JPH08264724A - Semiconductor device and fabrication thereof - Google Patents

Semiconductor device and fabrication thereof

Info

Publication number
JPH08264724A
JPH08264724A JP7060724A JP6072495A JPH08264724A JP H08264724 A JPH08264724 A JP H08264724A JP 7060724 A JP7060724 A JP 7060724A JP 6072495 A JP6072495 A JP 6072495A JP H08264724 A JPH08264724 A JP H08264724A
Authority
JP
Japan
Prior art keywords
type
layer
ions
implanted
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7060724A
Other languages
Japanese (ja)
Inventor
Yasuaki Yamane
康朗 山根
Kimiyoshi Yamazaki
王義 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7060724A priority Critical patent/JPH08264724A/en
Publication of JPH08264724A publication Critical patent/JPH08264724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE: To fabricate FETs of different polarities on the same substrate through a simple process. CONSTITUTION: After forming a GaAs layer 2, a p-type InGaP layer 3, and a p-type GaAs layer 4 on a GaAs substrate 1, an isolation region 5 is formed thus forming a p-type HEMT structure in a p-type element forming region Ap and then n-type ions 7 are implanted into an n-type element forming region An. Subsequently, it is annealed and a junction FET comprising the p-type GaAs layer 4, the p-type InGaP layer 3, and an n-type GaAs layer 2' is formed followed by the formation of gate electrodes 8P, 8N. It is then used as a mask for forming p<+> layers 9S, 9D implanted with p<+> ions in the p-type element forming region Ap and n<+> layers 10S, 10D implanted with n<+> ions in the n-type element forming region An. Thereafter, an insulation layer 11 is formed, annealing is effected and ions are implanted for the purpose of activation. Finally, source electrodes 12, 14 and drain electrodes 13, 15 are formed thus fabricating an FET comprising p-type elements and n-type elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化合物半導体上に第1
導電型のHEMTと第2導電型の接合型FETとから構
成される半導体装置およびその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION The present invention is a first invention on a compound semiconductor.
The present invention relates to a semiconductor device including a conductivity type HEMT and a second conductivity type junction FET, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】図2(a)〜(d)は、従来の化合物半
導体相補型集積回路の製造方法の一例を説明するための
各工程における断面図である。まず、図2(a)に示す
ように半絶縁性GaAs基板21上にMBE法またはM
OCVD法を用いたエピタキシャル成長により高純度G
aAs活性層22,p型AlGaAs層23およびp型
GaAs層24を順次積層形成する。
2. Description of the Related Art FIGS. 2A to 2D are sectional views in respective steps for explaining an example of a conventional method for manufacturing a compound semiconductor complementary integrated circuit. First, as shown in FIG. 2A, MBE method or M
High purity G by epitaxial growth using OCVD method
The aAs active layer 22, the p-type AlGaAs layer 23, and the p-type GaAs layer 24 are sequentially stacked.

【0003】次に図2(b)に示すようにp型素子形成
領域Apを残してそれ以外の領域をウエットエッチング
法により除去した後、この半絶縁性GaAs基板21上
のn型素子形成領域Anに絶縁膜25による開口部26
を形成する。次に図2(c)に示すようにこの開口部2
6内に上記同様にMBE法またはMOCVD法を用いた
エピタキシャル成長により高純度GaAs活性層27,
n型AlGaAs層28およびn型GaAs層29を順
次積層形成する。この場合、絶縁膜25上にはエピタキ
シャル成長が生じないように成長条件を設定する必要が
ある。
Next, as shown in FIG. 2B, after leaving the p-type element forming region Ap and removing the other regions by wet etching, the n-type element forming region on the semi-insulating GaAs substrate 21. An opening 26 formed by insulating film 25 on An
To form. Next, as shown in FIG.
In the same manner as described above, the high-purity GaAs active layer 27 is formed by epitaxial growth using the MBE method or the MOCVD method in the same manner as described above.
The n-type AlGaAs layer 28 and the n-type GaAs layer 29 are sequentially stacked. In this case, it is necessary to set growth conditions so that epitaxial growth does not occur on the insulating film 25.

