JPS62179160A - Manufacture of mis-type semiconductor device - Google Patents

Manufacture of mis-type semiconductor device

Info

Publication number
JPS62179160A
JPS62179160A JP2067386A JP2067386A JPS62179160A JP S62179160 A JPS62179160 A JP S62179160A JP 2067386 A JP2067386 A JP 2067386A JP 2067386 A JP2067386 A JP 2067386A JP S62179160 A JPS62179160 A JP S62179160A
Authority
JP
Japan
Prior art keywords
film
pattern
gate electrode
insulating film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2067386A
Other languages
Japanese (ja)
Inventor
Ichiro Moriyama
森山 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2067386A priority Critical patent/JPS62179160A/en
Publication of JPS62179160A publication Critical patent/JPS62179160A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To form the device so that the ends of a source-drain diffused layer are positioned at the ends of upper and lower gate electrodes in the same way, by employing two exposure processes wherein a first gate electrode in used as a mask. CONSTITUTION:A pattern of a positive-type resist film 5 being identical with the one of a molybdenum gate electrode 2 in the lower layer is formed by executing exposure and development from the back of a substrate 1. With the film 5 used as a mask, subsequently, phosphorus is introduced in a polysilicon film 4 to form an N-type source-drain diffused layer 6. On the occasion, the exposure is so made that no light goes through the molybdenum gate electrode 2. After the pattern of the positive-type resist film 5 is exfoliated, an SiO2 film 7 is formed, and subsequently a negative-type resist film 8 is formed by coating. By executing exposure and development from the back of the substrate 1, a pattern of the negative-type resist 8 inverted to the one of the molybdenum gate electrode 2 in the lower layer is formed, and then, with said pattern used as a mask, the SiO2 film 7 in the lower layer is etched until the polysilicon film 4 in the layer located under the film 7 is disclosed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMIS型半導体装置、特にチャネル部の上部と
下部にゲート電極を有するMIS型半導体装置の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an MIS type semiconductor device, and particularly to a method for manufacturing an MIS type semiconductor device having gate electrodes at the upper and lower portions of a channel portion.

〔従来の技術〕[Conventional technology]

絶縁膜上に設けられた半導体膜に形成したMTS型半導
体装置、いわゆる50■(Semiconductor
 onInsulator)構造のMIs型半導体装置
は従来のMrS型半導体装置に比較して接合容量及び配
線容量が小さく、素子分離が完全かつ簡便であることか
ら高速の大規模集積回路(LSI)に適した半導体装置
であるといわれる。また本構造によれば前記MIS型半
導体装置を積み重ねた多層構造のMIS型半導体装置も
形成できることから高密度のLSIへの適用も期待され
ている。しかし、SOI構造のMIS型半導体装置の場
合基板に電極を接続できないためいわゆる基板浮遊効果
が前記MIS型半導体装置の電気的特性に悪影響を与え
る。
MTS type semiconductor device formed on a semiconductor film provided on an insulating film, so-called 50cm (Semiconductor
MIs-type semiconductor devices with onInsulator structure have smaller junction capacitance and wiring capacitance than conventional MrS-type semiconductor devices, and element isolation is complete and simple, making them suitable for high-speed large-scale integrated circuits (LSIs). It is said to be a device. Furthermore, according to this structure, a multilayered MIS type semiconductor device in which the MIS type semiconductor devices described above are stacked can be formed, and therefore it is expected to be applied to high-density LSI. However, in the case of a MIS type semiconductor device having an SOI structure, since electrodes cannot be connected to the substrate, a so-called substrate floating effect adversely affects the electrical characteristics of the MIS type semiconductor device.

また特に多層SOI構造のMIS型半導体装置の場合型
なり合った上下の活性層からの電気的干渉により誤動作
を生じる可能性もある。これら問題を解決した構造とし
て例えば鶴島稔夫は第四回新機能素子技術シンポジウム
予稿集、 1985年、156ページから160ページ
に以下のような構造を報告している。これは第2図に示
すようにチャネル部の上部と下部にゲート電極を有する
MIS型半導体装置である。図中、6はソース・ドレイ
ン拡散層、11は基板、12は第1のゲート電極、13
は第1のゲート絶縁膜、14は層間絶縁膜、15は半導
体膜、16は第2のゲート絶縁膜、17は第2のゲート
電極、18は絶縁膜である。このような構造のMIS型
半導体装置は上部と下部のゲート電極によりチャネル領
域をシールドし、他の活性層からの電気的干渉を防止す
ることができ、また下部ゲート電極により基板浮遊効果
を制御することも可能である。さらにMIS型半導体装
置を微細化した場合に問題になル短チャネル効果の抑制
やサブスレシュホールド特性の改善などにも有効である
。またこのような構造であれば上部あるいは下部いずれ
のゲート電極に対しても同じようにチャネル領域を形成
することが可能であり将来的にいろいろな応用が期待さ
れる。
In addition, particularly in the case of a MIS type semiconductor device having a multilayer SOI structure, malfunction may occur due to electrical interference from upper and lower active layers of the same type. As a structure that solved these problems, for example, Minoru Tsurushima reported the following structure in the proceedings of the 4th New Functional Device Technology Symposium, 1985, pages 156 to 160. As shown in FIG. 2, this is a MIS type semiconductor device having gate electrodes at the upper and lower portions of the channel portion. In the figure, 6 is a source/drain diffusion layer, 11 is a substrate, 12 is a first gate electrode, 13
14 is a first gate insulating film, 14 is an interlayer insulating film, 15 is a semiconductor film, 16 is a second gate insulating film, 17 is a second gate electrode, and 18 is an insulating film. In a MIS type semiconductor device having such a structure, the channel region is shielded by the upper and lower gate electrodes, and electrical interference from other active layers can be prevented, and the substrate floating effect can be controlled by the lower gate electrode. It is also possible. Furthermore, it is effective in suppressing short channel effects and improving subthreshold characteristics, which are problems when miniaturizing MIS type semiconductor devices. Furthermore, with such a structure, it is possible to form a channel region in the same way for either the upper or lower gate electrode, and various applications are expected in the future.

