JPS62150873A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62150873A
JPS62150873A JP29066285A JP29066285A JPS62150873A JP S62150873 A JPS62150873 A JP S62150873A JP 29066285 A JP29066285 A JP 29066285A JP 29066285 A JP29066285 A JP 29066285A JP S62150873 A JPS62150873 A JP S62150873A
Authority
JP
Japan
Prior art keywords
diffusion layer
type
monolithic
resistors
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29066285A
Other languages
Japanese (ja)
Inventor
Hidetaka Nanun
南雲 秀毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Microcomputer System Ltd
Hitachi Ltd
Original Assignee
Hitachi Ltd
Hitachi Microcomputer Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Microcomputer Engineering Ltd filed Critical Hitachi Ltd
Priority to JP29066285A priority Critical patent/JPS62150873A/en
Publication of JPS62150873A publication Critical patent/JPS62150873A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To accurately form an element such as the monolithic resistor of a semiconductor integrated circuit device in a high density by shaping the profile shape of a diffused layer by using etched grooves. CONSTITUTION:A semiconductor substrate that an n<+> type buried layer 2 and an n<-> type epitaxial layer 3 are formed is used for a p<-> type silicon semiconductor substrate 1, and a plurality of monolithic resistors R by p-type diffused layers 4 are aligned in parallel on the layer 3 of the substrate. The resistors R have resistive elements formed of the layers 4 in a plane profile shape using etched grooves 5. Thus, the resistors R can be accurately formed in a high density without difficulty in the process.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、半導体装置技術さらには拡散層によって多
数の素子が高密度に集積されて形成されろ半導体集積回
路装置に適用して特に有効な技術に関するもので、例え
ば拡散層によるモノリシック抵抗が形成される半導体集
積回路装置に利用して有効な技術に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a semiconductor device technology and a technology that is particularly effective when applied to a semiconductor integrated circuit device in which a large number of elements are integrated at high density using a diffusion layer. The present invention relates to a technique that is effective for use in a semiconductor integrated circuit device in which a monolithic resistor is formed using a diffusion layer, for example.

〔背景技術〕[Background technology]

半導体装置、特に半導体集積回路装置にあっては、そこ
に形成される素子の多くが拡散層によって形成される。
In semiconductor devices, particularly semiconductor integrated circuit devices, many of the elements formed therein are formed by diffusion layers.

この拡散層によって形成される素子としては、バイポー
ラ・トランジスタやIIL(インテグレーテッド・イン
ジェクシ冒ン・ロジック)などの能動素子だけではなく
、いわゆるモノリシック抵抗などと呼ばれている受動素
子もある。例えば、株式会社コロナ社発行「集積回路工
学(1)」柳井久義、永田穣共著、昭和54年4月5日
初版発行、121〜130頁に記載のモノリシック抵抗
は、バイポーラ・トランジスタなどとともに、半導体集
積回路装置内に形成される素子として重要である。
Elements formed by this diffusion layer include not only active elements such as bipolar transistors and IIL (Integrated Injection Logic), but also passive elements such as so-called monolithic resistors. For example, the monolithic resistor described in "Integrated Circuit Engineering (1)" published by Corona Co., Ltd., co-authored by Hisayoshi Yanai and Minoru Nagata, first published on April 5, 1970, pages 121-130, is a monolithic resistor, along with bipolar transistors, etc. It is important as an element formed within an integrated circuit device.

第1図(a)(b)は上記モノリシック抵抗Rの構成を
示す。同図(a)は断面状態を、同図(b)はその一部
の平面レイアウト状態をそれぞれ示す。
FIGS. 1(a) and 1(b) show the structure of the monolithic resistor R mentioned above. FIG. 4(a) shows a cross-sectional state, and FIG. 2(b) shows a planar layout state of a part thereof.

