JPS62176188A - Manufacture of large current capacity circuit board which facilitates wire bonding - Google Patents

Manufacture of large current capacity circuit board which facilitates wire bonding

Info

Publication number
JPS62176188A
JPS62176188A JP1594886A JP1594886A JPS62176188A JP S62176188 A JPS62176188 A JP S62176188A JP 1594886 A JP1594886 A JP 1594886A JP 1594886 A JP1594886 A JP 1594886A JP S62176188 A JPS62176188 A JP S62176188A
Authority
JP
Japan
Prior art keywords
foil
etching
circuit board
copper
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1594886A
Other languages
Japanese (ja)
Inventor
和男 加藤
直己 米村
梅沢 宏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP1594886A priority Critical patent/JPS62176188A/en
Publication of JPS62176188A publication Critical patent/JPS62176188A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (Mll上上利用分野) 本発明は、異種金属櫃曾箔張基板の回路形成の製造方法
に関し、 更に詳しくは、回路パターンに大’(t f:fiすこ
とが出来、またワイヤーボンディングもできる大電流用
のパワーモジュール用基板の製造法に関する。
[Detailed Description of the Invention] (Field of Application in Mll) The present invention relates to a manufacturing method for forming a circuit on a foil-covered substrate made of dissimilar metals. The present invention relates to a method for manufacturing a large current power module substrate that can be used for high current and wire bonding.

(従来の技術) 従来、ワイヤーボンディング用と大’Kfl用の両方の
機能を有する基板tS造するには、70μm(2オンス
)や105μの(3オンス)の厚手の鋼箔を用いて回路
形成を行ない、その回路上に貴金属メッキ、もしくはN
x4の卑金属メッキするか、もしくは厚手の銅76上に
A1片等のワイヤーボンディング可能な金属片を接合す
る必要があった。
(Prior art) Conventionally, in order to manufacture a substrate tS that has both wire bonding and large Kfl functions, circuits were formed using thick steel foil of 70 μm (2 oz.) or 105 μm (3 oz.). The circuit is then plated with precious metal or N
It was necessary to plate the x4 with a base metal, or to bond a wire-bondable metal piece such as an A1 piece to the thick copper 76.

しかしなから厚手の銅箔のエツチングには時間がかかる
こと、及びメッキは高価で均一なメッキonf14るこ
とが難しいこと、更に金属片の接合ゆ工 数が多い場合を数がかかるという欠点があった。
However, the disadvantages are that etching thick copper foil takes time, that plating is expensive and difficult to achieve uniform plating, and that it takes a lot of man-hours to join metal pieces. .

これに対して肪しい方法としてアルミニウムと銅の複合
金属箔を帳ジ合せた基板を用い、エツチングによりアル
ミニウムのポンディングパッドを形成する方法が用いら
れて米ている(特開昭58−48432号公報)、この
アルミニウムのポンディングパッドの0gはエツチング
により所望の部位に再現性よく1度に多数のアルミニウ
ムパッドを形成できることと、アルミニウム線による超
音波ボンディングでは、アルミニウムーアルミニウムの
結合となるため、作業範囲も広く、偏傾性が高い等が挙
げられる。
On the other hand, as a more sophisticated method, a method is used in which a substrate made of a composite metal foil of aluminum and copper is bonded together, and an aluminum bonding pad is formed by etching (Japanese Patent Laid-Open No. 58-48432). Publication), the 0g of this aluminum bonding pad is because a large number of aluminum pads can be formed at the same time at a desired location by etching with good reproducibility, and because ultrasonic bonding with an aluminum wire results in an aluminum-aluminum bond. The scope of work is wide, and the tendency to tilt is high.

(発明が解決しようとする問題点) ところで近年、パワー素子の乗積化が可能な基板が強く
要望さえている。荷にインバータで代表さ扛るパワーモ
ジュール用基板に2いては年々高出力化が進み、高熱伝
241生とワイヤーボンディング性金肩することの他に
犬゛厄流が流せることが重要となってきた。
(Problems to be Solved by the Invention) In recent years, there has been a strong demand for substrates on which power elements can be multiplied. The output of power module substrates, typically represented by inverters, has been increasing year by year, and in addition to having high heat conductivity and wire bonding properties, it has become important to be able to conduct heat flow. Ta.

