JPH0322441A - Compound semiconductor device - Google Patents

Compound semiconductor device

Info

Publication number
JPH0322441A
JPH0322441A JP15760889A JP15760889A JPH0322441A JP H0322441 A JPH0322441 A JP H0322441A JP 15760889 A JP15760889 A JP 15760889A JP 15760889 A JP15760889 A JP 15760889A JP H0322441 A JPH0322441 A JP H0322441A
Authority
JP
Japan
Prior art keywords
source
mesfet
elements
diffusion layer
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15760889A
Other languages
Japanese (ja)
Inventor
Kazumasa Onodera
小野寺 和正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15760889A priority Critical patent/JPH0322441A/en
Publication of JPH0322441A publication Critical patent/JPH0322441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To design an LSI and VLSI composed of a plurality of elements, and to contribute to the design of an analog element particularly by inhibiting mutual intervention between the two elements. CONSTITUTION:The drain 2, source 3 and gate 4 of a first MESFET are formed onto a GaAs substrate 1, and the source 5, drain 6 and gate 7 of a second MESFET are shaped. A control electrode 8 to which negative potential must be applied to the source of the first MESFET is shaped between the two elements through Be ion implantation, etc. A second novel doping layer and a P<+> diffusion layer 9 are formed by using the same doping technique. The relative positional relationship is positioned between the first element, which must prevent deterioration, and the control electrode 8. A proper value exists between the P<+> diffusion layer (a channel stopper) and the source 3 as the first element at that time and takes 2.0mum or more in normal cases, but it depends upon the characteristics of the substrate and is not necessarily kept constant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体装置に関し、特にGaAsFET
を有する化合物半導体装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a compound semiconductor device, and in particular to a GaAsFET.
The present invention relates to a compound semiconductor device having:

〔従来の技術〕[Conventional technology]

従来、半絶縁性GaAs基板上に形或されたMESFE
Tの隣接素子間アイソレーションは基板自身によってい
た。即ち、シリコン基板上に形成されたバイポーラ・デ
バイスの様に絶縁のための新たな拡散層を設けることな
く、基板の高抵抗性(107〜108Ω・cm)を利用
してきた。
Conventionally, MESFEs formed on semi-insulating GaAs substrates
Isolation between adjacent elements of T was provided by the substrate itself. That is, unlike bipolar devices formed on silicon substrates, the high resistance of the substrate (10 7 to 10 8 Ω·cm) has been utilized without providing a new diffusion layer for insulation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の化合物半導体装置は、素子間のリーク電
流が充分小さくない故、高集積化が抑制されている。と
りわけGaAs基板におけるリーク電流は基板の全部分
に存在する深い準位に影響を与える。即ち、リーク電流
を形成する電子もしくはホールは前記深い準位にトラッ
プされ、活性層下の空乏層幅を拡大せしめ、従ってソー
ス・ドレイン間を流れるトレイン電流の劣化をもたらす
In the conventional compound semiconductor device described above, the leakage current between the elements is not sufficiently small, so that high integration is suppressed. In particular, leakage current in a GaAs substrate affects deep levels existing in all parts of the substrate. That is, electrons or holes that form a leakage current are trapped in the deep level, expanding the width of the depletion layer under the active layer, and thus deteriorating the train current flowing between the source and drain.

かかる劣化の大小は隣接素子のソース電位に依存する。The magnitude of such deterioration depends on the source potential of the adjacent element.

よって高集積化ICの回路設計上及び素子信頼性上も極
めて重大な問題を提起する。
This poses extremely serious problems in terms of circuit design and element reliability of highly integrated ICs.

