JPS62188258A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS62188258A
JPS62188258A JP3008586A JP3008586A JPS62188258A JP S62188258 A JPS62188258 A JP S62188258A JP 3008586 A JP3008586 A JP 3008586A JP 3008586 A JP3008586 A JP 3008586A JP S62188258 A JPS62188258 A JP S62188258A
Authority
JP
Japan
Prior art keywords
region
type
silicon oxide
oxide film
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3008586A
Other languages
Japanese (ja)
Inventor
Haruji Futami
二見 治司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3008586A priority Critical patent/JPS62188258A/en
Publication of JPS62188258A publication Critical patent/JPS62188258A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the semiconductor integrated circuit having a high resistance value and a small area resistor by a method wherein a plurality of impurity diffusion regions are connected by performing a transverse diffusion, and the connected part is used as a resistor. CONSTITUTION:After a silicon oxide film 2has been formed on the semiconductor substrate consisting of an N-type epitaxial layer 1, apertures 3A and 3B are formed, and the distance l between the aperture parts 3A and 3B is set less than twice the transverse distance of diffusion of impurities introduced into an N-type epitaxial layer 1 in the process to be followed. Then, using the silicon oxide film as a mask, boron is introduced through the aperture parts 3A and 3B, a P-type region 4 is formed on the surface of an N-type epitaxial layer, and then the boron is diffused to the desired depth on the P-tye region by performing a heat treatment. Two P-type regions 4 are connected and a P-type diffusion region 4A is formed, and the connected part is turned to a high resistance region 5. Subsequently, the silicon oxide film 2 is removed, and after a silicon oxide film 2A has been provided again, an aperture part is provided on the prescribed part, and after an Al film has been coated on the whole surface, an Al wiring 6 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体集積回路の製造方法に関し、特に抵抗
素子を有する半導体集積回路の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor integrated circuit, and particularly to a method for manufacturing a semiconductor integrated circuit having a resistive element.

〔従来の技術〕[Conventional technology]

従来、半導体集積回路に形成される負荷抵抗など、絶縁
精度はあまり高くないが高抵抗値が要求される抵抗とし
ては、ピンチ抵抗やエピタキシャル抵抗等が使用されて
いる。
Conventionally, pinch resistors, epitaxial resistors, and the like have been used as resistors that require a high resistance value but do not have very high insulation accuracy, such as load resistors formed in semiconductor integrated circuits.

ピンチ抵抗は、第6図に示す如<、N型半導体基板10
上に形成されたP型抵抗領域11の表面にN+型の半導
体領域12を形成し、抵抗領域11の表面付近の低抵抗
領域部分を消滅させることにより高抵抗値を有する抵抗
を形成していた。尚、第6図において13は酸化シリコ
ン膜、6はA!!配線である。
The pinch resistance is as shown in FIG.
An N+ type semiconductor region 12 was formed on the surface of the P-type resistance region 11 formed above, and a resistor having a high resistance value was formed by eliminating the low resistance region near the surface of the resistance region 11. . In FIG. 6, 13 is a silicon oxide film, and 6 is A! ! It's the wiring.

また、エピタキシャル抵抗は本来、高抵抗値を示すエピ
タキシャル層を抵抗として用いるものであり、抵抗とし
て使用するエピタキシャル層を分離し、その両端にコン
タクI・形成用高濃度半導体領域等を形成することによ
って製造されていた。
In addition, epitaxial resistors originally use an epitaxial layer that exhibits a high resistance value as a resistor, and by separating the epitaxial layer used as a resistor and forming contact I and high-concentration semiconductor regions for formation at both ends. It was manufactured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した従来の半導体集積回路における
抵抗形成方法では、各抵抗を単独に絶縁しなければなら
ない為広い面積を有するという問題点がある。更にピン
チ抵抗においては、抵抗の両端に生ずる電位差を抵抗領
域11と、抵抗領域11の表面に形成するN+型の半導
体領域12との耐圧以上には設定できないという問題点
がある。
However, the conventional method of forming a resistor in a semiconductor integrated circuit described above has a problem in that it requires a large area because each resistor must be individually insulated. Furthermore, the pinch resistor has the problem that the potential difference generated across the resistor cannot be set higher than the withstand voltage between the resistor region 11 and the N+ type semiconductor region 12 formed on the surface of the resistor region 11.