同図(a)(b)に示すモノリシック抵抗Rは、p−塁
シリコン半導体基板1にn中型埋込層2およびn−型エ
ピタキシャル層3を形成した半導体基体を用い、この基
体のn−型エピタキシャル層3にp散拡散層4を部分的
に選択拡散し、さらにこの拡散層40両端部に電極7を
設けることによって形成される。なお、6は表面酸化膜
を示す。
The monolithic resistor R shown in (a) and (b) of FIG. It is formed by partially selectively diffusing a p-diffusion layer 4 into the epitaxial layer 3 and further providing electrodes 7 at both ends of this diffusion layer 40. Note that 6 indicates a surface oxide film.

同図に示すモノリシック抵抗Rの抵抗値は、その拡散濃
度および深さとともに、その平面輪郭形状の寸法(Wと
L)に依存する。従って、この種のモノリシック抵抗R
の精度を高めるためには、抵抗体となる拡散層4の濃度
および拡散深さとともに、その拡散層4の平面輪郭形状
を高精度に制御する必要がある。また、複数のモノリシ
ック抵抗Rを半導体集積回路装置上に高密度に集積形成
するためには、その配列間隔りをできるだけ小さくする
必要があるが、このためにも、その拡散層4の平面輪郭
形状は高精度に制御する必要がある。
The resistance value of the monolithic resistor R shown in the figure depends on the dimensions (W and L) of its planar contour shape as well as its diffusion concentration and depth. Therefore, this kind of monolithic resistance R
In order to improve the precision of the resistor, it is necessary to control the concentration and diffusion depth of the diffusion layer 4, which serves as a resistor, as well as the planar contour shape of the diffusion layer 4 with high precision. Furthermore, in order to form a plurality of monolithic resistors R in a high-density integrated manner on a semiconductor integrated circuit device, it is necessary to make the arrangement interval as small as possible. must be controlled with high precision.

ところが、拡散層4は深さ方向とともに横方向にも広が
って拡散するため、仮にフォトマスクやエツチングなど
の工程が高精度に行われても、その平面輪郭形状を高精
度かつ再現性良く定めることは非常に困難であった。こ
のことが、この種のモノリシック抵抗Rあるいはバイポ
ーラ・トランジスタなどの素子の精度および形成密度を
向上させる上で大きな障害となっている、という問題が
本発明者によって明らかとされた。
However, since the diffusion layer 4 spreads and diffuses not only in the depth direction but also in the lateral direction, even if processes such as photomasking and etching are performed with high precision, it is difficult to define the planar contour shape with high precision and good reproducibility. was extremely difficult. The inventor of the present invention has clarified the problem that this is a major obstacle in improving the precision and formation density of elements such as this type of monolithic resistor R or bipolar transistor.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、工程の困難化を伴わずに、抵抗やバ
イポーラ・トランジスタなどの素子を形成するだめの拡
散層の輪郭形状を高精度に定めろことを可能にし、これ
によって例えばモノリシック抵抗などの素子を高精度か
つ高密度に形成することを可能にした半導体技術を提供
することにある。
The purpose of this invention is to make it possible to define the contour shape of a diffusion layer for forming elements such as resistors and bipolar transistors with high precision without making the process difficult. The object of the present invention is to provide semiconductor technology that makes it possible to form elements with high precision and high density.

この発明の前記ならびにそのほかの目的と新規な特徴に
ついては、本明細書の記述および添付図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものを簡単
に説明すれば、下記のとおりである。
A brief description of typical inventions disclosed in this application is as follows.

すなわち、モノリシック抵抗やバイポーラ・トランジス
タなどの素子の主要部あるいは一部をなす拡散層の輪郭
形状をエツチング溝によって形どる構成により、工程の
困難化を伴わずに、抵抗やバイポーラ・トランジスタな
どの素子を形成するための拡散層の輪郭形状を高精度に
定めることを可能にし、これによって例えばモノリシッ
ク抵抗などの素子を高精度かつ高密度に形成することを
可能にする、という目的を達成するものである。
In other words, by using etching grooves to shape the outline of the diffusion layer that forms the main part or part of devices such as monolithic resistors and bipolar transistors, devices such as resistors and bipolar transistors can be fabricated without complicating the process. It is possible to define the contour shape of the diffusion layer for forming the diffusion layer with high precision, thereby achieving the purpose of making it possible to form elements such as monolithic resistors with high precision and high density. be.

