調波成分から信
号成分を取シ出す時、特に著しい。
According to calculation formula (1), the attenuation of this signal level can be suppressed to 10% or less by setting the external resistance R to a large value, for example, 10-odd Ω. However, in an actual circuit, as shown in FIG. 2, there is a parasitic capacitance C of several pp due to the wiring ring, so if the resistance R is increased, the frequency characteristics of the output signal 1 will be significantly deteriorated. Also MO8
壓F'ET31ogm (therefore output impedance r)
decreases (r increases) as the bias current decreases, so a large power supply voltage is required to ensure a constant bias current. The former effect of frequency characteristic deterioration is particularly significant when a signal component is extracted from the fundamental wave component or harmonic component of the output signal pulse train.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述第1図の固体撮像装置において、
出力1に号レベルを減衰させることなく、また大きな電
源′1圧を使用することなく、信号を読出すことのでき
る、信号読出し回路に関する。
An object of the present invention is to provide the solid-state imaging device shown in FIG.
The present invention relates to a signal reading circuit capable of reading a signal without attenuating the signal level of output 1 and without using a large power supply voltage.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、本発明は外部抵抗Rの代シ
に寄生容量Cに並列にインダクタンスLを挿入し、これ
ら容1CとインダクタンスLの共振点fOを信号域シ出
しに使用する出力AMPの出力信号パルス列の基本波成
分帯域あるいは高調波成分帯域内に設定することに特徴
がある。
In order to achieve the above object, the present invention inserts an inductance L in parallel with the parasitic capacitance C in place of the external resistor R, and uses the resonance point fO of these capacitors 1C and the inductance L to generate an output AMP that is used to determine the signal range. It is characterized in that it is set within the fundamental wave component band or harmonic component band of the output signal pulse train.

〔発明の実施例〕[Embodiments of the invention]

第5図は本発明の実施例で、出力信号パルス列の基本波
成分あるいは高調波成分から信号を取シ出す時の信号読
出し回路である。第5図において、36は第2図外部抵
抗350代シに挿入したインダクタンスLでアシ、寄生
容ic(445図34)とインダクタンスLとによる共
振点 1 f o=2.、x爪    (2) が、使用する基本波成分帯域あるいは高調波成分帯域内
にあるように調節する。例えばクロック周波数fc=7
.16MH2で固体撮像装置を駆動し、基本波成分から
信号を取シ出す時、インダクタンスLは共振周波数fo
が約7MH2になるように設定する。
FIG. 5 shows an embodiment of the present invention, which is a signal readout circuit for extracting a signal from the fundamental wave component or harmonic component of the output signal pulse train. In FIG. 5, 36 is an inductance L inserted into the external resistor 350 in FIG. 2, and a resonance point 1 f o=2. , x nail (2) are adjusted so that they are within the fundamental wave component band or harmonic component band to be used. For example, clock frequency fc=7
.. When driving a solid-state imaging device with 16MH2 and extracting a signal from the fundamental wave component, the inductance L is at the resonant frequency fo
Set it so that it is approximately 7MH2.

上記の様にインダクタンスLを設定すると、ソース・フ
ォロワー用へ408型FET31の負荷インピーダンス
Zは となシ、共振周波数fO近傍での値I21はMO8型F
ET31の出力インピーダンスrに比べ十分大きな像に
なるため、抵抗rとIZlによる出力電圧の分圧効果は
非常に小さなものにできる。まだMO8型F’E’l’
31のバイアス電流を決める直流(f:;0Hz)  
に対するインピーダンスは式(3)から Z (0)ご’ 0                
      (41となシ、インピーダン22間にはバ
イアス電流による電圧は発生しない。従って大きな電源
電圧がなくても所要のバイアス電流を確保することがで
きる。
When the inductance L is set as above, the load impedance Z of the 408-type FET 31 for the source follower becomes the same, and the value I21 near the resonance frequency fO becomes the MO8-type FET31.
Since the image is sufficiently large compared to the output impedance r of the ET31, the effect of dividing the output voltage by the resistor r and IZl can be made very small. Still MO8 type F'E'l'
Direct current (f:;0Hz) that determines the bias current of 31
From equation (3), the impedance for Z (0)
(No voltage is generated between the impedance 41 and the impedance 22 due to the bias current. Therefore, the required bias current can be secured even without a large power supply voltage.