本発明は、高抵抗値を有し、かつ面積の小さな抵抗を有
する半導体集積回路の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a semiconductor integrated circuit having a resistor having a high resistance value and a small area.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体集積回路の製造方法は、−導電型の半導
体基板上に絶縁膜を形成したのちこの絶縁膜に複数の開
孔部を設け、この開孔部より逆導電型不純物を導入して
半導体基板上に不純物拡散領域を形成する半導体集積回
路の製造方法であって、前記絶縁膜に設けられる開孔部
間の距離が、前記半導体基板に導入される不純物の横方
向の拡散距離の2倍以下に設定されているものである。
The method for manufacturing a semiconductor integrated circuit of the present invention includes forming an insulating film on a semiconductor substrate of a -conductivity type, providing a plurality of openings in the insulating film, and introducing impurities of the opposite conductivity type through the openings. A method of manufacturing a semiconductor integrated circuit in which an impurity diffusion region is formed on a semiconductor substrate, wherein the distance between the openings provided in the insulating film is twice the lateral diffusion distance of the impurity introduced into the semiconductor substrate. It is set to less than twice that.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(d>は本発明の第1の実施例を説明す
る為の工程順に示した半導体チップの断面図である。
FIGS. 1A to 1D are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a first embodiment of the present invention.

まず、第1図(a>に示すように、比抵抗1〜3Ω・口
のN型エピタキシャル層1からなる半導体基板上に酸化
シリコン1IGt2を形成した後、ホトリソグラフィ法
により2つの開孔部3A、3Bを形成する。この2つの
開孔部3A、3B間の距離lは、後工程でN型エピタキ
シャル層1に導入される不純物の横方法の拡散距離の2
倍以内に設定する。
First, as shown in FIG. 1 (a), silicon oxide 1IGt2 is formed on a semiconductor substrate consisting of an N-type epitaxial layer 1 with a specific resistance of 1 to 3 Ω, and then two openings 3A are formed by photolithography. , 3B are formed.The distance l between these two openings 3A and 3B is equal to 2 of the lateral diffusion distance of impurities introduced into the N-type epitaxial layer 1 in a later process.
Set within twice.

次に、第1図(b)に示すように、酸化シリコン膜2を
マスクとし、開孔部3A、3Bを通し、熱拡散法等によ
りホウ素を導入し、N型エピタキシャル表面にP壁領域
4を形成する。
Next, as shown in FIG. 1(b), using the silicon oxide film 2 as a mask, boron is introduced through the openings 3A and 3B by a thermal diffusion method or the like, and the P wall region 4 is introduced into the N type epitaxial surface. form.

次に、第1図(c)に示すように、熱処理を行ないP壁
領域4を所望の深さに迄拡散させる。この熱処理により
2つのP壁領域4は接続され1つのP型拡散領域4Aが
形成されるが、特に拡散による接続部は高抵抗領域5と
なる。続いて酸化シリコン膜2を除去する。
Next, as shown in FIG. 1(c), heat treatment is performed to diffuse the P wall region 4 to a desired depth. Through this heat treatment, the two P wall regions 4 are connected to form one P type diffusion region 4A, and in particular, the connection portion by diffusion becomes a high resistance region 5. Subsequently, silicon oxide film 2 is removed.

次に、第1図(d)に示すように、再び全面に酸化シリ
コン膜2Aを設けた後所定の部分に開孔部を設ける。続
いて全面にAf膜を被着させた後パターニングし、AI
配線6を形成する。
Next, as shown in FIG. 1(d), a silicon oxide film 2A is again provided on the entire surface, and then openings are provided in predetermined portions. Next, after depositing an Af film on the entire surface, patterning is performed, and AI
Wiring 6 is formed.