〔実施例〕〔Example〕

以下、この発明の代表的な実施例を図面を参照しながら
説明する。
Hereinafter, typical embodiments of the present invention will be described with reference to the drawings.

なお、図面において同一符号は同一あるいは相当部分を
示す。
In the drawings, the same reference numerals indicate the same or corresponding parts.

第1図(a)(b)はこの発明による技術が適用された
半導体集積回路装置の要部における一実施例を示す。同
図(a)は断面状態を、同図(b)はその一部の平面レ
イアウト状態をそれぞれ示す。−同図に部分的に示す半
導体集積回路装置は、p−型シリコン半導体基板lにn
中型埋込層2およびn−型エピタキシャル層3を形成し
た半導体基体を用い、この基体のn−型エピタキシャル
層3にp散拡散層4によるモノリシック抵抗Rが複数並
んで形成されている。このモノリシック抵抗Rは、その
抵抗体をなすp散拡散層4の平面輪郭形状がエツチング
溝5によって形どられている。
FIGS. 1(a) and 1(b) show an embodiment of a main part of a semiconductor integrated circuit device to which the technology according to the present invention is applied. FIG. 4(a) shows a cross-sectional state, and FIG. 2(b) shows a planar layout state of a part thereof. - The semiconductor integrated circuit device partially shown in the same figure has a p-type silicon semiconductor substrate l and an n
A semiconductor substrate on which a medium-sized buried layer 2 and an n-type epitaxial layer 3 are formed is used, and a plurality of monolithic resistors R made of p-diffused diffusion layers 4 are formed in line in the n-type epitaxial layer 3 of this substrate. In this monolithic resistor R, the planar outline of the p-diffusion layer 4 forming the resistor is shaped by the etching groove 5.

エツチング溝5は反応性スパッタエツチングあるいは電
子線描画などによりて形成され、その溝5の深さhlは
p散拡散層4の深さh2よりも大きくなるようにし【あ
る(hl>h2)。これKより、p散拡散層4の周囲が
削り取られて、その平面輪郭形状の寸法(WとL)およ
び隣合う拡散層4間の配列間隔りが定められている。
The etching groove 5 is formed by reactive sputter etching or electron beam lithography, and the depth hl of the groove 5 is set to be larger than the depth h2 of the p-diffusion layer 4 (hl>h2). From this K, the periphery of the p-diffusion layer 4 is shaved off, and the dimensions (W and L) of its planar contour shape and the spacing between adjacent diffusion layers 4 are determined.

さらに、エツチング溝5によりて互いに分断された隣合
う2つのp散拡散層4の間は、同図(a)中に符号dで
示すように、その実質的な間隔長が溝5の低部の下を迂
回することによって延長されている。これにより、隣合
う抵抗R間の分離は、その間隔ピッチDを狭(したにも
拘わらず、確実に行われるようになっている。
Furthermore, between two adjacent p-diffusion layers 4 separated from each other by an etching groove 5, the substantial distance between them is the same as the lower part of the groove 5, as shown by the symbol d in FIG. is extended by bypassing the bottom. Thereby, separation between adjacent resistors R can be reliably achieved even though the interval pitch D between them is narrowed.

なお、6は表面酸化膜、7はアルミニウムなどによる電
極をそれぞれ示す。
Note that 6 indicates a surface oxide film, and 7 indicates an electrode made of aluminum or the like.

以上のような構成のモノリシック抵抗Rでは、その抵抗
体をなすp散拡散層4の輪郭形状が、拡散層の横方向へ
の広がりの影響を受けることなく、上記エツチング溝5
の形成パターンどおりに正確に定められている。これに
より、工程の困難化を伴わずに、上記抵抗Rを高精度か
つ高密度に形成することができろようになる。
In the monolithic resistor R having the above structure, the contour shape of the p-diffusion layer 4 constituting the resistor is not affected by the lateral spread of the diffusion layer, and the etched groove 5
The formation pattern is precisely defined. This makes it possible to form the resistor R with high precision and high density without making the process difficult.