ところで、このようなチャネル部の上部と下部にゲート
電極を有するMIS型半導体装置を製造するには例えば
特開昭56−88354等によると以下のような方法を
用いている。この方法は第2図を例にとると基板11上
に第1のゲート電極12と第1のゲート絶縁膜13と層
間絶縁膜14を形成した後、半導体膜15を堆積し、続
いてその上部に通常の1層のMIS型半導体装置と全く
同じ製造方法で第2のゲート電極17を有するMIS型
半導体装置を製造するものである。
Incidentally, in order to manufacture such a MIS type semiconductor device having gate electrodes at the upper and lower portions of the channel portion, the following method is used, for example, according to Japanese Patent Laid-Open No. 56-88354. Taking FIG. 2 as an example, this method involves forming a first gate electrode 12, a first gate insulating film 13, and an interlayer insulating film 14 on a substrate 11, depositing a semiconductor film 15, and then The MIS type semiconductor device having the second gate electrode 17 is manufactured using exactly the same manufacturing method as a normal one-layer MIS type semiconductor device.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような方法を用いると、図中のゲー
ト長方向においてソースドレイン拡散層6端の位置を前
記ゲート電極17端の下にセルファラインで設定するこ
とが可能であるのに対し、下部の第1のゲート電極12
に対しては前述のようにセルファラインでソースドレイ
ン拡散層6端の位置を設定できない。従ってこのような
方法により第1のゲート電極12に対してもソースドレ
イン拡散層6端の位置を前述のように設定するには露光
・現像工程の目合わせに顧らざるを得ない。しかし、一
般に露光・現像工程の目合わせは精度は露光装置の機械
的精度によるものでありある程度の目合わせずれが生じ
るのはさけられない。このように従来の製造方法によれ
ばチャネル部の上部と下部にゲート電極を有するMIS
型半導体装置を上部及び下部のゲート電極に対しソース
・ドレイン拡散層が同じ位置になるように製造すること
は不可能である。
However, if such a method is used, it is possible to set the end of the source/drain diffusion layer 6 under the end of the gate electrode 17 using a self-line in the gate length direction in the figure; First gate electrode 12
As described above, the position of the end of the source/drain diffusion layer 6 cannot be set using the self-alignment line. Therefore, in order to set the position of the end of the source/drain diffusion layer 6 with respect to the first gate electrode 12 as described above using this method, it is necessary to take into account the alignment of the exposure and development steps. However, in general, the accuracy of alignment in the exposure and development steps depends on the mechanical accuracy of the exposure device, and it is inevitable that some misalignment will occur. As described above, according to the conventional manufacturing method, MIS having gate electrodes at the upper and lower parts of the channel part
It is impossible to manufacture a type semiconductor device such that the source/drain diffusion layers are in the same position with respect to the upper and lower gate electrodes.

