JPS6216573A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6216573A
JPS6216573A JP15543685A JP15543685A JPS6216573A JP S6216573 A JPS6216573 A JP S6216573A JP 15543685 A JP15543685 A JP 15543685A JP 15543685 A JP15543685 A JP 15543685A JP S6216573 A JPS6216573 A JP S6216573A
Authority
JP
Japan
Prior art keywords
film
layer
diffusion
strain
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15543685A
Other languages
Japanese (ja)
Inventor
Takeshi Konuma
小沼 毅
Toshiharu Tanpo
反保 敏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15543685A priority Critical patent/JPS6216573A/en
Publication of JPS6216573A publication Critical patent/JPS6216573A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To inhibit a diffusion in the lateral direction of a P-type diffusion layer, to shorten gate length and to improve performance such as the shortening of the propagation delay time by using a means applying larger strain by the P-type diffusion layer when shaping the P-type diffusion layer. CONSTITUTION:Si is employed as an implantation seed to a semi-insulating GaAs substrate 1, and an N-type semiconductor layer 2 is shaped. An AlN film 3 is deposited on the surface, an opening section is formed, a Zn-implanted layer 4 is shaped while using the AlN film and a resist as masks, an Si3N4 film 5 is deposited on the surface, and a P-type diffusion layer 4' is formed. Only the Si3N4 film 5 is deposited on the surface of the Zn-implanted layer 4, the AlN film 3 and the Si3N4 film 5 are shaped on other surfaces, and the difference of thermal expansion coefficients with GaAs is increased only on the Si3N4 film, and strain is applied to GaAs. When strain is applied, an equivalent diffusion coefficient is augmented. Accordingly, a diffusion in the depth direction is enhanced, a diffusion in the lateral direction is inhibited, and gate length is shortened.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法に関し、特に接合型電界
効果トランジスタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a junction field effect transistor.

従来の技術 G&ムSの如き化合物半導体は、電子の移動度が大きい
、半絶縁性基板が得られる等の理由で高速。
Conventional technology Compound semiconductors such as those manufactured by G & M S have high speeds due to their high electron mobility and the ability to form semi-insulating substrates.

高周波領域の半導体装置に用いられている。かかる半導
体装置としてはショットキ障壁ゲート電界効果トランジ
スタ(以下MKS−FICTと略記する)が通常用いら
れている。MIC3−FITと同様に接合型電界効果ト
ランジスタ(以下J−FITと略記する)も高速、高周
波領域の半導体装置として有用なデバイスである。J−
FITはMIS−FITに比して熱的に安定である。サ
ージに強い、エンハンスメント型FIET(ノーマリオ
フ型FIE’l’、以下に−F1.Tと略記する) ヲ
J −FITで構成し論理回路に用いると、論理振巾が
大きく出来る等の長所を□有する。一方、欠点として、
ゲート領域形成で横方向拡散が生じ、ゲート長の短縮が
困難なため、化合物半導体を用いたJ −FITは高速
、高周波領域の半導体装置としてほとんど用いられてい
ない。
Used in semiconductor devices in the high frequency range. As such a semiconductor device, a Schottky barrier gate field effect transistor (hereinafter abbreviated as MKS-FICT) is commonly used. Like the MIC3-FIT, a junction field effect transistor (hereinafter abbreviated as J-FIT) is also a useful device as a semiconductor device in a high speed, high frequency region. J-
FIT is more thermally stable than MIS-FIT. Enhancement-type FIET (normally-off type FIE'l', hereinafter abbreviated as -F1.T), which is strong against surges. When configured with -FIT and used in a logic circuit, it has advantages such as large logic amplitude. . On the other hand, as a drawback,
Since lateral diffusion occurs when forming the gate region and it is difficult to shorten the gate length, J-FIT using a compound semiconductor is hardly used as a semiconductor device in a high speed, high frequency region.

第2図は従来のJ−FICTの製造工程の概略図である
。第2図(&)で半絶縁性G!LA511にイオン注入
法を用いて、n型導電性半導体層12を形成する。第2
図(b)では、nfjl導電性半導体層12上に形成し
たシリコン窒化膜13をマスクとしてイオン注入法を用
いτ、亜鉛(Zn )をイオン注入し、砒素雰囲気中で
熱処理し、p型拡散層14を形成する。第1図(C)は
Au−Ga系を用いてオーム性電極を形成し、ソース電
極16、ドレイン電極17とする。ムu−Zn系を用い
てp型拡散層にオーム性電極を形成し、ゲート電極18
とする。
FIG. 2 is a schematic diagram of the conventional J-FICT manufacturing process. Semi-insulating G in Figure 2 (&)! An n-type conductive semiconductor layer 12 is formed on the LA 511 using an ion implantation method. Second
In Figure (b), using the silicon nitride film 13 formed on the NFJL conductive semiconductor layer 12 as a mask, τ, zinc (Zn) is ion-implanted using the ion implantation method, heat-treated in an arsenic atmosphere, and a p-type diffusion layer is formed. form 14. In FIG. 1(C), ohmic electrodes are formed using Au-Ga based material and are used as a source electrode 16 and a drain electrode 17. An ohmic electrode is formed in the p-type diffusion layer using a mu-Zn system, and the gate electrode 18 is
shall be.