第2図(a)(b)(c)は上記モノリシック抵抗Rを
形成するための製造方法をその主要な工程段階順に示す
FIGS. 2(a), 2(b), and 2(c) show a manufacturing method for forming the monolithic resistor R in the order of its main process steps.

先ず、同図(a)に示すように、p−型シリコン半導体
基板1にn中型埋込層2およびn−型エピタキシャル層
3を形成した半導体基体を用い、この基体のn−型エピ
タキシャル層3に太き(広がるn型拡散層4を粗い精度
でもって選択拡散する。
First, as shown in FIG. 5A, a semiconductor substrate is used in which an n-type buried layer 2 and an n-type epitaxial layer 3 are formed on a p-type silicon semiconductor substrate 1, and the n-type epitaxial layer 3 of this substrate is The n-type diffusion layer 4 is selectively diffused with rough precision.

次に、同図(b)に示すように、反応性スノくツタエツ
チングあるいは電子線描画などによってエツチング溝5
を形成する。これによって、n型拡散層4を所定の輪郭
形状および配列間隔に形どりながら複数に分断する。な
お、8は、エツチング溝5を所定のパターンで形成する
ためのマスクを示す。
Next, as shown in FIG. 5(b), the etched grooves 5 are etched by reactive slat etching or electron beam lithography.
form. As a result, the n-type diffusion layer 4 is divided into a plurality of parts while shaping into a predetermined contour shape and arrangement interval. Note that 8 indicates a mask for forming the etching grooves 5 in a predetermined pattern.

この後、同図(c)に示すように、表面酸化膜6を再形
成し、さらにアルミニウムなどによる電極7を形成して
、第1図(a)(b )に示したようなモノリシック抵
抗Rを得る。
After this, as shown in FIG. 1(c), the surface oxide film 6 is re-formed, and an electrode 7 made of aluminum or the like is formed to form a monolithic resistor R as shown in FIGS. 1(a) and 1(b). get.

第3図(a)(b)(c )はこの発明の別の実施例を
示す。
FIGS. 3(a), 3(b), and 3(c) show another embodiment of the present invention.

同図(a)(b)(c)はnpnバイポーラ・トランジ
スタTrが形成される製造方法をその主要な工程段階順
に示す。その特徴点だけを示すと、ここでは、npnバ
イポーラ・トランジスタTrのp型ベース拡散層4の輪
郭形状がエツチング溝5によって形どられる。
Figures (a), (b), and (c) show a manufacturing method for forming an npn bipolar transistor Tr in the order of its main process steps. To show only its characteristic points, here, the contour shape of the p-type base diffusion layer 4 of the npn bipolar transistor Tr is shaped by the etching groove 5.

同図におい(,9はn中型エミッタ拡散層、10はn中
型コレクタ集電用拡散層、11はp型分離拡散層をそれ
ぞれ示す。また、Cはコレクタ、Bはペース、Eはエミ
ッタをそれぞれ示す。
In the same figure (, 9 is an n medium-sized emitter diffusion layer, 10 is an n medium-sized collector current collection diffusion layer, and 11 is a p-type isolation diffusion layer. In addition, C is a collector, B is a pace, and E is an emitter. show.

第4図はこの発明のさらに別の実施例を示す。FIG. 4 shows yet another embodiment of the invention.

同図に示す実施例では、IIL(インテグレーテッド・
インジェクション・ロジック)のp型ベース拡散層4が
、斜縁部分に形成されたエツチング溝5によって分断さ
れ縁どられている。これにより、各IIL間の配列ピッ
チDを狭めて、その集積密度を高めることができるよう
になっている。
In the embodiment shown in the figure, IIL (Integrated)
A p-type base diffusion layer 4 (injection logic) is separated and bordered by etching grooves 5 formed at the beveled edges. This makes it possible to narrow the arrangement pitch D between each IIL and increase the integration density.