本発明の目的はこの問題点を解決したチャネル部の上部
と下部にゲート電極を有するMIS型半導体装置の製造
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an MIS type semiconductor device having gate electrodes above and below a channel portion, which solves this problem.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の要旨とするところはチャネル部の上部と下部
にゲート電極を有するMIS型半導体装置の製造方法に
おいて、基板上に第1のゲート電極のパターンを形成し
、続いて第1の絶縁膜と半導体膜とを順次形成した後前
記半導体膜において素子領域に対応するパターンを形成
し、次いでポジ形レジストを塗布し、前記基板の裏面か
ら少なくとも前記基板と前記第1の絶縁膜と前記半導体
膜を透過し前記第1のゲート電極を透過しない波長の光
で露光し現像することによって前記ポジ形レジストにパ
ターンを形成し、次いで前記ポジ形レジストのパターン
をマスクにして導電型の不純物を前記半導体膜にイオン
注入することによってソ−ス・ドレイン拡散層を形成し
、次いで前記ポジ形レジストを剥離した後絶縁膜を形成
し、続いてネガ形レジストを塗布し前記基板の裏面から
少なくとも前記基板と前記第1の絶縁膜と前記半導体膜
と前記絶縁膜を透過し前記第1のゲート電極を透過しな
い波長の光で露光し現像することによって前記ネガ形レ
ジストにパターンを形成し、次いで前記ネガ形レジスト
のパターンをマスクにして前記絶縁膜を前記半導体膜が
露出するまでエツチングし、次いで前記ネガ形レジスト
を剥離した後、前記半導体膜上に第2のゲート絶縁膜を
形成し続いて前記第2のゲート絶縁膜が少なくとも覆わ
れる第2のゲート電極のパターンを形成することを特徴
とするMIS型半導体装置の製造方法である。
The gist of the present invention is to provide a method for manufacturing an MIS type semiconductor device having gate electrodes at the upper and lower portions of a channel region, in which a first gate electrode pattern is formed on a substrate, and then a first insulating film and a first insulating film are formed. After sequentially forming a semiconductor film, a pattern corresponding to an element region is formed in the semiconductor film, and then a positive resist is applied to at least the substrate, the first insulating film, and the semiconductor film from the back side of the substrate. A pattern is formed in the positive resist by exposing and developing light with a wavelength that transmits and does not transmit the first gate electrode, and then, using the pattern of the positive resist as a mask, impurities of a conductive type are added to the semiconductor film. A source/drain diffusion layer is formed by ion implantation into the substrate, and then an insulating film is formed after peeling off the positive resist, and then a negative resist is applied to at least the substrate and the substrate from the back side of the substrate. forming a pattern on the negative resist by exposing and developing light with a wavelength that passes through the first insulating film, the semiconductor film, and the insulating film but does not pass through the first gate electrode; Using the pattern as a mask, the insulating film is etched until the semiconductor film is exposed, and then, after peeling off the negative resist, a second gate insulating film is formed on the semiconductor film, and then the second gate insulating film is etched. This is a method of manufacturing an MIS type semiconductor device characterized by forming a pattern of a second gate electrode that covers at least a gate insulating film.

〔原理・作用〕[Principle/effect]

本発明の特徴はチャネル部の上部と下部にゲート電極を
有するMIS型半導体装置を上部及び下部のゲート電極
に対しソース・ドレイン拡散層端が同じ位置になるよう
に製造できる点にある。そのためには前述の2回の露光
・現像工程で用いる光源の波長の光を透過する基板、第
1のゲート絶縁膜、半導体膜、半導体膜上の絶縁膜、第
2のゲート絶縁膜をまた透過しない第1のゲート電極を
選択することが重要である。
A feature of the present invention is that a MIS type semiconductor device having gate electrodes at the upper and lower portions of the channel portion can be manufactured such that the ends of the source/drain diffusion layers are located at the same position with respect to the upper and lower gate electrodes. In order to do this, it is necessary to pass through the substrate, the first gate insulating film, the semiconductor film, the insulating film on the semiconductor film, and the second gate insulating film that transmits the light of the wavelength of the light source used in the two exposure and development steps mentioned above. It is important to select a first gate electrode that does not

尚、本発明でポジ形レジストを露光する光源とネガ形レ
ジストを露光する光源とは前記条件を満足するものであ
れば同じ波長の光源であっても異なる波長の光源であっ
てもよい。また本発明で用いる基板は前記条件を満足す
るものであれば半導体基板または絶縁体基板いずれによ
ってもよい。
In the present invention, the light source for exposing the positive resist and the light source for exposing the negative resist may have the same wavelength or different wavelengths as long as the above conditions are satisfied. Further, the substrate used in the present invention may be either a semiconductor substrate or an insulating substrate as long as it satisfies the above conditions.

また第1のゲート電極は前記条件を満足するものであれ
ばCVD法または蒸着法で形成した半導体膜または高融
点金属いずれによってもよい。また第1及び第2のゲー
ト絶縁膜は前記条件を満足するものであればCVD法に
より形成したSiO□膜または熱酸化膜いずれによって
もよい。また半導体膜は前記条件を満足するものであれ
ばCVO法により形成したポリシリコン膜または左記ポ
リシリコン膜をレーザアニール等で単結晶化したシリコ
ン膜またはGaAs等の化合物半導体膜いずれによって
もよい。また半導体膜上の絶縁膜は前記条件を満足する
ものであればCVD法により形成したSi0g膜またS
i3N4膜いずれによってもよい。
Further, the first gate electrode may be formed of a semiconductor film formed by a CVD method or a vapor deposition method, or a high melting point metal, as long as the above conditions are satisfied. Further, the first and second gate insulating films may be either an SiO□ film formed by a CVD method or a thermal oxide film, as long as the above conditions are satisfied. The semiconductor film may be a polysilicon film formed by a CVO method, a silicon film obtained by monocrystalizing the polysilicon film described above by laser annealing, or a compound semiconductor film such as GaAs, as long as the semiconductor film satisfies the above conditions. In addition, if the insulating film on the semiconductor film satisfies the above conditions, it can be a SiOg film or an S
Any i3N4 film may be used.