【0004】次に図2(d)に示すようにp型素子形成
領域Ap上の絶縁膜25を除去した後、p型半導体素子
のゲート電極30,ソース電極31およびドレイン電極
32を形成し、同時にn型半導体素子のゲート電極3
3,ソース電極34およびドレイン電極35を形成して
p型半導体素子およびn型半導体素子が完成する。ま
た、配線工程により両半導体素子を相互に接続し、集積
回路を作製する。
Next, as shown in FIG. 2D, after removing the insulating film 25 on the p-type element formation region Ap, a gate electrode 30, a source electrode 31 and a drain electrode 32 of the p-type semiconductor element are formed, At the same time, the gate electrode 3 of the n-type semiconductor device
3, the source electrode 34 and the drain electrode 35 are formed to complete the p-type semiconductor element and the n-type semiconductor element. Further, both semiconductor elements are connected to each other by a wiring process to manufacture an integrated circuit.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述し
た従来の製造方法によると、選択再成長などの十分に確
立されていない均一性,再現性に疑問のある未成熟な工
程を経る必要があり、さらに半絶縁性GaAs基板21
をエッチング除去するため、工程の途中で約1μm程度
の段差が生じ、その後の再成長により埋め込まれるた
め、段差は減少するが、完全ではない。
However, according to the above-mentioned conventional manufacturing method, it is necessary to go through an immature process such as selective regrowth which is not well established and has doubts about uniformity and reproducibility. Further, a semi-insulating GaAs substrate 21
Is removed by etching, a step difference of about 1 μm is generated in the middle of the process, and the step difference is reduced because it is filled by re-growth thereafter, but it is not perfect.

【0006】このような段差は、この後の露光工程、特
にゲート形成のような微細パタンの形成時には、例えば
約100Å程度の段差も問題となるため、工程上大きな
欠陥となる。また、厚さ約1μmの成長に対して成長膜
厚を約100Å以下の誤差範囲内に抑えることは、すな
わち、成長速度の再現性および均一性と合わせて約1%
以下の精度で実現するということは技術に困難であり、
実用性に疑問がある。
[0006] Such a step becomes a major defect in the process since a step of about 100 Å, for example, becomes a problem in the subsequent exposure step, particularly when forming a fine pattern such as gate formation. In addition, keeping the growth film thickness within the error range of about 100 Å or less for a growth of about 1 μm means that the growth rate reproducibility and uniformity are about 1%.
It is technically difficult to realize with the following accuracy,
I doubt the practicality.

【0007】したがって本発明は、前述した従来の課題
を解決するためになされたものであり、その目的は、簡
単な工程で同一基板上に異なる極性の電界効果トランジ
スタを形成することがきる半導体装置およびその製造方
法を提供することにある。
Therefore, the present invention has been made to solve the above-mentioned conventional problems, and an object thereof is a semiconductor device capable of forming field effect transistors of different polarities on the same substrate by a simple process. And to provide a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】このような目的を達成す
るために本発明は、第1導電型のHEMTと第2導電型
の接合型FETとを同一半導体基板上に設けたものであ
る。
In order to achieve such an object, the present invention provides a first conductivity type HEMT and a second conductivity type junction FET on the same semiconductor substrate.

【0009】また、本発明による半導体装置の製造方法
は、半導体基板上に形成された第1導電型のHEMTの
一部に第2導電型の不純物を注入し、活性化することに
よって半導体基板の一部に第2導電型の接合型FETを
形成するようにしたものである。
Further, in the method for manufacturing a semiconductor device according to the present invention, the second conductivity type impurity is injected into a part of the first conductivity type HEMT formed on the semiconductor substrate to activate the semiconductor substrate. The second conductivity type junction type FET is partially formed.