しかしながら、前述の様に犬紙流用の銅箔は厚みが厚い
ためにエツチングに時1司がかかり、コスト高になるこ
とと、高密度の回路形成が困難である(特公昭54−8
510号公@)こと及びワイヤーポンディングパッドの
形成が難しいことが欠点としてあった。
However, as mentioned above, the copper foil used in Inugami is thick, so etching takes time, resulting in high costs, and it is difficult to form high-density circuits (Special Publications Publication No. 54-8
510) and that it was difficult to form a wire bonding pad.

従って前述のアルミニウムと銅の複合金属箔を張り合せ
た基板を用いる方法が考えらnるが、高密度回路用のこ
の種の基板では銅箔が薄く大電流?流せないため、部分
的に厚付銅メッキをする製造方法が考え出された。
Therefore, a method using a board laminated with the aforementioned composite metal foil of aluminum and copper could be considered, but in this type of board for high-density circuits, the copper foil is thin and the current is high. Since it could not be flushed, a manufacturing method was devised that involved partially applying thick copper plating.

すなわち、その1例を示せば基体1にアルミニウム箔3
を上層とし、銅箔2を下層とする第6図に示すアルミニ
ウム/@箔張V基板上にスクリーン印刷によりメッキ兼
エツチングレゾスト4を形成、シ(第乙図)’C,次に
アルミニウム箔3のみが選択エツチングされた後に(第
8図)、厚付銅メッキ5v7oμm行ない(第9図)、
前記レジストを剥離後再びエツチングレジストインキ6
を印刷したfCil 0図)、アルミニウムエツチング
及び銅エツチングを行ない(第11図)、最終的にレゾ
ストインキ6剥、1n行なうものである。
That is, to give one example, an aluminum foil 3 is placed on the base 1.
A plating/etching resist 4 is formed by screen printing on the aluminum/@foil-covered V board shown in Fig. 6, which has the upper layer and the copper foil 2 as the lower layer. After selectively etching only 3 (Fig. 8), thick copper plating of 5v7oμm was performed (Fig. 9).
After removing the resist, apply etching resist ink 6 again.
fCil printed (Fig. 0), aluminum etching and copper etching (Fig. 11), and finally resist ink 6 and 1n are removed.

しかしなから、前記の製造法のスクリーン印刷で形成し
たレジスト4厚は10〜20μmと薄いのに対して、厚
付銅メツキ5厚は70μmと厚いため、第9図の際な両
側に突起を有する形状になシ、次工程のエツチングレジ
ストインキ6の印刷時にレジストがアルミニウムパター
ンと銅パターンの間を15ことが出来ず、エツチング時
に該位置で断縁し易いという欠点があった。
However, the thickness of the resist 4 formed by screen printing in the manufacturing method described above is as thin as 10 to 20 μm, while the thickness of the thick copper plating 5 is as thick as 70 μm. However, when printing the etching resist ink 6 in the next step, the resist cannot form a gap between the aluminum pattern and the copper pattern, and the edge is likely to be broken at that position during etching.

この点を解決するためには、メッキした銅が第9図の如
く両側に突起か出ない様にする必要があった。この問題
を解決する方法につき鋭意研究を行った所、メツキレシ
ストは出来るだげ厚く、出来ればメッキ而よジも高くシ
、ぽたそのレジスト壁面は垂直に近い方が良いことが明
らかとなった。
In order to solve this problem, it was necessary to prevent the plated copper from protruding on both sides as shown in FIG. After intensive research on how to solve this problem, it became clear that it is better to make the metal resist as thick as possible, to make the plating as high as possible, and to make the resist wall surface as close to vertical as possible.

この結果としてレジスト膜厚の厚いメツキレシストを一
度に形成でき、該メツキレシストの壁が垂直に近いもの
として、ドライフィルムを用いた新しい製造方法を完成
するに至った。
As a result, a new manufacturing method using a dry film was completed, in which a thick resist film can be formed at one time, and the walls of the mesh resist are nearly vertical.