本発明の製造方法において重要な工程は2つある。1つ
は基板上にまず第1のゲート電極、第1のゲート絶縁膜
、半導体膜を形成した後、その上にポジ形レジストを塗
布し、基板裏面から露光することによって第1のゲート
電極と同じレジストパターンを形成し、次にこのレジス
トパターンをマスクにして導電型の不純物を半導体膜に
注入することによってソース・ドレイン拡散層を形成す
る工程である。またもう1つはポジ形レジストを剥離し
た前記基板上に絶縁膜を形成した後、その上にネガ形レ
ジストを塗布し、基板裏面から露光することによって第
1のゲート電極のパターンに対して反転したレジストパ
ターンを形成し、次にこのレジストパターンをマスクに
して第1のゲート電極パターンに対応する下層の絶縁膜
のみをエツチング除去した後、ネガ形レジストを剥離し
、第2のゲート絶縁膜と第2のゲート電極パターンを形
成する工程である。これら2つの工程は基本的に第1の
ゲート電極をマスクにした露光工程を用いている点で同
じである。従ってこうすることによりゲート長方向にお
いて既に形成した第1のゲート電極端にソース・ドレイ
ン拡散層端がくるように形成でき、さらに第2のゲート
電極に対しても同様にゲート長方向においてソース・ド
レイン拡散層端が第2のゲート電極端にくるように形成
することができる。
There are two important steps in the manufacturing method of the present invention. One method is to first form a first gate electrode, a first gate insulating film, and a semiconductor film on a substrate, then apply a positive resist thereon and expose it from the back side of the substrate to form a first gate electrode and a semiconductor film. This is a step of forming source/drain diffusion layers by forming the same resist pattern, and then using this resist pattern as a mask to inject conductive type impurities into the semiconductor film. The other method is to form an insulating film on the substrate from which the positive resist has been peeled off, and then apply a negative resist on top of it and expose it from the back of the substrate to reverse the pattern of the first gate electrode. Next, using this resist pattern as a mask, only the underlying insulating film corresponding to the first gate electrode pattern is removed by etching, and then the negative resist is peeled off and the second gate insulating film and the second gate insulating film are removed. This is a step of forming a second gate electrode pattern. These two processes are basically the same in that they use an exposure process using the first gate electrode as a mask. Therefore, by doing this, the source/drain diffusion layer can be formed so that the end of the source/drain diffusion layer is located at the end of the already formed first gate electrode in the gate length direction, and the source/drain diffusion layer can be formed in the same manner for the second gate electrode. It can be formed so that the end of the drain diffusion layer is located at the end of the second gate electrode.

ここで第1のゲート電極の2回の露光工程に用いる光源
の波長の光に対する透過率は前述のように基板表面のポ
ジ形レジスト及びネガ形レジストをパターンニングする
のに充分なだけ小さければよく、また基板、第1のゲー
ト絶縁膜、半導体膜、半導体膜上の絶縁膜、第2のゲー
ト絶縁膜の2回の露光で用いる光源の波長の光に対する
透過率は前述のように基板表面のポジ形レジスト及びネ
ガ形レジストをパターンニングするのに充分なだけ大き
ければよい。これらの透過率はそれぞれの材質及び厚さ
はもちろん露光光源の波長とその波長に対するポジ形レ
ジスト及びネガ形レジストの感度により決定される。
Here, the transmittance of the light of the wavelength of the light source used in the two-time exposure process of the first gate electrode should be small enough to pattern the positive resist and negative resist on the substrate surface, as described above. In addition, as mentioned above, the transmittance of the substrate, the first gate insulating film, the semiconductor film, the insulating film on the semiconductor film, and the second gate insulating film to light of the wavelength of the light source used in the two exposures depends on the substrate surface. It only needs to be large enough to pattern positive and negative resists. These transmittances are determined not only by the material and thickness of each material but also by the wavelength of the exposure light source and the sensitivity of the positive resist and negative resist to that wavelength.

〔実施例〕〔Example〕

以下、第1図(at、 (bl、 (c)、 (d)、
 (e)の模式的断面図により本発明の詳細な説明する
Below, Figure 1 (at, (bl, (c), (d),
The present invention will be explained in detail with reference to the schematic cross-sectional view in (e).

図中、1は石英基板、2はモリブデンゲート電極、3は
第1のゲートSiO□膜、4はポリシリコン膜、5はポ
ジ形レジスト膜、6はソース・ドレイン拡散層、7はS
in、膜、8はネガ形レジスト膜、9は第2のゲートS
30g膜、10はリンドープポリシリコンゲート電極で
ある。
In the figure, 1 is a quartz substrate, 2 is a molybdenum gate electrode, 3 is a first gate SiO□ film, 4 is a polysilicon film, 5 is a positive resist film, 6 is a source/drain diffusion layer, and 7 is S
in, film, 8 is a negative resist film, 9 is the second gate S
30g film, 10 is a phosphorus-doped polysilicon gate electrode.

まず第1図(alに示すように、石英基板1上に高融点
金属のモリブデンゲート電極2のパターンを形成した後
、このゲート電極2のゲート膜に対応する第1のゲー)
Si0g膜と、活性層に対応するポリシリコン膜4とを
順次堆積し、次いでポリシリコン膜4の素子領域に対応
するパターンを形成した後ポジ形レジスト膜5を塗布す
る。ここでモリブデンゲート電極2、第1のゲー) 5
iOz膜3、ポリシリコン膜4の厚さはそれぞれ400
0人、 400人。
First of all, as shown in FIG.
A Si0g film and a polysilicon film 4 corresponding to the active layer are sequentially deposited, and then a pattern corresponding to the element region of the polysilicon film 4 is formed, and then a positive resist film 5 is applied. Here the molybdenum gate electrode 2, the first gate) 5
The thickness of the iOz film 3 and the polysilicon film 4 is 400 mm each.
0 people, 400 people.