【0010】[0010]

【作用】本発明においては、第1導電型のHEMTと第
2導電型の接合型FETとの極性の異なる半導体素子が
選択再成長を不要として相補型集積回路が形成される。
According to the present invention, the semiconductor element having the first conductivity type HEMT and the second conductivity type junction FET having different polarities does not require selective regrowth to form a complementary integrated circuit.

【0011】[0011]

【実施例】以下、図面を用いて本発明の実施例を詳細に
説明する。図1は、本発明による半導体装置の一実施例
による構成を製造方法にしたがって説明する各工程にお
ける断面図である。図1においては、p型HEMT基板
にn型接合型FETを形成する例について説明するが、
n型HEMT基板にp型接合型FETを形成する場合で
も、p型とn型が全く逆になるのみで、その他は同じで
ある。
Embodiments of the present invention will now be described in detail with reference to the drawings. 1A to 1D are cross-sectional views in each process for explaining a structure according to an embodiment of a semiconductor device according to the present invention according to a manufacturing method. In FIG. 1, an example of forming an n-type junction FET on a p-type HEMT substrate will be described.
Even when the p-type junction FET is formed on the n-type HEMT substrate, the p-type and the n-type are merely opposite, and the others are the same.

【0012】まず、図1(a)に示すように半絶縁性G
aAs基板1上にMBE法またはMOCVD法を用いた
エピタキシャル成長により高純度GaAs層2,p型I
nGaP層3およびp型GaAs層4を順次積層形成す
る。次に図2(b)に示すように素子形成領域外の部分
に素子間分離領域5を形成する。この素子間分離領域5
は、例えば酸素またはボロンなどを高濃度にイオン注入
して形成する。
First, as shown in FIG. 1A, the semi-insulating G
The high-purity GaAs layer 2 and the p-type I are formed on the aAs substrate 1 by epitaxial growth using the MBE method or the MOCVD method.
The nGaP layer 3 and the p-type GaAs layer 4 are sequentially stacked. Next, as shown in FIG. 2B, the element isolation region 5 is formed in a portion outside the element formation region. This element isolation region 5
Is formed by ion-implanting oxygen or boron at a high concentration.

【0013】次にp型GaAs層4上にn型素子形成領
域Anのみに開口部6aを有するレジストパタン6を形
成し、この開口部6aを通して例えばSiなどのn型イ
オン7の注入を行う。このとき、n型イオン7の注入エ
ネルギーは、Siイオンが十分に高純度GaAs層2に
達する深さに選ぶ必要があり、また、注入量は、活性化
アニール後にp型InGaP層3およびp型GaAs層
4がn型とならないように選ぶ必要がある。
Next, a resist pattern 6 having an opening 6a only in the n-type element forming region An is formed on the p-type GaAs layer 4, and n-type ions 7 such as Si are implanted through the opening 6a. At this time, the implantation energy of the n-type ions 7 needs to be selected so that the Si ions reach the high-purity GaAs layer 2 sufficiently, and the implantation amount is p-type InGaP layer 3 and p-type after the activation annealing. It is necessary to select the GaAs layer 4 so as not to be n-type.

【0014】これらの工程により、アニール後にn型素
子形成領域Anは、上層からp型GaAs層4,p型I
nGaP層3,n型GaAs層2′の配列順序となる接
合型FETを形成し得る構造が実現される。次に図1
(c)に示すようにp型素子形成領域Apおよびn型素
子形成領域Anの各p型GaAs層4上の全面に例えば
WSi,WSiNなどの高融点金属膜をスパッタ法また
はプラズマCVD法により堆積し、レジストプロセスと
ECRエッチング法またはRIE法とにより微細加工を
行ってそれぞれゲート電極8P,8Nを形成する。この場
合、半絶縁性GaAs基板1上に段差が形成されないこ
とが重要である。
By these steps, the n-type element forming region An is annealed and the p-type GaAs layer 4 and the p-type I are formed after the annealing.
A structure capable of forming a junction type FET in which the nGaP layer 3 and the n-type GaAs layer 2'are arranged in order is realized. Next in FIG.
As shown in (c), a refractory metal film such as WSi or WSiN is deposited on the entire surface of each p-type GaAs layer 4 in the p-type element formation region Ap and the n-type element formation region An by sputtering or plasma CVD. Then, fine processing is performed by the resist process and the ECR etching method or the RIE method to form the gate electrodes 8P and 8N, respectively. In this case, it is important that no step is formed on the semi-insulating GaAs substrate 1.