(問題点を解決するための手段) すなわち本発明は、異種金属複合箔張絶縁基板の所望の
部分にエツチングレゾストを形成し、前記異種金属複合
箔の上層金属箔のみを退択的にエツチングする工程と、
前記エツチングレゾストを剥離後、前記絶縁基板の選択
エツチング面にドライフィルムを張り合せ、所望のパタ
ーンを形成し、銅の厚付メッキをする工程と、前記ドラ
イフィルムを剥離後、前記異種金属複合箔の下層の金属
箔をエツチングする工程とからなることfc%徴とする
ワイヤーボンディング可能な大電流用回路基板の製造法
である。
(Means for Solving the Problems) That is, the present invention forms an etching resist in a desired portion of a dissimilar metal composite foil-clad insulating substrate, and selectively etches only the upper metal foil of the dissimilar metal composite foil. The process of
After peeling off the etching resist, a dry film is pasted on the selectively etched surface of the insulating substrate to form a desired pattern, and thick copper plating is applied. After peeling off the dry film, the dissimilar metal composite This is a method for manufacturing a large current circuit board capable of wire bonding, which comprises the step of etching the metal foil underlying the foil.

以下図面により本発明を更に詳しく説明する。The present invention will be explained in more detail below with reference to the drawings.

第5図は本発明の製造法によって作製さtた回路基板の
1例であって、絶縁基体1上に異種金属複合′76の下
層である銅箔2からなる回路と該複合箔の上層であるア
ルミニウム箔3からなる回路及び厚付鋼メッキ5により
形成された銅回路が形成さびている断面である。
FIG. 5 shows an example of a circuit board manufactured by the manufacturing method of the present invention, in which a circuit consisting of an insulating substrate 1 and a copper foil 2 as a lower layer of a dissimilar metal composite 76 and an upper layer of the composite foil are shown. This is a cross section in which a circuit made of aluminum foil 3 and a copper circuit formed by thick steel plating 5 are rusted.

$5図の回路基板を製造する工程はまず第6図に示す異
橿金属俟曾箔張絶縁基板を用いて、異種金属複合箔上層
金属のアルミニウム箔3上に所望のパターンとなる碌に
エツチングレジストを形成する。このレゾスト形成はス
クリーン印刷法(レゾストインキを使用)でも、フォト
法(ドライフィルムもしくは液状フォトレジスト)でも
よい。
The process of manufacturing the circuit board shown in Figure 5 is as follows: First, using the insulating board covered with different metal foils as shown in Figure 6, the desired pattern is etched onto the aluminum foil 3, which is the upper layer metal of the dissimilar metal composite foil. Form a resist. This resist formation may be performed by a screen printing method (using resist ink) or a photo method (dry film or liquid photoresist).

次にアルミニウムの選択エツチング剤でアルミニウム箔
3を選択的にエツチングする。該エツチングレゾスト全
剥離した後、レジスト厚みが60μロ以上の耐メツキ性
ドライフィルム7を所望の場所にラミ不一トシ(第1図
)、その後フォト法で厚付銅メッキ5をする場所のドラ
イフィルム7を現像除去しく第2図)、厚付銅メッキ5
を行なう(第6図)。次にドライフィルム7を剥離した
後(第4図)、銅の選択エツチングを行ない第6図に示
す回路基板を作製する。
Next, the aluminum foil 3 is selectively etched using an aluminum selective etching agent. After completely peeling off the etching resist, a plating-resistant dry film 7 with a resist thickness of 60 μm or more is laminated onto the desired location (Fig. 1), and then the area where the thick copper plating 5 is to be applied using the photo method is coated. The dry film 7 is developed and removed (Fig. 2), and the thick copper plating 5
(Figure 6). Next, after peeling off the dry film 7 (FIG. 4), selective copper etching is performed to produce the circuit board shown in FIG. 6.

尚、本発明では別法として第4図に示す工程の次工程と
して全パターンにエツチングレジスト’1スクリーン印
刷法もしくはフォト法で形成し、次に銅エツチングを行
った後に該エツチングレジストを剥離することにより第
5図に示す回路基板を作製することもできる。
In addition, in the present invention, as an alternative method, as a next step after the step shown in FIG. 4, an etching resist '1 is formed on the entire pattern by a screen printing method or a photo method, and then the etching resist is peeled off after performing copper etching. The circuit board shown in FIG. 5 can also be manufactured by this method.

以上に示した本発明による方法によれば従来の回路基板
として第9図に示した様な厚付銅メツキ時の両端の突起
もなく、更に工程上第10図〜第11図に示す様な断f
Rを起こし易い工程もないため、信頼性の高い回路が形
成できる。
According to the method according to the present invention described above, there is no protrusion at both ends when thick copper plating is performed as shown in FIG. 9 as in the case of a conventional circuit board, and furthermore, there is no protrusion at both ends as shown in FIGS. 10 to 11 due to the process. Cut off
Since there is no process that is likely to cause R, highly reliable circuits can be formed.