40000人でありCVD法により形成する。またポジ
形レジストはMP−1400−27で厚さ1.0μmを
スピン塗布する。
It has a capacity of 40,000 people and is formed using the CVD method. Further, the positive resist is spin-coated using MP-1400-27 to a thickness of 1.0 μm.

次に第1図(blに示すように、前記基板1の裏面から
露光・現像することによって下層のモリブデンゲート電
極2と同じポジ形レジスト膜5のパターンを形成し、次
いでこれをマスクにしてリンを60 keVで5X10
”elm−”ポリシリコン膜4に注入することによりn
型のソース・ドレイン拡散層6を形成する。このときリ
ンはポリシリコン膜4の下部まで到達する必要がある。
Next, as shown in FIG. 1 (bl), by exposing and developing the substrate 1 from the back side, a pattern of the positive resist film 5 identical to that of the molybdenum gate electrode 2 in the lower layer is formed, and then using this as a mask, a pattern of the positive resist film 5 is formed. 5X10 at 60 keV
By implanting "elm-" into the polysilicon film 4,
A type source/drain diffusion layer 6 is formed. At this time, the phosphorus needs to reach the bottom of the polysilicon film 4.

ここで露光に用いた光源は350Wの高圧水銀ランプで
波長は4360人である。従ってこの波長であれば基板
表面に塗布したポジ形レジスト膜5のパターンを形成す
るのに充分なだけの光が裏面から石英基板l、第1のゲ
ートS30g膜3、ポリシリコン膜4を透過するが、モ
リブデンゲート電極2は透過しない。次に第1図(C)
に示すように、前記ポジ形レジスト膜5のパターンを剥
離した後、SiO□膜7を形成し、続いてネガ形レジス
トlI!8を塗布する。ここで5iOJi7の厚さは5
000人でCVD法により形成する。またネガ形レジス
ト膜8はOMR−85で厚さ1.0μmをスピン塗布す
る。
The light source used for exposure here was a 350W high-pressure mercury lamp with a wavelength of 4360 nm. Therefore, at this wavelength, enough light to form the pattern of the positive resist film 5 applied to the surface of the substrate passes through the quartz substrate 1, the first gate S30g film 3, and the polysilicon film 4 from the back side. However, the molybdenum gate electrode 2 is not transparent. Next, Figure 1 (C)
As shown in , after the pattern of the positive resist film 5 is peeled off, a SiO□ film 7 is formed, and then a negative resist lI! Apply 8. Here, the thickness of 5iOJi7 is 5
Formed by CVD method by 000 people. Further, the negative resist film 8 is spin-coated using OMR-85 to a thickness of 1.0 μm.

次に第1図(dlに示すように、前記基板1の裏面から
露光・現像することによって下層のモリブデンゲート電
極2に対し反転したネガ形レジスト膜8のパターンを形
成し、次いでこれをマスクにして下層のSiO□膜7を
その下層のポリシリコン膜4が露出するまでエツチング
する。ここでエツチングはCP、とH2の混合ガスによ
る反応性イオンエツチングを用いる。その条件はCF、
と11.の流量がそれぞれ11005CCと20SCC
飢ガス圧力が80mTorr、高周波電力が200−で
、ターゲットがポリプロピレンである。また露光に用い
た光源は350にの高圧水銀ランプで波長は4360人
である。従ってこの波長であれば前述と同様に基板表面
に塗布したネガ形レジスト膜8のパターンを形成するの
に充分なだけの光が裏面から石英基板1、第1のゲー)
SiQ□膜3、ポリシリコン膜4.5i02膜7を透過
するが、モリブデンゲート電極2を透過しない。
Next, as shown in FIG. 1 (dl), by exposing and developing the substrate 1 from the back side, a pattern of a negative resist film 8 inverted with respect to the molybdenum gate electrode 2 in the lower layer is formed, and this is then used as a mask. The underlying SiO□ film 7 is etched until the underlying polysilicon film 4 is exposed.The etching here uses reactive ion etching using a mixed gas of CP and H2.The conditions are CF,
and 11. The flow rates are 11005CC and 20SCC respectively.
The gas pressure is 80 mTorr, the high frequency power is 200 mTorr, and the target is polypropylene. The light source used for exposure was a high-pressure mercury lamp with a wavelength of 350 nm and a wavelength of 4,360 nm. Therefore, at this wavelength, sufficient light is emitted from the back surface of the quartz substrate 1 and the first gate to form a pattern of the negative resist film 8 applied to the surface of the substrate in the same manner as described above.
It passes through the SiQ□ film 3, polysilicon film 4, 5i02 film 7, but does not pass through the molybdenum gate electrode 2.