このようにして形成されたP型拡散領域4Aは、中央部
に高抵抗領域5を有する為、抵抗として用いることがで
きる。その抵抗値は、第1図(a>に示した開化部3A
、3B間の距離lにより調節する事ができる。すなわち
、lをN型エピタキシャル層1に導入されたホウ素の横
方向の拡散距離の2倍の値に近ずける程、抵抗値の大き
な抵抗が得られる。また、このようにして形成された抵
抗は、従来の半導体集積回路に形成される抵抗に比べて
小さくでき、しからI’liI々の抵抗に分離する必要
がない為集積度を向上させることができる。
The P-type diffusion region 4A formed in this manner has a high resistance region 5 in the center and can therefore be used as a resistor. The resistance value is the opening part 3A shown in FIG.
, 3B can be adjusted by the distance l between them. That is, the closer l is to a value twice the lateral diffusion distance of boron introduced into the N-type epitaxial layer 1, the greater the resistance value can be obtained. In addition, the resistor formed in this way can be made smaller than the resistor formed in conventional semiconductor integrated circuits, and since there is no need to separate it into I'liI resistors, it is possible to improve the degree of integration. can.

第2図(a>、(+))は本発明の第2の実施例を説明
する為の工程Mf[に示した半導体チップの断面図であ
り、直列に接続された2つの抵抗を形成する場合を示し
ている。
FIG. 2 (a>, (+)) is a cross-sectional view of the semiconductor chip shown in step Mf for explaining the second embodiment of the present invention, in which two resistors connected in series are formed. It shows the case.

まず、第2図(a)に示すように、N型エピタキシャル
層1上に酸化シリコン膜2を設けた後、ホトリソグラフ
ィ法により3つの開孔部3A、3B、3Cを形成する。
First, as shown in FIG. 2(a), a silicon oxide film 2 is provided on an N-type epitaxial layer 1, and then three openings 3A, 3B, and 3C are formed by photolithography.

この時、開孔部間の距離l。At this time, the distance between the openings is l.

2′は、第1図(a)に示した第1の実施例の場合と同
様に、後工程でN型エピタキシャル層1に導入される不
純物であるホウ素の横方向の拡散距離の2倍以内に設定
する。続いて、酸化シリコン膜2をマスクとしてホウ素
を導入してP壁領域4を形成する。
2' is within twice the lateral diffusion distance of boron, which is an impurity introduced into the N-type epitaxial layer 1 in the later process, as in the case of the first embodiment shown in FIG. 1(a). Set to . Subsequently, using the silicon oxide film 2 as a mask, boron is introduced to form the P wall region 4.

次に、第2図(b)に示すように、熱処理を行ない3つ
のP壁領域4を所望の深さ迄拡散させて接続し、高抵抗
領域5,5Aを有するP型拡散領域4Aを形成する。続
いて酸化シリコン膜2を除去した後、再び全面に酸化シ
リコン膜2Aを形成する。次にこの酸化シリコン膜2A
の所定の部分に開孔部を設けた後、全面にAl膜を被着
し、パターニングして/l’配線6を形成する。
Next, as shown in FIG. 2(b), heat treatment is performed to diffuse and connect the three P wall regions 4 to a desired depth, forming a P type diffusion region 4A having high resistance regions 5, 5A. do. Subsequently, after removing the silicon oxide film 2, a silicon oxide film 2A is again formed on the entire surface. Next, this silicon oxide film 2A
After forming an opening in a predetermined portion of the substrate, an Al film is deposited on the entire surface and patterned to form the /l' wiring 6.

このようにして形成された抵抗は、第3図に等価回路図
を示したように、2つの抵抗RA、RBが直列に接続さ
れたものとなり、抵抗値も比較的幅の広いものとする事
ができる。
The resistor formed in this way is two resistors RA and RB connected in series, as shown in the equivalent circuit diagram in Figure 3, and the resistance value is also relatively wide. I can do it.

第4図(a>、(b)は本発明の第3の実施例を説明す
る為の工程順に示した半導体チップの断面図であり、バ
イポーラトランジスタのベース領域に電流制限用抵抗を
形成する場合を示している。
FIGS. 4(a) and 4(b) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a third embodiment of the present invention, in which a current limiting resistor is formed in the base region of a bipolar transistor. It shows.