【0015】次に図1(d)に示すようにゲート電極8
P,8Nの形成後、n型素子形成領域Anを図示しないレ
ジストパタンで覆い、ゲート電極8P を注入マスクとし
てp型イオンの注入を行い、さらにこのレジストパタン
を除去した後、p型素子形成領域Apを図示しないレジ
ストパタンで覆い、ゲート電極8N を注入マスクとして
n型イオンの注入を行った後、このレジストパタンを除
去する。その後、半絶縁性GaAs基板1の表裏面を図
示しない絶縁膜で覆って高温熱処理を行う。
Next, as shown in FIG. 1D, the gate electrode 8
After forming P and 8N, the n-type element formation region An is covered with a resist pattern (not shown), p-type ions are implanted using the gate electrode 8P as an implantation mask, and the resist pattern is removed. The Ap is covered with a resist pattern (not shown), n-type ions are implanted using the gate electrode 8N as an implantation mask, and then the resist pattern is removed. After that, the front and back surfaces of the semi-insulating GaAs substrate 1 are covered with an insulating film (not shown), and a high temperature heat treatment is performed.

【0016】これによってp型素子形成領域Apには、
ソース領域,ドレイン領域となるp+ 層9S ,9D が形
成されるとともにn型素子形成領域Anには、ソース領
域,ドレイン領域となるn+ 層10S,10Dが形成され
ることになる。
As a result, in the p-type element formation region Ap,
The p + layers 9S and 9D serving as the source region and the drain region are formed, and the n + layers 10S and 10D serving as the source region and the drain region are formed in the n-type element formation region An.

【0017】次にこれらの各層および複数の電極が形成
された半絶縁性GaAs基板1の表裏面にSiO2 など
の絶縁膜11をプラズマCVD法により形成し、アニー
ルを行い、注入されたイオンを活性化させる。その後、
この半絶縁性GaAs基板1の表面側の絶縁膜11のソ
ース形成領域およびドレイン形成領域をレジストを用い
た露光法によりパタンニング後、RIE法により除去
し、p型素子形成領域Apにソース電極12,ドレイン
電極13およびn型素子形成領域Anにソース電極1
4,ドレイン電極15をリフトオフ法により形成してp
型素子とn型素子とからなるFETが完成する。この
後、この2種類のFETを、相補型回路を構成するよう
に相互に結線を行い、集積回路とする。
Next, an insulating film 11 such as SiO 2 is formed on the front and back surfaces of the semi-insulating GaAs substrate 1 on which each of these layers and a plurality of electrodes are formed by a plasma CVD method and annealed to implant the implanted ions. Activate. afterwards,
The source formation region and the drain formation region of the insulating film 11 on the surface side of the semi-insulating GaAs substrate 1 are patterned by the exposure method using a resist and then removed by the RIE method, and the source electrode 12 is formed in the p-type element formation region Ap. , The source electrode 1 in the drain electrode 13 and the n-type element formation region An
4, the drain electrode 15 is formed by the lift-off method and p
The FET composed of the mold element and the n-type element is completed. After that, these two types of FETs are connected to each other so as to form a complementary circuit to form an integrated circuit.