最後に第1図(e)に示すように、前記ネガ形レジスト
膜8のパターンを剥離した後、露出したポリシリコン膜
4を熱酸化することによって第2のゲ)SiO2膜9を
形成し、次いで露出した前記第2のゲー)SiOz膜9
が少な(とも覆われる第2のリンドープポリシリコンゲ
ート電極10のパターンを形成する。ここで第2のゲー
トSin、膜9の厚さは400人である。またリンドー
プポリシリコンゲート電極10はCVD法によりリンド
ープポリシリコン膜を4000人形成した後、前記ポジ
形レジスト及び前記光源を用いて通常の基板表面からの
露光及び現像工程によりポジ形レジストパターンを形成
し、次いでこれをマスクにして下層のリンドープポリシ
リコン膜をエツチングしてリンドープポリシリコンゲー
ト電極10のパターンを形成する。このとき、露光工程
のマスクにはゲート長方向において露光工程の目合わせ
ずれやエツチングの際のパターンの細り等を考慮して下
層の露出した前記第2のゲートSiO□膜が前記リンド
ープポリシリコンゲート電極10によって充分層われる
程のリンドーブポリシリ°コンゲート電極10に対応す
るパターンが搭載されているマスクを用いる。
Finally, as shown in FIG. 1(e), after peeling off the pattern of the negative resist film 8, the exposed polysilicon film 4 is thermally oxidized to form a second SiO2 film 9. Then, the exposed second silicone) SiOz film 9
Form a pattern of the second phosphorus-doped polysilicon gate electrode 10 that is covered with a small amount of phosphorus. After forming 4,000 phosphorus-doped polysilicon films by the CVD method, a positive resist pattern was formed by a normal exposure and development process from the substrate surface using the positive resist and the light source, and then this was used as a mask. The underlying phosphorus-doped polysilicon film is etched to form a pattern for the phosphorus-doped polysilicon gate electrode 10. At this time, a mask for the exposure process is used to prevent misalignment in the exposure process in the gate length direction and for patterns to be formed during etching. In consideration of thinning, etc., a pattern corresponding to the phosphorus-doped polysilicon gate electrode 10 is mounted such that the exposed second gate SiO□ film is sufficiently covered with the phosphorus-doped polysilicon gate electrode 10. Use a mask.

以上のように、本発明の実施例によれば、チャネル部の
上部と下部とにゲート電極を有するnチャネルのMOS
型半導体装置を上部及び下部のゲート電極に対してソー
ス・ドレイン拡散層端が同じ位置になるように製造でき
る。また本実施例によれば、ソース・ドレイン拡散層に
注入する不純物をP゛型不純物に変えることによってP
チャネルのMOS型半導体装置も同様に製造できる。
As described above, according to the embodiment of the present invention, an n-channel MOS having gate electrodes at the upper and lower parts of the channel part
type semiconductor devices can be manufactured such that the ends of the source/drain diffusion layers are at the same position with respect to the upper and lower gate electrodes. Further, according to this embodiment, by changing the impurity to be implanted into the source/drain diffusion layer to a P type impurity, P
A channel MOS type semiconductor device can also be manufactured in the same manner.

また本発明によれば、前記実施例に1工程を加えるのみ
で第2図に示すようなソース・ドレイン拡散層が完全に
平坦な構造も製造することができる。すなわち第1図(
alにおいて石英基板1にモリブデンゲート電極2のパ
ターンを形成した後厚さ6000人のSiO□膜をCV
D法により堆積し、これにレジストを塗布することによ
り平坦化し続いてモリブデンゲート電極が露出するまで
レジストと5in2膜のエツチング速度が同じである条
件の下でエツチングする。次いで第1図(a)、 (b
l、 (C1,(dl、 (e)と同様な工程を行うと
第2図に示した構造を製造することができる。
Further, according to the present invention, a structure in which the source/drain diffusion layers are completely flat as shown in FIG. 2 can be manufactured by adding one step to the above embodiment. In other words, Figure 1 (
After forming a pattern of a molybdenum gate electrode 2 on a quartz substrate 1 in Al, a SiO□ film with a thickness of 6000 nm was formed by CV
The film is deposited by the D method, planarized by coating it with a resist, and then etched under conditions where the etching rate of the resist and the 5in2 film are the same until the molybdenum gate electrode is exposed. Next, Fig. 1 (a), (b
l, (C1, (dl,) By performing the same steps as (e), the structure shown in FIG. 2 can be manufactured.