本発明に用いる異種金属箔張絶縁基板の絶縁基体には、
紙フェノール樹脂、ガラスエポキシ樹脂等があるが、熱
伝導性の良いアルミニウム、銅、アルミニウム合金、銅
合金及びアルマイト等の金属板を樹脂で絶縁化したもの
でもよい。特にその樹脂中に良熱伝導性の無機粉体、例
えばアルミナ粉、ボロンナイトライド粉、ベリリア粉、
マグネシア粉および石英粉等を配合したエポキシ樹脂、
ポリイミド樹脂およびフェノール樹脂等の熱硬化性樹脂
は熱伝導性が良好であり、前記金属板を絶縁化する樹脂
として好ましい。
The insulating base of the dissimilar metal foil-clad insulating substrate used in the present invention includes:
Examples include paper phenol resin, glass epoxy resin, etc., but metal plates made of aluminum, copper, aluminum alloy, copper alloy, alumite, etc. with good thermal conductivity and insulated with resin may also be used. In particular, the resin contains inorganic powder with good thermal conductivity, such as alumina powder, boron nitride powder, beryllia powder,
Epoxy resin containing magnesia powder, quartz powder, etc.
Thermosetting resins such as polyimide resins and phenol resins have good thermal conductivity and are preferable as resins for insulating the metal plate.

本発明に用いる耐メツキ性ドライフィルムは耐電解銅メ
ツキ性と耐餉司エツチング性が必要とされる。またその
厚4は厚付メッキをする銅の厚みにも不るが最低でも6
0μm以上のレゾスト厚みが必要であり、最大でも60
0μ口である。これ以上のレジスト厚では露光、現像が
うまく行かず、剥離も長時間を要する様になり、現実性
がない。
The plating-resistant dry film used in the present invention is required to have electrolytic copper plating resistance and metal etching resistance. Also, the thickness of 4 does not depend on the thickness of the copper to be plated, but at least 6
A resist thickness of 0 μm or more is required, and the maximum thickness is 60 μm.
It is 0 μ mouth. If the resist is thicker than this, exposure and development will not be successful, and peeling will take a long time, which is not practical.

次に本発明に用いる基板に張り合せる異種金属箔には、
アルミニウム箔3と銅箔2を圧延圧接した泪、アルミニ
ウム箔に銅をメッキした箔、あるいはアルミニウム箔に
ニッケル、銅を順次メッキした箔、銅箔にアルミニウム
を蒸着した箔などがある。ここでアルミニウム部は半導
体ヘアーチップを実装する場合のワイヤーポンディング
パッドになるために必要である。またアルミニウムに代
わるものとしてはニッケル、金、銀などがある。
Next, the different metal foils to be laminated to the substrate used in the present invention include:
There are foils in which aluminum foil 3 and copper foil 2 are rolled and pressure-bonded, foils in which aluminum foil is plated with copper, foils in which aluminum foil is plated with nickel and copper in sequence, and foils in which aluminum is deposited on copper foil. Here, the aluminum part is necessary to serve as a wire bonding pad when mounting a semiconductor hair chip. Also, alternatives to aluminum include nickel, gold, and silver.

また本発明の銅箔への厚付銅メッキは電解メッキにて行
なう。この厚付銅メッキは大電流通電を行うためであり
、メッキ厚は生地も含めて65μm以上、好ましくは4
5〜300μ口、さらに好1しくは50〜150μmで
ある。メッキ厚が65μL未満では大電流通電容量が優
られず、また上限は別に?[tlJ限はないが、コスト
的に600μm程度が限度である。
Further, the thick copper plating on the copper foil of the present invention is performed by electrolytic plating. This thick copper plating is for carrying a large current, and the plating thickness including the fabric is 65 μm or more, preferably 4 μm or more.
The diameter is 5 to 300 μm, more preferably 50 to 150 μm. If the plating thickness is less than 65μL, the large current carrying capacity will not be excellent, and is there an upper limit? [There is no tlJ limit, but the limit is about 600 μm due to cost.

本発明に用いる銅の選択エツチング剤としては、特に限
定しないが、過硫酸アンモニウム水溶液や硫酸/過酸化
水素系エツチング剤等の過酸化物系エツチング剤がある
The selective etching agent for copper used in the present invention includes, but is not particularly limited to, peroxide-based etching agents such as ammonium persulfate aqueous solution and sulfuric acid/hydrogen peroxide-based etching agents.