第6図は本発明の他の実施例で、式(3)で求められる
共振のQ値を調節した信号読み出し回路である。すなわ
ち第6図は第5図の寄生容量34とインダクタンス36
に並列にさらに大きな抵抗R′(第6(2)37)を挿
入したものである。第5図の外部インピーダンスZは式
(3)から明らかなように共振周波数foの点でZ(f
o)→■に発散する非常にするどい周波数特性を示す。
FIG. 6 shows another embodiment of the present invention, which is a signal readout circuit in which the resonance Q value determined by equation (3) is adjusted. In other words, FIG. 6 shows the parasitic capacitance 34 and inductance 36 in FIG.
In this case, a larger resistor R' (sixth (2) 37) is inserted in parallel with the resistor R'. As is clear from equation (3), the external impedance Z in FIG. 5 is Z(f
It shows very sharp frequency characteristics that diverge from o) to ■.

第6図の抵抗37はとのするどさを示すQ値を小さくシ
、周波数特性を滑らかにするために挿入したものである
。第6図の外部インピーダンスZ′は次式で表わせる。
The resistor 37 shown in FIG. 6 is inserted to reduce the Q value, which indicates the speed of movement, and to smooth the frequency characteristics. The external impedance Z' in FIG. 6 can be expressed by the following equation.

第7図は本発明の他の実施例で、第6図の笑施例同様Q
値を調節するため、インダクタンス36に直列に抵抗R
″(第7図38)を挿入したものである。第7図の回路
では第6図の回路よシ低周波領域の周波数特性をさらに
滑らかにすることができる。この回路の外部インビー、
ダンスZ“は次式で表わせる。
FIG. 7 shows another embodiment of the present invention, similar to the embodiment shown in FIG.
A resistor R is connected in series with the inductance 36 to adjust the value.
'' (Fig. 7, 38).The circuit shown in Fig. 7 can make the frequency characteristics in the low frequency region smoother than the circuit shown in Fig. 6.
Dance Z" can be expressed by the following equation.

R“十j×2πfL Z″”)=1−(2・l”f”Lc+jx2・fCR,
” (6’ただし第7図の回路では抵抗R“の大きさに
応じ、MO8型FET31のバイアス電流を確保するだ
めの大きな電源電圧を会費とする。
R“10j×2πfL Z”)=1−(2・l”f”Lc+jx2・fCR,
(6'However, in the circuit of FIG. 7, the power supply voltage is large enough to secure the bias current of the MO8 type FET 31, depending on the size of the resistor R.

第5図、第6図の実施例では低周波領域のインピーダン
スが低く、出力信号パルス列のベースバンド成分から信
号を堆シ出す信号読み出し方法には適用できない。しか
し第7図の実施例では、低周波領域、例えばf=OHz
においてもインピーダンスZ(0)=R“が得られるた
め、式(6)の共振周波数成分帯域内に設定することK
よシ、ベースバンド成分から信号を取り出すイg@読み
出し方法にも適用することができる。
The embodiments shown in FIGS. 5 and 6 have low impedance in the low frequency region and cannot be applied to a signal readout method in which a signal is generated from the baseband component of an output signal pulse train. However, in the embodiment shown in FIG.
Since the impedance Z(0)=R" can be obtained even in
In addition, it can also be applied to an iG@readout method that extracts a signal from a baseband component.

また第5図〜第7図の実施例において、外部に挿入した
インダクタンス36、抵抗37.38は、共振周波数お
よびQ値調節のため可変にすることが望ましい。
Further, in the embodiments shown in FIGS. 5 to 7, it is desirable that the inductance 36 and the resistors 37 and 38 inserted externally be made variable in order to adjust the resonance frequency and Q value.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、CCD型等出力AMP入力端容量CO
間に現われる信号電圧を電力あるいは電圧増巾するタイ
プの出力AMPを有する固体撮像装置において、大きな
電源電圧を用いることなく、出力線の寄生容量Cと外部
抵抗Rによる周波数特性の劣化あるいはAMPの出力抵
抗rと外部抵抗Rによる電圧の分圧による出力信号レベ
ルの減衰のない、従ってSN比の高い信号を得ることが
できる。
According to the present invention, the CCD type equal output AMP input end capacitance CO
In a solid-state imaging device that has an output AMP of the type that amplifies the power or voltage of a signal voltage that appears between the two, the deterioration of frequency characteristics due to the parasitic capacitance C and external resistance R of the output line or the output of the AMP can be avoided without using a large power supply voltage. The output signal level is not attenuated due to voltage division by the resistor r and the external resistor R, and therefore a signal with a high SN ratio can be obtained.