【0018】このような方法によれば、p型HEMT構
造の半絶縁性GaAs基板1に対して高純度GaAs層
2にn型イオン7注入を行い、pn接合を形成し、この
pn接合をゲート領域とするn型接合型FETを同一半
絶縁性GaAs基板1上に簡単な工程で形成することが
できる。
According to this method, n-type ions 7 are implanted into the high-purity GaAs layer 2 in the semi-insulating GaAs substrate 1 having the p-type HEMT structure to form a pn junction, and the pn junction is gated. The n-type junction FET used as the region can be formed on the same semi-insulating GaAs substrate 1 by a simple process.

【0019】また、このような構成によれば、p型素子
部はHEMT構造となり、n型素子部は接合型FETと
なる異なった動作原理に基づく相補型集積回路が実現可
能となる。
According to this structure, the p-type element portion has a HEMT structure, and the n-type element portion has a junction type FET, so that a complementary integrated circuit based on a different operation principle can be realized.

【0020】[0020]

【発明の効果】以上、説明したように本発明によれば、
第1導電型のHEMTと第2導電型の接合型FETとの
極性が異なる半導体素子を選択再成長などの困難な工程
を経ることなく容易に実現でき、相補型集積回路が容易
に実現可能となるという極めて優れた効果が得られる。
As described above, according to the present invention,
A semiconductor element in which the first conductivity type HEMT and the second conductivity type junction FET have different polarities can be easily realized without going through a difficult process such as selective regrowth, and a complementary integrated circuit can be easily realized. The extremely excellent effect of becoming

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による半導体装置の一実施例による構
成を製造方法にしたがって説明する各工程における断面
図である。
FIG. 1 is a cross-sectional view in each process for explaining a configuration according to an embodiment of a semiconductor device according to the present invention according to a manufacturing method.

【図2】 従来の半導体装置の一例による構成を製造方
法にしたがって説明する各工程における断面図である。
FIG. 2 is a cross-sectional view in each process for explaining a configuration of an example of a conventional semiconductor device according to a manufacturing method.

【符号の説明】[Explanation of symbols]

1…半絶縁性GaAs基板、2…高純度GaAs層、
2′…n型GaAs層、3…p型InGaP層、4…p
型GaAs層、5…素子間分離領域、6…レジストパタ
ン、6a…開口部、7…n型イオン、8P,8N…ゲート
電極、9S ,9D…p+ 層、10S ,10D …n+ 層、
11…絶縁膜、12…ソース電極、13…ドレイン電
極、14…ソース電極、15…ドレイン電極、An…n
型素子形成領域、Ap…p型素子形成領域、21…半絶
縁性GaAs基板、22…高純度GaAs活性層、23
…p型AlGaAs層、24…p型GaAs層、25…
絶縁膜、26…開口部、27…GaAs活性層、28…
n型AlGaAs層、29…n型GaAs層、30…ゲ
ート電極、31…ソース電極、32…ドレイン電極、3
3…ゲート電極、34…ソース電極、35…ドレイン電
極。
1 ... Semi-insulating GaAs substrate, 2 ... High-purity GaAs layer,
2 '... n-type GaAs layer, 3 ... p-type InGaP layer, 4 ... p
Type GaAs layer, 5 ... Element isolation region, 6 ... Resist pattern, 6a ... Opening, 7 ... N type ion, 8P, 8N ... Gate electrode, 9S, 9D ... P + layer, 10S, 10D ... N + layer,
11 ... Insulating film, 12 ... Source electrode, 13 ... Drain electrode, 14 ... Source electrode, 15 ... Drain electrode, An ... N
P-type element formation region, Ap ... p-type element formation region, 21 ... Semi-insulating GaAs substrate, 22 ... High-purity GaAs active layer, 23
... p-type AlGaAs layer, 24 ... p-type GaAs layer, 25 ...
Insulating film, 26 ... Opening, 27 ... GaAs active layer, 28 ...
n-type AlGaAs layer, 29 ... N-type GaAs layer, 30 ... Gate electrode, 31 ... Source electrode, 32 ... Drain electrode, 3
3 ... Gate electrode, 34 ... Source electrode, 35 ... Drain electrode.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/812 21/337 29/808 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 29/812 21/337 29/808

