JPS62151541A - Improved permanent magnet material - Google Patents

Improved permanent magnet material

Info

Publication number
JPS62151541A
JPS62151541A JP60296522A JP29652285A JPS62151541A JP S62151541 A JPS62151541 A JP S62151541A JP 60296522 A JP60296522 A JP 60296522A JP 29652285 A JP29652285 A JP 29652285A JP S62151541 A JPS62151541 A JP S62151541A
Authority
JP
Japan
Prior art keywords
permanent magnet
coercive force
magnet material
oxide
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60296522A
Other languages
Japanese (ja)
Inventor
Noboru Ichinose
昇 一ノ瀬
Hideetsu Suzuki
秀悦 鈴木
Mitsuyoshi Nishida
西田 光儀
Nobumasa Yoshida
吉田 伸昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S C M KK
Original Assignee
S C M KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S C M KK filed Critical S C M KK
Priority to JP60296522A priority Critical patent/JPS62151541A/en
Publication of JPS62151541A publication Critical patent/JPS62151541A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a permanent magnet material having improved coercive force without requiring an intricate operating stage by adding a specific ratio of metallic oxide materials to the permanent magnet material consisting of rate earth elements, Fe, and B expressed by the specific formula. CONSTITUTION:1 or >=2 kinds of crystalline material and amorphous materials essentially consisting of the metallic oxides are added at <=1wt% (exclusive of 0) to the compd. expressed by the compsn. formula R1-x-yFexBy. R in the formula is 1 or >=2 kinds of the rare earth elements including Y and are specified to 0.55<=x<=0.85, 0.01<=y<=0.15. The crystalline or amorphous materials essentially consisting of the metallic oxides which soften or melt at the temp. lower than the m.p. of an R-Fe-B alloy are preferable, and lead oxide, bismuth oxide, silicon oxide, etc. are used. The permanent magnet material which is improved in the coercive force and has the small variance of the coercive force is thus obtd.

Description

【発明の詳細な説明】 発明の属する技術分野 本発明は主に希土類金属(R)、鉄(Fe)及び硼素(
B)からなる永久磁石材料に、金属酸化物系材料を添加
することによって改良された永久磁石材料に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Technical field to which the invention pertains The present invention mainly relates to rare earth metals (R), iron (Fe) and boron (
The present invention relates to a permanent magnet material improved by adding a metal oxide material to the permanent magnet material consisting of B).

従来の技術 近年、永久磁石材料として最大エネルギー積([3t−
1)n+axが30MGOe 〜40MGOcに及ぶ高
性能のR−Fe−B系磁石が発表されている。例えば併
用らの報告、” N eV  M atOrial f
orPer+++anent  Maqnets on
 a Ba5e  or Nd andFO”(第29
回3M  Conf、 1983 booklet p
Conventional technology In recent years, the maximum energy product ([3t-
1) High-performance R-Fe-B magnets with n+ax ranging from 30 MGOe to 40 MGOc have been announced. For example, the report by Orial et al., “N eV M at Orial f
orPer+++anent Maqnets on
a Ba5e or Nd andFO” (29th
3M Conf, 1983 booklet p
.

110 、5essionE B 、 E B −1)
は、結晶質Nd−Fc−B粉末を磁場中で成形し、焼結
する、所謂粉末冶金法によって異方性磁石材料を製造づ
るらのである。
110, 5essionEB, EB-1)
manufactures an anisotropic magnet material by a so-called powder metallurgy method in which crystalline Nd-Fc-B powder is molded in a magnetic field and sintered.

最近では更に熱時効処理や合金への種々の元素の添加に
より、保磁力Hcや残留磁束密度3r、最大エネルギー
積(81−1)maxの向」ニなどの改良が加えられて
おり、R−Fe−B系永久附石は最ら右望視される永久
磁石材料となっている。
Recently, improvements such as coercive force Hc, residual magnetic flux density 3r, and direction of maximum energy product (81-1) max have been made through thermal aging treatment and the addition of various elements to the alloy. The Fe-B permanent magnet is the permanent magnet material that can be seen from the far right.

従来より、R−Fe−B系合金faEの保磁力の向−ト
に対しては、熱時効処理が有効であることが知られてい
る。これは合金内に現れる結晶粒界相が軟磁性のbcc
相であり、この相をより滑かな粒界とすることにより保
磁力を高めるものである。
It has been known that thermal aging treatment is effective for changing the coercive force of the R-Fe-B alloy faE. This is because the grain boundary phase appearing in the alloy is soft magnetic bcc.
This phase increases the coercive force by making the grain boundaries smoother.

しかしこの方法ではまだ十分とはいえず、又工程による
バラツキが大ぎく、品質の安定化が難しい。
However, this method is still not sufficient, and there are large variations depending on the process, making it difficult to stabilize the quality.

品質の安定化のため多段熱時効処理も行われるが、製造
工程がいよいよ煩雑になる欠点がある。
Multi-stage thermal aging treatment is also performed to stabilize quality, but this has the disadvantage of making the manufacturing process even more complicated.

一方R−Fe−B系合金に種々の金属元素を添加するこ
とも試みられているが、いずれも残留磁束密度、最大エ
ネルギー積の向上や温度特性の改善に効果はあっても、
保磁力はほとんど向上しない。
On the other hand, attempts have been made to add various metal elements to R-Fe-B alloys, but although these methods are effective in improving residual magnetic flux density, maximum energy product, and temperature characteristics,
Coercive force hardly improves.