同図において、INJはp型インジェクタ領域、Bはn
型拡散層4によるペース、C1,C2はn+型型数散層
よるコレクタをそれぞれ示す。
In the figure, INJ is a p-type injector region, and B is an n-type injector region.
The space formed by the type diffusion layer 4, C1 and C2 respectively indicate the collector formed from the n+ type diffused layer.

〔効 果〕〔effect〕

(11モノリシック抵抗やバイポーラ・トランジスタな
どの素子の主要部あるいは一部をなす拡散層の輪郭形状
をエツチング溝によって形どる構成により、工程の困難
化を伴わずに、抵抗やバイポーラ・トランジスタなどの
素子を形成するための拡散層の輪郭形状を高精度に定め
ることが可能になり、これによって例えばモノリシック
抵抗などの素子を高精度かつ高密度に形成することがで
きるようになる、という効果が得られる。
(11) By using etching grooves to shape the outline of the diffusion layer that forms the main part or part of devices such as monolithic resistors and bipolar transistors, devices such as resistors and bipolar transistors can be fabricated without complicating the process. It becomes possible to define the contour shape of the diffusion layer for forming with high precision, and this has the effect that, for example, elements such as monolithic resistors can be formed with high precision and high density. .

以上本発明者によってなされた発明を実施例に基づき具
体的に説明した力瓢この発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。例えば、上記拡散層4
はp型半導体領域中に形成されるn型拡散層でありても
よい。
The invention made by the present inventor has been specifically explained based on examples.It goes without saying that this invention is not limited to the above-mentioned examples, and can be modified in various ways without departing from the gist thereof. Nor. For example, the diffusion layer 4
may be an n-type diffusion layer formed in a p-type semiconductor region.

〔利用分野〕[Application field]

以上、本発明者によってなされた発明をその背景となり
た利用分野であるモノリシック抵抗、バイポーラ・トラ
ンジスタ、あるいはIILなどが形成される半導体装置
の技術に適用した場合について説明したが、それに限定
されるものではなく、例えば拡散層によるモノリシック
・コンデンサあるいはMO8素子などが形成される半導
体装置の技術などにも適用できる。少なくとも部分的に
選択拡散された拡散層による素子が形成される条件のも
のには適用できる。
The above description has been made of the case where the invention made by the present inventor is applied to the technology of semiconductor devices in which monolithic resistors, bipolar transistors, IILs, etc. are formed, which is the background application field, but the present invention is not limited to this. Rather, it can also be applied to, for example, semiconductor device technology in which a monolithic capacitor using a diffusion layer or an MO8 element is formed. It is applicable to conditions where an element is formed by a diffusion layer that is at least partially selectively diffused.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)(b)はこの発明による半導体装置の一実
施例を示す図、 第2図(a)(b)(c)は第1図に示した半導体装置
の製造工程の主要な段階を順を追って示す図、第3図(
a)(b)(c)はこの発明の別の実施例による半導体
装置の製造工程の主要な段階を順な追って示す図、 第4図はこの発明のさらに別の実施例を示す図、第5図
(a)(b)はこの発明依然に検討された半導体装菫の
構成を示す図である。 l・・・p−型シリコン牛導体基板、2・・・n中型埋
込層、3・・・n−型エピタキシャル層、4・・・抵抗
txどの素子を形成するためのp型拡散層、5・・・エ
ツチング溝、R・・・抵抗。 /き、 代理人 弁理士  小 川 勝 男 j  ・、第  
1  図 (/、) 第  2  図 第  3  図 I工り 第  5  図 ((L)
1(a) and 1(b) are diagrams showing an embodiment of the semiconductor device according to the present invention, and FIG. A diagram showing the stages in order, Figure 3 (
a), (b), and (c) are diagrams sequentially showing the main steps of the manufacturing process of a semiconductor device according to another embodiment of the present invention; FIG. 4 is a diagram showing still another embodiment of the present invention; FIGS. 5(a) and 5(b) are diagrams showing the structure of a semiconductor device that has been studied prior to the present invention. l...p-type silicon conductor substrate, 2...n medium-sized buried layer, 3...n-type epitaxial layer, 4...p-type diffusion layer for forming any element of resistor tx, 5...Etched groove, R...Resistance. /Katsuo Ogawa, Patent Attorney, J., No.
1 Figure (/,) Figure 2 Figure 3 Figure I construction Figure 5 ((L)