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型のHEMTと第2導電型の接
合型FETとを同一半導体基板上に設けたことを特徴と
する半導体装置。
1. A semiconductor device comprising a first conductivity type HEMT and a second conductivity type junction type FET provided on the same semiconductor substrate.
【請求項2】 半導体基板上に形成された第1導電型の
HEMTの一部に第2導電型の不純物を注入し、活性化
することにより前記半導体基板の一部に第2導電型の接
合型FETを形成することを特徴とする半導体装置の製
造方法。
2. A junction of the second conductivity type is bonded to a part of the semiconductor substrate by implanting and activating an impurity of the second conductivity type into a part of the HEMT of the first conductivity type formed on the semiconductor substrate. A method of manufacturing a semiconductor device, which comprises forming a type FET.
JP7060724A 1995-03-20 1995-03-20 Semiconductor device and fabrication thereof Pending JPH08264724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7060724A JPH08264724A (en) 1995-03-20 1995-03-20 Semiconductor device and fabrication thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7060724A JPH08264724A (en) 1995-03-20 1995-03-20 Semiconductor device and fabrication thereof

Publications (1)

Publication Number Publication Date
JPH08264724A true JPH08264724A (en) 1996-10-11

Family

ID=13150521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7060724A Pending JPH08264724A (en) 1995-03-20 1995-03-20 Semiconductor device and fabrication thereof

Country Status (1)

Country Link
JP (1) JPH08264724A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093987A (en) * 1999-07-29 2001-04-06 Stmicroelectronics Inc NEW CMOS CIRCUIT OF GaAs/Ge ON SI SUBSTRATE
CN106449727A (en) * 2015-08-04 2017-02-22 英飞凌科技奥地利有限公司 Avalanche-rugged quasi-vertical HEMT

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093987A (en) * 1999-07-29 2001-04-06 Stmicroelectronics Inc NEW CMOS CIRCUIT OF GaAs/Ge ON SI SUBSTRATE
CN106449727A (en) * 2015-08-04 2017-02-22 英飞凌科技奥地利有限公司 Avalanche-rugged quasi-vertical HEMT
CN106449727B (en) * 2015-08-04 2019-08-09 英飞凌科技奥地利有限公司 The vertical HEMT of standard of anti-snowslide

Similar Documents

Publication Publication Date Title
JP2599381B2 (en) Method of manufacturing FET device
JPH0212836A (en) Manufacture of semiconductor device
JPS63141373A (en) Mos field effect transistor structure, integrated circuit and manufacture of the same
JPH023240A (en) Manufacture of hetero-junction bipolar transistor type semiconductor device
JPH04305978A (en) Mos semiconductor device for electric power and manufacture thereof
JPH08264724A (en) Semiconductor device and fabrication thereof
JPS6317227B2 (en)
JPS6160591B2 (en)
JPH0212927A (en) Manufacture of mesfet
JPH0523497B2 (en)
US5021363A (en) Method of selectively producing conductive members on a semiconductor surface
JP2988067B2 (en) Manufacturing method of insulated field effect transistor
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JPS6169176A (en) Manufacture of semiconductor device
JPH0547797A (en) Fabrication of field effect transistor
JPH01211969A (en) Manufacture of lateral bipolar transistor
JPS63260174A (en) Manufacture of semiconductor device
JPH05217937A (en) Manufacture of semiconductor device
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPS59193070A (en) Manufacture of schottky gate field effect transistor
JPH10321644A (en) Manufacture of semiconductor device
JPS63166275A (en) Manufacture of compound semiconductor device
JPH0870011A (en) Manufacture of semiconductor device
JPH08250518A (en) Semiconductor device and its manufacture
JPH01158778A (en) Manufacture of semiconductor device