一方、アルミニウムの選択エツチング剤としては、苛性
ソーダ水溶液や苛性カリ水溶液等の無機の強アルカリ水
溶液に各種添加剤を入れたものが用いられる。
On the other hand, as a selective etching agent for aluminum, an inorganic strong alkaline aqueous solution such as a caustic soda aqueous solution or a caustic potassium aqueous solution containing various additives is used.

次に厚付銅メッキの方法としては酸性浴の硫酸鋼メッキ
とアルカリ性浴のピロリン酸銅メッキがあるが、特にど
ちらかに限定するものではない。
Next, methods for thick copper plating include sulfuric acid steel plating in an acidic bath and copper pyrophosphate plating in an alkaline bath, but the method is not particularly limited to either method.

メッキ厚が厚いので速く均一にメッキでさることが重要
となる。
Since the plating is thick, it is important to plate it quickly and uniformly.

(実施例) 次に本発明の工程を実施例により説明するが、本発明は
これに限定されるものではない。
(Example) Next, the steps of the present invention will be explained using Examples, but the present invention is not limited thereto.

実施例1 金属ベース高熱伝導基板として、40μmのアルミニウ
ム箔3(上層)と10μmの銅箔2(下7!1)からな
る複合金属箔をフィラー人りエポキシ樹脂絶縁層8(8
0μm)を介して6.0朋のアルミニウム板の基体1に
積層したHITTプレート(電気化学工業社製、商品名
)を用いた。基板の裏面は粘着剤をコーティングしであ
るポリ塩化ビニルフィルムの保護フィルム9をう、ミ不
一トした。
Example 1 As a metal-based highly thermally conductive substrate, a composite metal foil consisting of a 40 μm aluminum foil 3 (upper layer) and a 10 μm copper foil 2 (lower layer 7!1) was used as a filler and an epoxy resin insulating layer 8 (8
A HITT plate (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name) was used, which was laminated on the substrate 1 of an aluminum plate of 6.0 mm with a thickness of 0 μm) interposed therebetween. The back side of the substrate was coated with an adhesive and covered with a protective film 9 made of polyvinyl chloride film.

次に耐アルカリ性のエツチングレジストインキをスクリ
ーン印刷によりアルミニウム箔3上に印刷し、乾燥した
。その後、苛性ンーダ系エツチング液によジ選択エツチ
ングし、下層銅箔2を露出させた。
Next, an alkali-resistant etching resist ink was printed on the aluminum foil 3 by screen printing and dried. Thereafter, selective etching was performed using a caustic etchant to expose the lower copper foil 2.

次にレジスト厚が50μmの溶剤現像タイプドライフィ
ルム7(リストン1220(−F”ユボン社製、商品名
)−全ホットロールラミネーターを用いて100℃で張
り合せた(第1図)。マスクフィルム全屈いて露光し、
クロロセン中20°Cで現像した第2図のドライフィル
ム7張り基板を、脱脂、歌洗を行なった後、65”Cの
硫敵銅メッキ槽中で電流4A/dm”時間80分の条件
で電解銅メッキを何なった(第6図)。メッキ後の銅箔
厚みは約90μmであった。
Next, a solvent-developed dry film 7 (Riston 1220 (-F" made by Yubon Co., Ltd., trade name) with a resist thickness of 50 μm was laminated at 100°C using a hot roll laminator (Fig. 1). Bend over and expose
After degreasing and cleaning the dry film 7-covered board shown in Fig. 2 developed in chlorocene at 20°C, it was plated in a sulfuric acid copper plating tank at 65°C at a current of 4A/d for 80 minutes. What happened to electrolytic copper plating (Figure 6)? The thickness of the copper foil after plating was about 90 μm.

次にドライフィルム7を塩化メチレンで剥離しく第4図
)、硫酸/過酸化水素系エツチング液を用いて52°C
でエツチングを行ない第5図に示すシャープな断面を有
するパターンを得た。得られたパターンの全銅箔厚みは
約80μmであつ几。
Next, the dry film 7 was peeled off with methylene chloride (Fig. 4) and etched at 52°C using a sulfuric acid/hydrogen peroxide based etching solution.
A pattern having a sharp cross section as shown in FIG. 5 was obtained by etching. The total copper foil thickness of the obtained pattern was approximately 80 μm.