発明が解決しようとする問題点 このようにして形成したJ−FETにおいては。The problem that the invention seeks to solve In the J-FET formed in this way.

ゲート領域となるp型拡散層を形成する際、横方向拡散
が大きくゲート長の短縮が難しく、高周波特性で最大発
振周波数が向上しない。したがって、高速論理回路等に
用いた場合、伝播遅延時間の短縮化が困難となる。
When forming a p-type diffusion layer that will become a gate region, lateral diffusion is large, making it difficult to shorten the gate length, and the maximum oscillation frequency cannot be improved in high frequency characteristics. Therefore, when used in high-speed logic circuits, etc., it becomes difficult to shorten the propagation delay time.

本発明は上記のような従来の問題に鑑み、ゲート長の短
縮が容易な、接合型電界効果トランジスタの製造方法を
提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned conventional problems, an object of the present invention is to provide a method for manufacturing a junction field effect transistor in which the gate length can be easily shortened.

問題点を解決するための手段 本発明はn型半導体層にp型半導体層を形成するとき、
p型半導体層表面にn型半導体層表面より歪を加えて拡
散するものである。
Means for Solving the Problems The present invention provides the following steps when forming a p-type semiconductor layer on an n-type semiconductor layer:
Diffusion is performed by applying strain to the surface of the p-type semiconductor layer from the surface of the n-type semiconductor layer.

作用 本発明によれば、横方向拡散を抑制してゲート長の短縮
が容易なJ−FITの製造方法を得ることができる。
According to the present invention, it is possible to obtain a method for manufacturing a J-FIT in which lateral diffusion is suppressed and the gate length can be easily shortened.

実施例 第1図は本発明の一実施例におけるG&ム5J−FET
の製造工程の概略図である。
Embodiment FIG. 1 shows a G&M 5J-FET in an embodiment of the present invention.
FIG. 2 is a schematic diagram of the manufacturing process.

半絶縁性GaAs基板1に選択イオン注入法を用いて、
注人種としてSiを用い、加速電圧120keマ で注
入量3×1012α−2注入し、ムS圧下で820°C
で20分間熱処理し、チャネル領域となるn型半導体層
2を形成する。(第1図(a))。
Using a selective ion implantation method into a semi-insulating GaAs substrate 1,
Using Si as the injection material, the injection amount was 3 x 1012α-2 at an accelerating voltage of 120ke, and the temperature was 820°C under the pressure of S.
A heat treatment is performed for 20 minutes to form an n-type semiconductor layer 2 that will become a channel region. (Figure 1(a)).

n型半導体層2及び半絶縁性基板1の表面に15N膜3
を堆積し、開孔部を設けて、 AeN  膜とレジスト
をマスクとして選択イオン注入法を用いて、注人種とし
てZnを用い、加速電圧501cav  で注入量10
 m をイオン注入し、Zn注入層4を形成する。(第
1図(b))  Zn注入層4及びム5N  膜30表
面に5i5N4  膜6を堆積し、窒素雰囲気中で75
0°Cで16分間熱処理し、p型拡散層4′ を形成す
る。(第1図(C))  この際肝要なことは+ Zn
注入層4の表面には5i3N4  膜5のみが堆積され
、その他の表面にはムe11 膜3とSi3N4  膜
6が形成されているので、 Zn注入層には他の部分に
比して歪がより大きく加えられていることである。これ
は熱膨張係数がG!LASで5.9X10″″’/℃、
AeN  で6.1×10−6層℃。
A 15N film 3 is formed on the surface of the n-type semiconductor layer 2 and the semi-insulating substrate 1.
was deposited, an opening was formed, and using the selective ion implantation method using the AeN film and resist as a mask, Zn was used as the implanter, and the implantation amount was 10 at an acceleration voltage of 501 cav.
A Zn implantation layer 4 is formed by ion-implanting Zn. (FIG. 1(b)) A 5i5N4 film 6 was deposited on the surface of the Zn injection layer 4 and the 5N film 30, and the film was heated to 75% in a nitrogen atmosphere.
A heat treatment is performed at 0°C for 16 minutes to form a p-type diffusion layer 4'. (Figure 1 (C)) The important thing at this time is + Zn
Since only the 5i3N4 film 5 is deposited on the surface of the injection layer 4, and the Mue11 film 3 and the Si3N4 film 6 are formed on the other surfaces, the Zn injection layer is more strained than other parts. This is a major addition. This has a coefficient of thermal expansion of G! 5.9X10''''/℃ at LAS,
6.1 × 10 layers in AeN °C.