またソース・フォロワ用MO8型FET31は、そのg
m(バイアス電流とともに増大)の逆数に比例する熱雑
音を発生するが、第5図、第6図の実施例においては電
源電圧を上げることなく、パイアメ電流を任意に選ぶこ
とができるため、上記熱雑音自身を低減でき、信号のS
/Nをさらに上げることができる。
Also, the MO8 type FET31 for the source follower has its g
This generates thermal noise proportional to the reciprocal of m (which increases with bias current), but in the embodiments shown in Figures 5 and 6, the bias current can be arbitrarily selected without increasing the power supply voltage, so the above Thermal noise itself can be reduced, and the signal S
/N can be further increased.

以上第5図の出力AMP回路例によって説明したが、第
8図の出力AMP回路等、一般にAMP入力端容量CO
間に現われる信号電圧を電力あるいは電圧増巾するタイ
プの出力AMP回路を有するCCD型固体撮像装置ある
いは第9図の様なMOS型とCCD型を結合したタイプ
の固体撮像装置やCCD型ラインセンサ、CCD型遅延
線等の信号読み出しにも使用することができる。
The above has been explained using the example of the output AMP circuit shown in FIG. 5, but in general, the output AMP circuit shown in FIG.
A CCD type solid-state imaging device having an output AMP circuit of the type that amplifies the power or voltage of the signal voltage appearing between them, or a solid-state imaging device of a type combining MOS type and CCD type as shown in Fig. 9, or a CCD type line sensor, It can also be used to read out signals from CCD type delay lines and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のCCD型固体撮像装置の原理図、第2、
甲は出力AMPの回路例、第3図、第4図は出力信号波
形とその周波数分布、第5〜7図は本発明による信号読
み出し回路の実施例、第8図は第2図以外の出力AMP
回路例、第9図は本発明を適用できるCCD型以外の固
体撮像装置例の原理図である。 ■ 1  図 %s I  Z  図 第  4  図 周  シー  数 i、      (b) □ →1 1゛司     シ反    蚤女ミ ″fJ5   図 ′fJ乙図 第  7 凹 γ  、!i′   図 (工) (bジ Z  9  図 ■
Figure 1 is a principle diagram of a conventional CCD solid-state imaging device;
Part A shows an example of the output AMP circuit, Figs. 3 and 4 show the output signal waveform and its frequency distribution, Figs. 5 to 7 show examples of the signal readout circuit according to the present invention, and Fig. 8 shows outputs other than those shown in Fig. 2. AMP
Circuit Example: FIG. 9 is a principle diagram of an example of a solid-state imaging device other than a CCD type to which the present invention can be applied. ■ 1 Figure %s I Z Figure No. 4 Figure circumference C Number i, (b) □ →1 1゛゛゛゛bjiZ 9 Figure ■

Claims (1)

【特許請求の範囲】 1、パルス的に送られて来る信号電荷Qsを、AMP入
力端静電gico内に蓄積し、容量00間に現われる信
号電圧を電力増巾あるいは電圧増巾して出力する出力A
MP回路を有する固体装置において、該AMPの出力用
トランジスタの負荷インピーダンスを、インダクタンス
Lを用いて構成することを特徴とする固体装置の信号読
出し回路。 2、特許請求の範囲第1項記載の固体装置の信号読出し
回路において、インダクタンスLを出力用トランジスタ
のソースあるいはドレイン端子に直列につないだことを
特徴とする固体装置の信号読出し回路。 3、%許脂求の範囲第1項記載の固体装置の信号読出し
回路において、インダクタンスLと固体装置の出力線の
蚕生容量Cによって決まる共振周波数fOを、上記出力
AMPから出力される出力信号から信号を取シ出すのに
使う搬送周波数mxfcの高調波領域内に設定してなる
固体装置の信号読出し回路。
[Claims] 1. The signal charge Qs sent in pulses is accumulated in the electrostatic capacitance gico at the AMP input terminal, and the signal voltage appearing between the capacitors 00 is amplified in power or voltage and output. Output A
1. A signal readout circuit for a solid-state device having an MP circuit, characterized in that the load impedance of an output transistor of the AMP is configured using an inductance L. 2. A signal readout circuit for a solid state device according to claim 1, characterized in that an inductance L is connected in series to the source or drain terminal of the output transistor. 3. Range of Permissible Requirement In the signal readout circuit for the solid-state device described in item 1, the resonant frequency fO determined by the inductance L and the silkworm capacitance C of the output line of the solid-state device is set to the output signal output from the output AMP. A signal readout circuit of a solid-state device is set within the harmonic region of the carrier frequency mxfc used to extract signals from.
JP58039259A 1983-03-11 1983-03-11 Signal read circuit of solid-state device Granted JPS59167185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58039259A JPS59167185A (en) 1983-03-11 1983-03-11 Signal read circuit of solid-state device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58039259A JPS59167185A (en) 1983-03-11 1983-03-11 Signal read circuit of solid-state device