実施例2 実施例1と同じ基板を用い、同じ工程を経て第4図に示
す回路基板を得た。次にスクリーン印刷により、エツチ
ングレジストインキを全パターン上に形成した。乾燥後
、硫酸/過酸化水素系エツチング液で部分の銅箔部分を
エツチングし、その後クロロセンでエツチングレジスト
を剥離し、第5図に示す回路基板を得た。得られた銅箔
の全体の厚みは約90μmであった。
Example 2 Using the same substrate as in Example 1, the circuit board shown in FIG. 4 was obtained through the same steps. Next, etching resist ink was formed on the entire pattern by screen printing. After drying, the copper foil portion was etched using a sulfuric acid/hydrogen peroxide based etching solution, and then the etching resist was removed using chlorocene to obtain the circuit board shown in FIG. The total thickness of the obtained copper foil was about 90 μm.

比較例 実施例1と同じ基板を用い、スクリーン印刷を6回行な
い、第7図と同様のエツチング兼メツキレシストを形成
した。レゾスト厚みは30μmであった。次にアルミニ
ウムの選択エツチングを実施例1と同僚に行ない、実施
例1と同様のメッキ処理を行った。厚付メッキ後のvf
r面は第9因の様に両端に突起を有する形状となった。
Comparative Example Using the same substrate as in Example 1, screen printing was performed six times to form an etching and plating resist similar to that shown in FIG. The thickness of the resist was 30 μm. Next, selective etching of aluminum was carried out in the same manner as in Example 1, and the same plating treatment as in Example 1 was carried out. vf after thick plating
The r-plane had a shape with protrusions at both ends as in the ninth factor.

次に第10図と同様にスクリーン印刷でエツチングレジ
ストを形成したが、厚付メッキ部の両端の突起部とアル
ミニウム箔の間にうまくレジストが印刷できず、次のア
ルミニウムエツチングと銅エツチングで回路上必要な銅
箔とアルミニウム箔の一部もエツチングされ、回路が断
線した。
Next, an etching resist was formed by screen printing in the same way as in Figure 10, but the resist could not be printed well between the protrusions at both ends of the thick plated part and the aluminum foil, so the next aluminum etching and copper etching were carried out on the circuit. Some of the necessary copper and aluminum foil was also etched away, causing the circuit to break.

(発明の効果) 以上説明したとお9本発明の製法により製造したワイヤ
ーボンディング可能な大電流用回路基板は、スクリーン
印刷法により形成したメツキレジストラ用いた厚付メッ
キの場合に生じる厚付メッキ部での断線もなく、かつシ
ャープなパターンが形成が出来るため、不良率も小さく
、信頼性も高い回路全特徴とするものである。
(Effects of the Invention) As explained above, the wire-bondable high-current circuit board produced by the manufacturing method of the present invention has thick plated parts that occur when thick plating is performed using a matte resistor formed by screen printing. Since there is no wire breakage and sharp patterns can be formed, the defect rate is low and the reliability is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明製法を説明する回路工程喀面図
であり、第5図は本発明の完成断面図である。又第6図
〜第11図は従来の製造法で作製された回路基板の製造
工程の断面図である。 符号 1・・・基体、2・・・銅箔、3・・・アルミ箔、4・
・・メッキ兼エツチングレジストインキ、5・・・厚付
銅メツキ部、6・・・エツチングレジストインキ、7・
・・ドライフィルム、8・・・絶縁層、9・・・保護フ
ィルム。
1 to 4 are cross-sectional views of the circuit process for explaining the manufacturing method of the present invention, and FIG. 5 is a completed sectional view of the present invention. Further, FIGS. 6 to 11 are cross-sectional views of the manufacturing process of a circuit board manufactured by a conventional manufacturing method. Code 1...Base, 2...Copper foil, 3...Aluminum foil, 4...
... Plating and etching resist ink, 5... Thick copper plating part, 6... Etching resist ink, 7.
... Dry film, 8... Insulating layer, 9... Protective film.