まず、第4図(a)に示すように、P型シリコン基板2
0上にN+型埋込み領域21を設けた後、全面にN型エ
ピタキシャル層1を成長させ、その表面に酸化シリコン
膜2を形成する。続いて、この酸化シリコン膜2の所定
部分に開孔部3A、3Dを設け、ホウ素を導入してP壁
領域4を形成する。この際、開孔部3A、3D間の距離
lは熱処理によるP壁領域4の横方向への拡散距離の2
倍以内に設定しておく。
First, as shown in FIG. 4(a), a P-type silicon substrate 2
After providing an N+ type buried region 21 on the substrate 0, an N type epitaxial layer 1 is grown on the entire surface, and a silicon oxide film 2 is formed on the surface thereof. Subsequently, openings 3A and 3D are provided in predetermined portions of this silicon oxide film 2, and boron is introduced to form a P wall region 4. At this time, the distance l between the openings 3A and 3D is 2 of the lateral diffusion distance of the P wall region 4 due to heat treatment.
Set it within double.

次に、第4図(b)に示すように、熱処理を行ない2つ
のP壁領域を所定の深さ迄拡散して接続し、P型拡散領
域であるベース領域22を形成する。この時拡散による
接続部には抵抗となる高抵抗領域5が形成される。以下
従来技術により、リン等のN型不純物を導入してエミッ
タ領域23及びコレクタコンタクト領域24を形成する
。続いて、全面に酸化シリコン膜を形成し、各領域上に
開孔部を設けた後全面にA!を被着し、パターニングし
てエミッタ電極6A、抵抗を介してベース領域22に接
続するベース電極6B及びコレクタ電極6Cを形成する
Next, as shown in FIG. 4(b), heat treatment is performed to diffuse and connect the two P wall regions to a predetermined depth, thereby forming a base region 22 which is a P type diffusion region. At this time, a high resistance region 5 serving as a resistance is formed at the connection portion by diffusion. Thereafter, an emitter region 23 and a collector contact region 24 are formed by introducing an N-type impurity such as phosphorus using a conventional technique. Next, a silicon oxide film is formed on the entire surface, and after openings are formed on each region, A! is deposited and patterned to form an emitter electrode 6A, a base electrode 6B connected to the base region 22 via a resistor, and a collector electrode 6C.

このようにして形成されたバイポーラトランジスタはベ
ース領域22に電流制限用の抵抗を有するが、この抵抗
は小さく形成できる為、特にバイポーラトランジスタの
面積が大きくなる事はない。
The bipolar transistor thus formed has a current limiting resistor in the base region 22, but since this resistor can be formed small, the area of the bipolar transistor does not particularly increase.

このバイポーラトランジスタの等価回路図を第5図に示
す。
An equivalent circuit diagram of this bipolar transistor is shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明は、複数の不純物拡散
領域を横方向の拡散により接続し、この接続部を抵抗と
して用いることにより、高抵抗値を有しかつ面積の小さ
な抵抗を有する半導体集積回路が得られる効果がある。
As described in detail above, the present invention connects a plurality of impurity diffusion regions by lateral diffusion and uses this connection as a resistor, thereby achieving a semiconductor integrated circuit having a high resistance value and a small area resistance. There is an effect that the circuit can obtain.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の第1の実施例を説明す
る為の工程順に示した半導体チップの断。 面図、第2図(a)、(b)は本発明の第2の実施例を
説明する為の工程順に示した半導体チップの断面図、第
3図は第2図(b)に示した抵抗の等価回路図、第4図
(a>、(b)は本発明の第3の実施例を説明する為の
工程順に示した半導体チップの断面図、第5図は第4図
(b)に示したバイポーラトランジスタの等価回路図、
第6図は従来の半導体集積回路の抵抗の一例の断面図で
ある。 1・・・N型エピタキシャル層、2,2A・・・酸化シ
リコン膜、3A、3B、3C,3D・・・開孔部、4・
・・P壁領域、4A・・・P型拡散領域、5・・・高抵
抗領域、6・・・Ae配線、6A・・・エミッタ電極、
6B・・・ベース電極、6C・・・コレクタ電極、10
・・・N型半導体基板、11・・・P型抵抗領域、12
・・・N+型半導体領域、13・・・酸化シリコン膜、
20・・・P型シリコン基板、21・・・N+型埋込み
領域、22・・・ベース領域、23・・・エミッタ領域
、24・・・コレクタコンタクト領域。 )1゜ 第 1  間 $ 3 菌 策  乙   図
FIGS. 1(a) to 1(d) are cross-sections of a semiconductor chip shown in the order of steps for explaining the first embodiment of the present invention. 2(a) and 2(b) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining the second embodiment of the present invention, and FIG. 3 is shown in FIG. 2(b). Equivalent circuit diagram of a resistor; FIGS. 4(a) and 4(b) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining the third embodiment of the present invention; FIG. 5 is a diagram of FIG. 4(b). The equivalent circuit diagram of the bipolar transistor shown in
FIG. 6 is a cross-sectional view of an example of a resistor of a conventional semiconductor integrated circuit. 1... N-type epitaxial layer, 2, 2A... silicon oxide film, 3A, 3B, 3C, 3D... opening portion, 4.
... P wall region, 4A ... P type diffusion region, 5 ... high resistance region, 6 ... Ae wiring, 6A ... emitter electrode,
6B...Base electrode, 6C...Collector electrode, 10
. . . N-type semiconductor substrate, 11 . . . P-type resistance region, 12
... N+ type semiconductor region, 13... silicon oxide film,
20...P type silicon substrate, 21...N+ type buried region, 22...base region, 23...emitter region, 24...collector contact region. ) 1゜1st interval $ 3 Bacterial measures Otsu Figure