尚、本実施例では基板に石英基板を用いたが他の絶8!
基板または半導体基板いずれでもよい。また第1のゲー
ト電極にモリブデンゲート電極を用いたがCVD法また
は蒸着法で形成した他の高融点材料または半導体材料い
ずれでもよい。また第1のゲート絶縁膜にCVD法によ
り形成した5iOz膜を用いたが、CVD法により形成
した5iJ−膜または他の絶縁膜いずれでもよい。また
半導体薄膜にCVD法により形成したポリシリコン膜を
用いたが左記ポリシリコン膜をレーザアニール等で単結
晶化したシリコン膜またはGaAs等の化合物半導体膜
いずれでもよい、またポリシリコン膜上の絶縁膜にCV
D法により形成したSiO2膜を用いたがCVD法によ
り形成した5iJa膜または他の絶縁膜いずれでもよい
。また第2のゲート絶縁膜に下層ポリシリコン膜を熱酸
化したSiO□膜を用いたが、CVD法により形成した
SiO□膜または5iJ4膜または他の絶縁膜いずれで
もよい。また第2のゲート電極にリンドープポリシリコ
ンゲート電極を用いたが、CVD法または蒸着法により
形成したアルミ等の金属またはモリブデン等の高融点金
属または他の半導体材料いずれでもよい。またポジ形レ
ジストとネガ形レジストまたそれを露光するのに用いた
光源も他のポジ形レジストとネガ形レジストまた他の波
長の光源を用いてもよい。
In this example, a quartz substrate was used as the substrate, but other materials may not be used.
Either a substrate or a semiconductor substrate may be used. Further, although a molybdenum gate electrode is used as the first gate electrode, any other high melting point material or semiconductor material formed by CVD or vapor deposition may be used. Furthermore, although a 5iOz film formed by the CVD method was used as the first gate insulating film, it may be a 5iJ- film formed by the CVD method or any other insulating film. In addition, although a polysilicon film formed by the CVD method is used as the semiconductor thin film, it may be a silicon film made by monocrystalizing the polysilicon film described on the left by laser annealing or the like, or a compound semiconductor film such as GaAs, or an insulating film on the polysilicon film. to CV
Although the SiO2 film formed by the D method is used, a 5iJa film formed by the CVD method or any other insulating film may be used. Although the second gate insulating film is a SiO□ film obtained by thermally oxidizing the lower polysilicon film, it may be an SiO□ film formed by a CVD method, a 5iJ4 film, or any other insulating film. Further, although a phosphorus-doped polysilicon gate electrode is used as the second gate electrode, it may be made of a metal such as aluminum formed by CVD or vapor deposition, a high melting point metal such as molybdenum, or any other semiconductor material. Furthermore, the positive resist and the negative resist and the light source used to expose them may be other positive resists and negative resists, or a light source with a different wavelength may be used.

〔発明の効果〕 以上のように本発明の製造方法によればチャネル部の上
部と下部にゲート電極を有するMIS型半導体装置を上
部及び下部のゲート電極に対して同じようにソース・ド
レイン拡散層端が上部及び下部のゲート電極端に位置す
るように形成することができる効果を有するものである
[Effects of the Invention] As described above, according to the manufacturing method of the present invention, a MIS type semiconductor device having gate electrodes at the upper and lower portions of the channel portion is formed by forming source/drain diffusion layers for the upper and lower gate electrodes in the same manner. This has the effect that the ends can be formed so as to be located at the ends of the upper and lower gate electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)、 (C1,(d)、 (e)
は本発明の製造方法の一実施例の主要工程を工程順に示
した模式的断面図、第2図は本発明の製造方法により得
られるMis型半導体装置の模式的断面図である。 1・・・石英基板、2・・・モリブデンゲート電極、3
・・・第1のゲートSiO□膜、4・・・ポリシリコン
膜、5・・・ポジ形レジスト膜、6・・・ソース・ドレ
イン拡散層、7・・・SiO2膜、8・・・ネガ形レジ
スト膜、9・・・第2のゲートSiO□膜、10・・・
リンドープポリシリコンゲート電極、11・・・基板、
12・・・第1のゲート電極、13・・・第1のゲート
絶縁膜、14・・・層間絶縁膜、15・・・半導体膜、
16・・・第2のゲート絶縁膜、17・・・第2のゲー
ト電極、18・・・絶縁膜。
Figure 1 (a), (b), (C1, (d), (e)
2 is a schematic cross-sectional view showing the main steps of an embodiment of the manufacturing method of the present invention in order of process, and FIG. 2 is a schematic cross-sectional view of a Mis-type semiconductor device obtained by the manufacturing method of the present invention. 1... Quartz substrate, 2... Molybdenum gate electrode, 3
...First gate SiO□ film, 4...Polysilicon film, 5...Positive resist film, 6...Source/drain diffusion layer, 7...SiO2 film, 8...Negative shaped resist film, 9... second gate SiO□ film, 10...
phosphorus-doped polysilicon gate electrode, 11...substrate,
12... First gate electrode, 13... First gate insulating film, 14... Interlayer insulating film, 15... Semiconductor film,
16... Second gate insulating film, 17... Second gate electrode, 18... Insulating film.

Claims (1)