更にいえばかかる劣化特性には温度依存性をもち、低温
ほど劣化の程度が大きい。
Furthermore, such deterioration characteristics have temperature dependence, and the degree of deterioration is greater at lower temperatures.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の化合物半導体装置は、2つのGaAsMESF
ETの中間領域に制御電極を設けこの制御電極に第一の
素子のソースに対し負電位を印加する。これにより、制
御電極下に設けられたP型拡散層の周辺に空乏層が誘起
される。これにより第2のソース電極からGaAs基板
に注入された電子は前記空乏層バリアを越えることなく
もしくは越えにくくなり第1の素子のゲート電極下の活
性層と基板間の空乏層内に存在するトラップレベルに捕
獲される機会を失うか減少する。従って第1のFETは
第2のFETにより相互干渉されることなく正常な動作
,即ちドレイン電流を一定に保持することができる。し
かしながらGaAs基板の表面には本来空乏層もしくは
反転層が存在するため、上記制御電極の空乏層広がりが
期待できない可能性がある。従って本発明においては、
制御電極と同時に第一の素子側にP+拡散層を同時に設
けている。
The compound semiconductor device of the present invention includes two GaAs MESFs.
A control electrode is provided in the middle region of the ET, and a negative potential is applied to the control electrode with respect to the source of the first element. This induces a depletion layer around the P-type diffusion layer provided under the control electrode. As a result, electrons injected from the second source electrode into the GaAs substrate do not cross the depletion layer barrier or are difficult to cross, and traps exist in the depletion layer between the active layer under the gate electrode of the first element and the substrate. Lose or reduce the chance of being captured in the level. Therefore, the first FET can operate normally, that is, maintain a constant drain current, without being mutually interfered with by the second FET. However, since a depletion layer or an inversion layer originally exists on the surface of the GaAs substrate, there is a possibility that the depletion layer of the control electrode cannot be expected to expand. Therefore, in the present invention,
A P+ diffusion layer is provided on the first element side at the same time as the control electrode.

〔実施例〕〔Example〕

第1図は本発明の第1の実施例の断面図である。 FIG. 1 is a sectional view of a first embodiment of the invention.

G a A s基板1上に第1のMESFETのドレイ
ン2,ソース3,ゲート4が形成され、第2のMESF
ETのソース5,ドレイン6,ゲート7が形成される。
The drain 2, source 3, and gate 4 of the first MESFET are formed on the GaAs substrate 1, and the drain 2, source 3, and gate 4 of the first MESFET are formed.
A source 5, drain 6, and gate 7 of the ET are formed.

しかるのち、第1のMESFETのソースに対し負電位
を印加されるべき制御電極8がBeのイオン注入等によ
り当該二素子間に形或される。このときのドーピング層
の深さはソース・ドレインの深さと同等かもしくは2倍
程度の深さであることが好ましいが必ずしも絶対条件で
はない。更に同様なドーピング技術を用いて第2の新た
なドーピング層,P+拡散層9が形或される。この相対
的位置関係は劣化を防ぐべき第1の素子と制御電極8と
の間に置かれるべきである。
Thereafter, a control electrode 8 to which a negative potential is applied to the source of the first MESFET is formed between the two elements by Be ion implantation or the like. The depth of the doped layer at this time is preferably equal to or about twice the depth of the source/drain, but this is not necessarily an absolute condition. Furthermore, a second new doping layer, P+ diffusion layer 9, is formed using similar doping techniques. This relative positional relationship should be placed between the first element and the control electrode 8 to prevent deterioration.

このとき、P+拡散層(チャネルストッパ)と第1の素
子のソース3とは適当な値が存在し通常の場合2.0μ
m以上であるが基板の特性に左右され必ずしも一定しな
い。
At this time, the P+ diffusion layer (channel stopper) and the source 3 of the first element have an appropriate value, which is usually 2.0μ.
m or more, but it depends on the characteristics of the substrate and is not necessarily constant.

第2図は本発明の第2の実施例の断面図である。制御電
極及びP+拡散層(チャネルストッパ層)9を第1の素
子の周辺に設けている。即ち4辺を囲んでいる以外は第
1の実施例と同じ構成を有している。
FIG. 2 is a sectional view of a second embodiment of the invention. A control electrode and a P+ diffusion layer (channel stopper layer) 9 are provided around the first element. That is, it has the same configuration as the first embodiment except that the four sides are surrounded.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、2つの素子間の相互干渉
が抑制され、複数の素子によりなるLSI,VLSIの
設計が可能となる。とりわけ素子間の相互干渉の影響が
大きいアナログ素子の設計上のメリットは大きい。
As explained above, according to the present invention, mutual interference between two elements is suppressed, and it becomes possible to design LSIs and VLSIs made up of a plurality of elements. This is particularly advantageous in terms of design of analog elements, which are susceptible to mutual interference between elements.