Claims (4)

【特許請求の範囲】[Claims] (1)異種金属複合箔張絶縁基板の所望の部分にエッチ
ングレジストを形成し、前記異種金属複合箔の上層金属
箔のみを選択的にエッチングする工程と、前記エッチン
グレジストを剥離後、前記絶縁基板の選択エッチング面
にドライフィルムを張り合せ、所望のパターンを形成し
、銅の厚付メッキをする工程と、前記ドライフィルムを
剥離後、前記異種金属複合箔の下層金属箔をエッチング
する工程とからなることを特徴とするワイヤーボンデイ
ング可能な大電流用回路基板の製造法。
(1) A step of forming an etching resist on a desired portion of the dissimilar metal composite foil-covered insulating substrate and selectively etching only the upper metal foil of the dissimilar metal composite foil, and after peeling off the etching resist, the insulating substrate A step of pasting a dry film on the selected etched surface of the film to form a desired pattern and plating it with thick copper; and a step of etching the lower metal foil of the dissimilar metal composite foil after peeling off the dry film. A method for manufacturing a large current circuit board that can be wire bonded.
(2)異種金属複合箔がアルミニウムと銅であることを
特徴とする特許請求の範囲第1項記載の大電流用回路基
板の製造法。
(2) The method for manufacturing a large current circuit board according to claim 1, wherein the dissimilar metal composite foil is made of aluminum and copper.
(3)異種金属複合箔の上層金属箔がアルミニウムであ
ることを特徴とする特許請求の範囲第1項または第2項
記載の大電流用回路基板の製造法。
(3) The method for manufacturing a large current circuit board according to claim 1 or 2, wherein the upper metal foil of the dissimilar metal composite foil is aluminum.
(4)絶縁基板金属板の少なくとも一主面に設けた絶縁
層が良熱伝導性であることを特徴とする特許請求の範囲
第1項記載の大電流用回路基板の製造法。
(4) The method for manufacturing a large current circuit board according to claim 1, wherein the insulating layer provided on at least one principal surface of the insulating substrate metal plate has good thermal conductivity.
JP1594886A 1986-01-29 1986-01-29 Manufacture of large current capacity circuit board which facilitates wire bonding Pending JPS62176188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1594886A JPS62176188A (en) 1986-01-29 1986-01-29 Manufacture of large current capacity circuit board which facilitates wire bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1594886A JPS62176188A (en) 1986-01-29 1986-01-29 Manufacture of large current capacity circuit board which facilitates wire bonding

Publications (1)

Publication Number Publication Date
JPS62176188A true JPS62176188A (en) 1987-08-01

Family

ID=11902985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1594886A Pending JPS62176188A (en) 1986-01-29 1986-01-29 Manufacture of large current capacity circuit board which facilitates wire bonding

Country Status (1)

Country Link
JP (1) JPS62176188A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165317A (en) * 2017-03-28 2018-10-25 株式会社ノリタケカンパニーリミテド Masking resin composition and masking sheet prepared therewith

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165317A (en) * 2017-03-28 2018-10-25 株式会社ノリタケカンパニーリミテド Masking resin composition and masking sheet prepared therewith

Similar Documents

Publication Publication Date Title
NL8302539A (en) HYBRID INTEGRATED CIRCUIT AND METHOD FOR THE PRODUCTION THEREOF
JP2004095972A (en) Manufacturing method for plastic package
JPS62176188A (en) Manufacture of large current capacity circuit board which facilitates wire bonding
JP2001111201A (en) Method of manufacturing wiring board and wiring board using the same
JP2002198461A (en) Plastic package and its manufacturing method
JP2001196738A (en) Metal base circuit board and manufacturing method therefor
JPS60263494A (en) Method of producing recording electrode plate
JPS622591A (en) Manufacture of metal base hybrid integrated circuit board
JPH10270630A (en) Substrate for semiconductor device and manufacture thereof
JP2953163B2 (en) Method for manufacturing substrate for mounting semiconductor device
JPS61284991A (en) Circuit formation for aluminum/copper composite lined board
JPS606555B2 (en) Resistor structure of hybrid integrated circuit
JPS62176187A (en) Manufacture of large current capacity circuit board which facilitates wire bonding
JPS59124794A (en) Method of producing electronic circuit board
JPS61285795A (en) Manufacture of metal based hybrid integrated circuit board
JP3095857B2 (en) Substrate for mounting electronic components
JPS648478B2 (en)
JPS63260198A (en) Manufacture of multilayer circuit board
JP2903836B2 (en) Manufacturing method of wiring board
JP2929141B2 (en) Electronic component mounting substrate and method of manufacturing the same
JPS59188997A (en) Method of producing printed circuit board for wiring bonding
JPS6017988A (en) Printed circuit material
JPS6355236B2 (en)
JPH0878842A (en) Manufacture of printed wiring board
JP3588931B2 (en) Film carrier with double-sided conductor layer and method of forming the same