【特許請求の範囲】[Claims] (1)チャネル部の上部と下部にゲート電極を有するM
IS型半導体装置の製造方法において、基板上に第1の
ゲート電極のパターンを形成し、続いて第1の絶縁膜と
半導体膜とを順次形成した後、前記半導体膜において素
子領域に対応するパターンを形成し、次いでポジ形レジ
ストを塗布し前記基板の裏面から少なくとも前記基板と
前記第1の絶縁膜と前記半導体膜を透過し前記第1のゲ
ート電極を透過しない波長の光で露光し現像することに
よって前記ポジ形レジストにパターンを形成し、次いで
前記ポジ形レジストのパターンをマスクにして導電型の
不純物を前記半導体膜にイオン注入することによってソ
ース・ドレイン拡散層を形成し、次いで前記ポジ形レジ
ストを剥離した後絶縁膜を形成し続いてネガ形レジスト
を塗布し前記基板の裏面から少なくとも前記基板と前記
第1の絶縁膜と前記半導体膜と前記絶縁膜を透過し前記
第1のゲート電極を透過しない波長の光で露光し、現像
することによって前記ネガ形レジストにパターンを形成
し、次いで前記ネガ形レジストのパターンをマスクにし
て前記絶縁膜を前記半導体膜が露出するまでエッチング
し、次いで前記ネガ形レジストを剥離した後、前記半導
体膜上に第2のゲート絶縁膜を形成し、続いて前記第2
のゲート絶縁膜が少なくとも覆われる第2のゲート電極
のパターンを形成することを特徴とするMIS型半導体
装置の製造方法。
(1) M with gate electrodes at the top and bottom of the channel part
In a method for manufacturing an IS type semiconductor device, a first gate electrode pattern is formed on a substrate, a first insulating film and a semiconductor film are sequentially formed, and then a pattern corresponding to an element region is formed in the semiconductor film. is formed, and then a positive resist is applied, and exposed and developed from the back side of the substrate with light having a wavelength that passes through at least the substrate, the first insulating film, and the semiconductor film, but does not pass through the first gate electrode. A pattern is formed in the positive resist by forming a pattern, and then a source/drain diffusion layer is formed by ion-implanting a conductivity type impurity into the semiconductor film using the pattern of the positive resist as a mask. After peeling off the resist, an insulating film is formed, and then a negative resist is applied, which passes through at least the substrate, the first insulating film, the semiconductor film, and the insulating film from the back side of the substrate to form the first gate electrode. A pattern is formed on the negative resist by exposing it to light of a wavelength that does not transmit it and developing it. Then, using the pattern of the negative resist as a mask, the insulating film is etched until the semiconductor film is exposed. After peeling off the negative resist, a second gate insulating film is formed on the semiconductor film, and then the second gate insulating film is formed on the semiconductor film.
1. A method of manufacturing an MIS type semiconductor device, comprising forming a pattern of a second gate electrode covering at least a gate insulating film.
JP2067386A 1986-01-31 1986-01-31 Manufacture of mis-type semiconductor device Pending JPS62179160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2067386A JPS62179160A (en) 1986-01-31 1986-01-31 Manufacture of mis-type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2067386A JPS62179160A (en) 1986-01-31 1986-01-31 Manufacture of mis-type semiconductor device

Publications (1)

Publication Number Publication Date
JPS62179160A true JPS62179160A (en) 1987-08-06

Family

ID=12033715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2067386A Pending JPS62179160A (en) 1986-01-31 1986-01-31 Manufacture of mis-type semiconductor device

Country Status (1)

Country Link
JP (1) JPS62179160A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177323A (en) * 1988-12-27 1990-07-10 Matsushita Electric Ind Co Ltd Impurity introduction
JPH0685256A (en) * 1992-03-30 1994-03-25 Samsung Electron Co Ltd Thin-film transistor provided with three-dimensional channel structure and its manufacture
JPH06112491A (en) * 1992-08-10 1994-04-22 Internatl Business Mach Corp <Ibm> Field-effect transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177323A (en) * 1988-12-27 1990-07-10 Matsushita Electric Ind Co Ltd Impurity introduction
JPH0685256A (en) * 1992-03-30 1994-03-25 Samsung Electron Co Ltd Thin-film transistor provided with three-dimensional channel structure and its manufacture
JPH06112491A (en) * 1992-08-10 1994-04-22 Internatl Business Mach Corp <Ibm> Field-effect transistor

Similar Documents

Publication Publication Date Title
US20060216878A1 (en) Method for fabricating semiconductor device
EP0854508A2 (en) Method of forming contact structure
JPH04348077A (en) Thin-film transistor
KR20000045418A (en) Method for manufacturing semiconductor device
JPS62179160A (en) Manufacture of mis-type semiconductor device
JPS62179159A (en) Manufacture of mis-type semiconductor device
KR100346449B1 (en) Manufacturing method for semiconductor device
JPH06177351A (en) Manufacture of semiconductor device
KR100261682B1 (en) Method for fabricating semiconductor device
US20020177085A1 (en) Self-aligned photolithographic process for forming silicon-on-insulator devices
JPS6214095B2 (en)
KR100203901B1 (en) Semiconductor devices and its manufacturing method
JPS60117658A (en) Manufacture of mos dynamic memory
KR100240096B1 (en) Method for manufacturing semiconductor device
KR100209708B1 (en) Method for forming wiring of semiconductor device
JPS62268163A (en) Mis type semiconductor device and manufacture thereof
KR100192369B1 (en) A plannerizing method in the semiconductor process
KR0167604B1 (en) Method of forming contact hole of semiconductor device
JPS63313866A (en) Manufacture of semiconductor device
KR0130200B1 (en) Manufacture of semiconductor device
CN116759298A (en) Method for forming photoetching alignment mark and semiconductor device
KR100861188B1 (en) Manufacturing method for semiconductor device
KR20000043205A (en) Method for forming contact hole of semiconductor device
KR20040102720A (en) Manufacturing method for semiconductor device
JPH08236608A (en) Fabrication of semiconductor device