Si x、N 4  で3.2 X 10−67”Cな
ので、Si3N4 膜とムeN 膜の2層からなる絶縁
膜は熱膨張係数がGaAsの熱膨張係数とほぼ等しくな
る。一方Si3N4膜のみの場合はG&ムSとの熱膨張
係数の差が太き(、Gapsに歪が加えられる。歪が加
えられると等価的な拡散係数が増大する。実施例ではZ
n注入層に歪が他の部分に比してより加えられているの
で、深さ方向の拡散が増大され、横方向の拡散が抑制さ
れ、ゲート長の短縮が図れる。
Since Si x and N 4 are 3.2 x 10-67"C, the thermal expansion coefficient of an insulating film consisting of two layers of Si3N4 film and MueN film is almost equal to that of GaAs. In the case where the difference in thermal expansion coefficient with G & M S is large (, strain is applied to Gaps. When strain is applied, the equivalent diffusion coefficient increases. In the example, Z
Since more strain is applied to the n-injected layer than to other parts, diffusion in the depth direction is increased, diffusion in the lateral direction is suppressed, and the gate length can be shortened.

Si3N4 膜6を除去し、通常の写真食刻法を用い、
p型拡散層4′ の表面を露出して、ムu−Zn系から
なるオーム性電極を形成し、ゲート電極6とする。(第
1図(d)) ムlN膜3に通常の写真食刻法を用いて、ソース、ドレ
インとなる領域のn型半導体層を露出し。
After removing the Si3N4 film 6, using a normal photolithography method,
The surface of the p-type diffusion layer 4' is exposed to form an ohmic electrode made of Mu--Zn, which serves as the gate electrode 6. (FIG. 1(d)) The n-type semiconductor layer in the regions that will become the source and drain is exposed on the MulN film 3 using a normal photolithography method.

ムu−Go系からなるオーム性電極を形成し、ソース電
極7.ドレイン電極8とする。(第1図(e))以上の
工程にてゲート電極6に印加する電圧により、p型半導
体層4′、n型半導体層2のp−n接合を介してn型半
導体層2の導電度を制御するJ−FICTを得ることが
出来る。
An ohmic electrode made of Mu-Go system is formed, and a source electrode 7. A drain electrode 8 is used. (FIG. 1(e)) The voltage applied to the gate electrode 6 in the above steps increases the conductivity of the n-type semiconductor layer 2 through the p-n junction between the p-type semiconductor layer 4' and the n-type semiconductor layer 2. It is possible to obtain J-FICT that controls.

実施例では基板として、Gapsで説明したが。In the embodiment, Gaps was used as the substrate.

InP、InGaAg  等の化合物半導体を用いても
良い。又実施例ではイオン注入法でZn注入層を形成し
たが、拡散法等を用いても良い。注人種として+ Zn
を用いたが、他の元素例えばMg、C(1等を用いても
良い。pm拡散層を形成する歪の加え方として、実施例
以外の絶縁膜の組合せでも良いし、又p型拡散層表面の
みに絶縁膜を形成し。
Compound semiconductors such as InP and InGaAg may also be used. Furthermore, although the Zn implantation layer was formed by ion implantation in the embodiment, a diffusion method or the like may also be used. Note: As a race + Zn
However, other elements such as Mg, C (1, etc.) may be used.As a method of applying strain to form a pm diffusion layer, a combination of insulating films other than those in the examples may be used, or a p-type diffusion layer may be used. An insulating film is formed only on the surface.

他の表面には絶縁膜を堆積せず、ムS圧雰囲気中で熱処
理しても良い。
An insulating film may not be deposited on the other surfaces, and heat treatment may be performed in a muS pressure atmosphere.

発明の効果 以上のように本発明によれば、p散拡散層を形成する際
、p散拡散層により大きな歪が加えられる手段を用いる
ことにより、p散拡散層の横方向拡散を抑制することで
、ゲート長の短縮が可能となり、J−FICTの最高発
振周波数の向上、高速論理回路用の素子として用いた場
合、伝播遅延時間が短縮する等の性能向上を図ることが
出来その工業的価値は大きい。
Effects of the Invention As described above, according to the present invention, when forming the p-diffusion layer, lateral diffusion of the p-diffusion layer can be suppressed by using means that applies a larger strain to the p-diffusion layer. This makes it possible to shorten the gate length, improve the maximum oscillation frequency of J-FICT, and when used as a device for high-speed logic circuits, improve performance such as shorten propagation delay time, increasing its industrial value. is big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるJ−FITの製造工
程を示す断面図、第2図は従来のJ−FKTの製造工程
を示す断面図である。 1・・・・・・半絶縁性G&ムs、 2・・・・・・n
型半導体層、3・・・、、、AeN膜、4・・・・・・
Zn  注入層、4′・・・・・・p散拡散層、6・・
・・・・3i3N4膜、6・・・・・・ゲート電極。 7・・・・・−ソース電極、8・・・・・・ドレイン電
極。 第2図 c3          A
FIG. 1 is a sectional view showing the manufacturing process of a J-FIT according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the manufacturing process of a conventional J-FKT. 1... Semi-insulating G & Mus, 2......n
type semiconductor layer, 3..., AeN film, 4...
Zn injection layer, 4'...p diffusion layer, 6...
...3i3N4 film, 6...gate electrode. 7...-Source electrode, 8...Drain electrode. Figure 2 c3 A