Claims (1)

【特許請求の範囲】 1、半導体基体中に部分的に選択拡散された拡散層によ
って素子が形成されている半導体装置であって、上記拡
散層の平面輪郭形状がエッチング溝によって形どられて
いることを特徴とする半導体装置。 2、上記素子が拡散抵抗であることを特徴とする特許請
求の範囲第1項記載の半導体装置。
[Claims] 1. A semiconductor device in which an element is formed by a diffusion layer partially selectively diffused into a semiconductor substrate, wherein the planar outline of the diffusion layer is shaped by an etching groove. A semiconductor device characterized by: 2. The semiconductor device according to claim 1, wherein the element is a diffused resistor.
JP29066285A 1985-12-25 1985-12-25 Semiconductor device Pending JPS62150873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29066285A JPS62150873A (en) 1985-12-25 1985-12-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29066285A JPS62150873A (en) 1985-12-25 1985-12-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62150873A true JPS62150873A (en) 1987-07-04

Family

ID=17758867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29066285A Pending JPS62150873A (en) 1985-12-25 1985-12-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62150873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893166A (en) * 1987-08-21 1990-01-09 Siliconix Incorporated High value semiconductor resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4893166A (en) * 1987-08-21 1990-01-09 Siliconix Incorporated High value semiconductor resistor

Similar Documents

Publication Publication Date Title
EP0021403A1 (en) Self-aligned semiconductor circuits
US4522682A (en) Method for producing PNP type lateral transistor separated from substrate by O.D.E. for minimal interference therefrom
US4536784A (en) Semiconductor device having a junction capacitance, an integrated injection logic circuit and a transistor in a semiconductor body
US4466180A (en) Method of manufacturing punch through voltage regulator diodes utilizing shaping and selective doping
US3956035A (en) Planar diffusion process for manufacturing monolithic integrated circuits
JPS60194558A (en) Manufacture of semiconductor device
US3607465A (en) Method of manufacturing a semiconductor device comprising a zener diode and semiconductor device manufactured by said method
US4481707A (en) Method for the fabrication of dielectric isolated junction field effect transistor and PNP transistor
GB2054263A (en) Integrated circuit device
US4260999A (en) Semiconductor device and method of making the same
US4485551A (en) NPN Type lateral transistor separated from substrate by O.D.E. for minimal interference therefrom and method for producing same
JPS62150873A (en) Semiconductor device
US4011580A (en) Integrated circuit
JPH025564A (en) Multicollector vertical p-n-p transistor
US4692784A (en) Dielectric insulation type semiconductor integrated circuit having low withstand voltage devices and high withstand voltage devices
US4005471A (en) Semiconductor resistor having a high value resistance for use in an integrated circuit semiconductor device
JPS6081864A (en) Lateral type transistor
US5068702A (en) Programmable transistor
JPH0311107B2 (en)
US3885994A (en) Bipolar transistor construction method
EP0059796A1 (en) NPN lateral transistor isolated from a substrate by orientation-dependent etching, and method of making it
EP0068070A1 (en) Complementary NPN and PNP lateral transistors separated from substrate by slots filled with substrate oxide for minimal interference therefrom and method for producing same
JPS6214103B2 (en)
JPH02154428A (en) Junction separation semiconductor region structure for integrated circuit device
JP2932076B2 (en) Method for manufacturing semiconductor device