Publications (2)

Publication Number Publication Date
JPS59167185A true JPS59167185A (en) 1984-09-20
JPH059988B2 JPH059988B2 (en) 1993-02-08

Family

ID=12548141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58039259A Granted JPS59167185A (en) 1983-03-11 1983-03-11 Signal read circuit of solid-state device

Country Status (1)

Country Link
JP (1) JPS59167185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214664A (en) * 1986-03-14 1987-09-21 Mitsubishi Electric Corp Driving circuit for charge coupled device
JPH022290A (en) * 1988-06-15 1990-01-08 Toshiba Corp Drive system and drive for charge coupling element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548955A (en) * 1977-06-23 1979-01-23 Fujitsu Ltd Grounding system for transistor amplifier
JPS5579509A (en) * 1978-12-13 1980-06-16 Fujitsu Ltd Amplifier
JPS5836082A (en) * 1981-08-27 1983-03-02 Fujitsu Ltd Charge detecting circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548955A (en) * 1977-06-23 1979-01-23 Fujitsu Ltd Grounding system for transistor amplifier
JPS5579509A (en) * 1978-12-13 1980-06-16 Fujitsu Ltd Amplifier
JPS5836082A (en) * 1981-08-27 1983-03-02 Fujitsu Ltd Charge detecting circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214664A (en) * 1986-03-14 1987-09-21 Mitsubishi Electric Corp Driving circuit for charge coupled device
JPH0533875B2 (en) * 1986-03-14 1993-05-20 Mitsubishi Electric Corp
JPH022290A (en) * 1988-06-15 1990-01-08 Toshiba Corp Drive system and drive for charge coupling element

Also Published As

Publication number Publication date
JPH059988B2 (en) 1993-02-08

Similar Documents

Publication Publication Date Title
JPS6255349B2 (en)
US5555021A (en) Compact television camera with switching noise prevention
JPS5919297A (en) Output circuit of charge coupled device
US6396334B1 (en) Charge pump for reference voltages in analog to digital converter
JPS62214781A (en) Signal recovery apparatus
JPS59167185A (en) Signal read circuit of solid-state device
JP2576860B2 (en) Imaging device
JPS62189884A (en) Apparatus for recovering information signal component from output signal of charge transfer device
JPS61129964A (en) Output circuit of charge transfer device
JPH04355666A (en) High voltage generator
EP0105369B1 (en) Combined phase detector and low pass filter
JPH08237557A (en) Correlator circuit
JP3531770B2 (en) Limiter circuit
TWI528030B (en) Frequency-shift readout circuit
KR101940110B1 (en) Output data noise reduction method of semiconductor apparatus and semiconductor apparatus for implementing the method
JPH0158692B2 (en)
JPS593893B2 (en) sawtooth wave transducer
JPH04252312A (en) Voltage converter circuit
JPS59171370A (en) Method for driving solid-state image pickup device
JPH0197075A (en) Preamplifier circuit for solid-state image pickup device
JPS59171371A (en) Method for reading signal of solid-state device
Antonets et al. USING A CHARGE-COUPLED DEVICE ON THE BASE OF ILX554 LINE IN THE PRESSURE SENSOR
JP2690512B2 (en) Frequency multiplier circuit
JPH07106927A (en) Duty factor correcting circuit
JPH0846494A (en) Waveform shaping circuit