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板上に絶縁膜を形成したのち該絶縁
膜に複数の開孔部を設け、該開孔部より逆導電型不純物
を導入して半導体基板上に不純物拡散領域を形成する半
導体集積回路の製造方法において、前記絶縁膜に設けら
れる開孔部間の距離が、前記半導体基板に導入される不
純物の横方向の拡散距離の2倍以下に設定されている事
を特徴とする半導体集積回路の製造方法。
A semiconductor in which an insulating film is formed on a semiconductor substrate of one conductivity type, a plurality of openings are provided in the insulating film, and impurities of the opposite conductivity type are introduced through the openings to form an impurity diffusion region on the semiconductor substrate. A semiconductor manufacturing method for an integrated circuit, characterized in that the distance between the openings provided in the insulating film is set to be equal to or less than twice the lateral diffusion distance of impurities introduced into the semiconductor substrate. A method of manufacturing integrated circuits.
JP3008586A 1986-02-13 1986-02-13 Manufacture of semiconductor integrated circuit Pending JPS62188258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3008586A JPS62188258A (en) 1986-02-13 1986-02-13 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3008586A JPS62188258A (en) 1986-02-13 1986-02-13 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS62188258A true JPS62188258A (en) 1987-08-17

Family

ID=12293956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3008586A Pending JPS62188258A (en) 1986-02-13 1986-02-13 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS62188258A (en)

Similar Documents

Publication Publication Date Title
US4115797A (en) Integrated injection logic with heavily doped injector base self-aligned with injector emitter and collector
US3956035A (en) Planar diffusion process for manufacturing monolithic integrated circuits
JPS60194558A (en) Manufacture of semiconductor device
JPS62188258A (en) Manufacture of semiconductor integrated circuit
JPS5976459A (en) Method of producing monolithic integrated circuit
US3885994A (en) Bipolar transistor construction method
JPS60152051A (en) Manufacture of semiconductor device
JPS63136668A (en) Manufacture of semiconductor device
JPS6337657A (en) Power amplification transistor and manufacture thereof
JPS60123062A (en) Manufacture of semiconductor integrated circuit
JPH02114645A (en) Bipolar transistor
JPS58107645A (en) Manufacture of semiconductor device
JPS60136372A (en) Manufacture of semiconductor device
JPH02154428A (en) Junction separation semiconductor region structure for integrated circuit device
JPS6120141B2 (en)
JPS593864B2 (en) hand tai souchi no seizou houhou
JPH01133354A (en) Semiconductor integrated circuit and manufacture thereof
JPH01161764A (en) Manufacture of semiconductor integrated circuit
JPS63249370A (en) Semiconductor device and its manufacture
JPH0269974A (en) Manufacture of semiconductor device
JPS6140062A (en) Semiconductor device
JPH03248535A (en) Bipolar transistor element
JPS62150873A (en) Semiconductor device
JPS5858761A (en) Semiconductor device
JPH01133347A (en) Semiconductor integrated circuit and manufacture thereof