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板に一導電型半導体層を形成し、前記半
導体基板の所望の領域に反対導電型領域を形成する際、
ひずみを加えて形成するようにした半導体装置の製造方
法。
(1) When forming a semiconductor layer of one conductivity type on a semiconductor substrate and forming a region of the opposite conductivity type in a desired region of the semiconductor substrate,
A method for manufacturing a semiconductor device in which it is formed by applying strain.
(2)半導体基板が化合物半導体で、反対導電型領域表
面に絶縁膜を設けてひずみを加えるようにした特許請求
の範囲第1項記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the semiconductor substrate is a compound semiconductor, and an insulating film is provided on the surface of the opposite conductivity type region to apply strain.
(3)一導電型半導体層の表面に形成した絶縁膜と反対
導電型領域の表面に形成した絶縁膜が異なるようにした
特許請求の範囲第2項記載の半導体装置の製造方法。
(3) The method of manufacturing a semiconductor device according to claim 2, wherein the insulating film formed on the surface of the semiconductor layer of one conductivity type is different from the insulating film formed on the surface of the region of the opposite conductivity type.
JP15543685A 1985-07-15 1985-07-15 Manufacture of semiconductor device Pending JPS6216573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15543685A JPS6216573A (en) 1985-07-15 1985-07-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15543685A JPS6216573A (en) 1985-07-15 1985-07-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6216573A true JPS6216573A (en) 1987-01-24

Family

ID=15605986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15543685A Pending JPS6216573A (en) 1985-07-15 1985-07-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6216573A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0723285A3 (en) * 1995-01-19 1997-04-02 Oki Electric Ind Co Ltd Diffusion mask and fabrication method for forming PN-junction elements in a compound semiconductor substrate
US5688703A (en) * 1995-09-05 1997-11-18 Motorola, Inc. Method of manufacturing a gate structure for a metal semiconductor field effect transistor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0723285A3 (en) * 1995-01-19 1997-04-02 Oki Electric Ind Co Ltd Diffusion mask and fabrication method for forming PN-junction elements in a compound semiconductor substrate
US5700714A (en) * 1995-01-19 1997-12-23 Oki Electric Industry Co., Ltd. Diffusion mask and fabrication method for forming pn-junction elements in a compound semiconductor substrate
KR100417988B1 (en) * 1995-01-19 2004-05-20 가부시키가이샤 오끼 데이타 Manufacturing method of pn junction device using diffusion mask
US5688703A (en) * 1995-09-05 1997-11-18 Motorola, Inc. Method of manufacturing a gate structure for a metal semiconductor field effect transistor

Similar Documents

Publication Publication Date Title
EP0206274A1 (en) High transconductance complementary IC structure
US4603469A (en) Fabrication of complementary modulation-doped filed effect transistors
JPH0260063B2 (en)
JPS6216573A (en) Manufacture of semiconductor device
JP2611342B2 (en) Method for manufacturing semiconductor device
JPH0249012B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPS6332273B2 (en)
GB2069754A (en) Field effect transistor
JPH05275637A (en) Method of manufacturing complementary semiconductor device
JPH01108772A (en) Manufacture of bipolar transistor
JPS6070772A (en) Manufacture of field-effect transistor
JP3105325B2 (en) Method for manufacturing semiconductor device
JPS6218071A (en) Manufacture of semiconductor element
JPH01286308A (en) Manufacture of gallium arsenide field effect transistor
JPS6347982A (en) Semiconductor device
JPS61269311A (en) Manufacture of compound semiconductor device
JPS6159781A (en) Manufacture of semiconductor device
JPH08264724A (en) Semiconductor device and fabrication thereof
JPS62216373A (en) Compound semiconductor device
JPH01161873A (en) Manufacture of semiconductor device
JPS63157474A (en) Manufacture of semiconductor device
JPH0322441A (en) Compound semiconductor device
JPH02219271A (en) Compound semiconductor field effect transistor and its manufacture
JPS59213172A (en) Semiconductor device and manufacture thereof
JPS62211959A (en) Semiconductor device