なお、以上の効果はGaAs基板を用いたGaAsME
SFETを基本素子として集積回路に適用した場合につ
いて述べたが、他の化合物系一例としてI nGaAs
系についても同様である。
Note that the above effects can be obtained by using GaAsME using a GaAs substrate.
Although we have described the case where SFET is applied to an integrated circuit as a basic element, InGaAs is an example of other compound systems.
The same applies to the system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の断面図、第2図は第2
の実施例の断面図である。 1・・・GaAs基板、2・・・ドレイン、3・・・ソ
ース、4・・・ゲート、5・・・ソース、6・・・ドレ
イン、7・・・ゲート、8・・・制御電極、9・・・チ
ャネルストッ5 一6
FIG. 1 is a sectional view of a first embodiment of the present invention, and FIG. 2 is a cross-sectional view of a second embodiment of the present invention.
FIG. DESCRIPTION OF SYMBOLS 1... GaAs substrate, 2... Drain, 3... Source, 4... Gate, 5... Source, 6... Drain, 7... Gate, 8... Control electrode, 9...Channel stock 5-6

Claims (1)

【特許請求の範囲】[Claims] GaAs基板上に形成されたMESFETと、前記ME
SFET間に設けて前記MESFETのソースに対して
負電位を印加するP型拡散層と、前記MESFETと前
記P型拡散層間に設けたP^+拡散層とを有することを
特徴とする化合物半導体装置。
MESFET formed on a GaAs substrate and the MESFET
A compound semiconductor device comprising: a P-type diffusion layer provided between SFETs and applying a negative potential to the source of the MESFET; and a P^+ diffusion layer provided between the MESFET and the P-type diffusion layer. .
JP15760889A 1989-06-19 1989-06-19 Compound semiconductor device Pending JPH0322441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15760889A JPH0322441A (en) 1989-06-19 1989-06-19 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15760889A JPH0322441A (en) 1989-06-19 1989-06-19 Compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH0322441A true JPH0322441A (en) 1991-01-30

Family

ID=15653447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15760889A Pending JPH0322441A (en) 1989-06-19 1989-06-19 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH0322441A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197315A (en) * 2012-03-19 2013-09-30 Fujitsu Ltd Semiconductor device and semiconductor device manufacturing method
JP2016527716A (en) * 2013-07-08 2016-09-08 エフィシエント パワー コンヴァーション コーポレーション Isolation structures and integrated circuits in gallium nitride devices.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197315A (en) * 2012-03-19 2013-09-30 Fujitsu Ltd Semiconductor device and semiconductor device manufacturing method
JP2016527716A (en) * 2013-07-08 2016-09-08 エフィシエント パワー コンヴァーション コーポレーション Isolation structures and integrated circuits in gallium nitride devices.

Similar Documents

Publication Publication Date Title
KR970004457B1 (en) Semiconductor device and fabrication method
US4416050A (en) Method of fabrication of dielectrically isolated CMOS devices
US5242849A (en) Method for the fabrication of MOS devices
KR100797896B1 (en) Semiconductor structure for isolating integrated circuits of various operating voltages
JPH0322441A (en) Compound semiconductor device
KR960009223A (en) Semiconductor device and manufacturing method thereof
US4054989A (en) High reliability, low leakage, self-aligned silicon gate FET and method of fabricating same
US5118632A (en) Dual layer surface gate JFET having enhanced gate-channel breakdown voltage
US6716728B2 (en) Radiation hardened silicon-on-insulator (SOI) transistor having a body contact
US4839704A (en) Application of deep-junction non-self-aligned transistors for suppressing hot carriers
JPS61156830A (en) Semiconductor device and manufacture thereof
JPH0329326A (en) Junction field-effect transistor
JPH0355877A (en) Compound semiconductor device
JPH01218039A (en) Semiconductor device
JPS6338264A (en) Field-effect transistor and manufacture thereof
JPS6237816B2 (en)
KR100279263B1 (en) SOHI semiconductor device and its manufacturing method
JPS6216573A (en) Manufacture of semiconductor device
KR960026582A (en) Device Separation Method of Semiconductor Devices
JPH039567A (en) Mos semiconductor device
JPH04206935A (en) Compound semiconductor integrated circuit device
JPS5931224B2 (en) semiconductor equipment
JPH04144252A (en) Compound semiconductor device
JPH01117362A (en) Manufacture of semiconductor integrated circuit device
JPS6058674A (en) Mos type transistor