発明の解決しようとする問題点 本発明の目的は#1雑な操作工程を必要とすることなく
、R−Fe−[3系合金磁石の保磁力を高めることにあ
る。
Problems to be Solved by the Invention The object of the present invention is #1 to increase the coercive force of an R-Fe-[3 series alloy magnet without requiring complicated operation steps.

本発明者等は、合金の結晶粒界にR−Fe −8成分と
反応しにくい不純物を添加することにより所謂ピンニン
グサイトとして作用させて磁壁の移動を抑え、保磁力を
改善することができると考え、種々の添加剤を検討した
結束、金属酸化物を主成分とする結晶質材料及び非晶質
材料が極めて優れた効果を有することを見出した。
The present inventors believe that by adding impurities that do not easily react with the R-Fe-8 component to the grain boundaries of the alloy, they can act as so-called pinning sites, suppress the movement of the domain wall, and improve the coercive force. After considering various additives, we found that crystalline materials and amorphous materials mainly composed of metal oxides have extremely excellent effects.

問題点を解決するための手段 本発明は、く△)組成式R1−X−V Fe X BV
で表される化合物(但しRはYを含む希土類元素の1種
又は2種以上であり、0.55≦x≦0.85.0.0
1≦y≦0.15 )に、(B)金属酸化物を主成分と
する結晶質材料及び非晶質材料の1種又は2種以上を、
(A)と(B)の合計に対しlff1で1%以下(但し
Oを除く)を添加したことを特徴とする永久磁石材料で
ある。
Means for Solving the Problems The present invention has the following features: △) Compositional formula R1-X-V Fe X BV
A compound represented by (where R is one or more rare earth elements including Y, and 0.55≦x≦0.85.0.0
1≦y≦0.15), one or more of (B) a crystalline material and an amorphous material containing a metal oxide as a main component,
This permanent magnet material is characterized in that 1% or less (however, excluding O) of lff1 is added to the total of (A) and (B).

組成式R1−x−y Fe x By中のRはYを含む
希土類元素、即ちYlLa 、Ce 、Pr 、、Nd
、Pn+、Ss、Eu、Gd、Tb、Dy、Ho。
R in the composition formula R1-x-y Fe x By is a rare earth element containing Y, that is, YlLa, Ce, Pr,, Nd
, Pn+, Ss, Eu, Gd, Tb, Dy, Ho.

Er、Tl1l、Yb、LLIのうちの1種又は2種以
上が用いられる。
One or more of Er, Tl1l, Yb, and LLI are used.

金BM化物を主成分とする結晶質材料又は非晶質材料は
、R−Fc −B系合金の融点より低温で軟化又は溶融
するものであればよく、望ましくは軟化点又は融点がR
−Fe −8合金材料の焼結温度より低いものを用いる
。この材料としては、例えば結晶性又は非晶質のガラス
や、酸化鉛、酸化ビスマス、酸化珪素等の金属酸化物な
どがあげられる。これらは単独で使用しても、又2種以
上を併用してもよい。
The crystalline or amorphous material containing gold BM as a main component may be one that softens or melts at a lower temperature than the melting point of the R-Fc-B alloy, and preferably has a softening point or melting point of R.
-Fe Use a temperature lower than the sintering temperature of the -8 alloy material. Examples of this material include crystalline or amorphous glass, metal oxides such as lead oxide, bismuth oxide, and silicon oxide. These may be used alone or in combination of two or more.

作」し この発明による永久磁石材料は、R−Fe −8合金に
金属酸化物を主成分とする結晶質材料又は非晶質材料を
配合することにより、従来のものに比べて保磁力が向上
し、かつ保磁力のバラツキも小さくなるという利点を有
する。
The permanent magnet material of this invention has improved coercive force compared to conventional materials by blending a crystalline material or amorphous material whose main component is a metal oxide with the R-Fe-8 alloy. However, it also has the advantage that the variation in coercive force is reduced.

金属酸化物を主成分とする材料は、粉末冶金法により磁
石を製造する過程においてR−Fe −B溶製合金を粉
砕する時点、又は合金粉末を成形する時点で合金に添加
混合される。得られた混合粉末は従来法に従って(if
f場中で成形され、次いで焼結される。
A material containing a metal oxide as a main component is added to and mixed with an alloy at the time of crushing the R-Fe-B melted alloy or at the time of molding the alloy powder in the process of manufacturing a magnet using a powder metallurgy method. The obtained mixed powder was prepared according to the conventional method (if
f is formed in-situ and then sintered.

焼結時、合金と酸化物の反応はほと/Vどおこらず、ま
ず金属酸化物材料が軟化又は溶融し、粒界にあってフラ
ックス効果を発揮し、粒界を滑らかにしなからR−Fe
 −8の異常結晶粒成長を抑えることができる。従って
単位(4i区が小さくなり、かつ粒界に不純物として存
在するため、磁壁の移動が抑えられ、これにより永久磁
石として必要な保磁力を向上させる効果を発揮するもの
と考えられる。又、フラックス効果による緻密化が残W
I 16束密度、最大エネルギー積の向上をもたらす。
During sintering, almost no reaction between the alloy and the oxide occurs; first, the metal oxide material softens or melts and acts as a flux at the grain boundaries, smoothing the grain boundaries and causing R- Fe
-8 abnormal grain growth can be suppressed. Therefore, since the unit (4i section) becomes smaller and exists as an impurity at the grain boundary, the movement of the domain wall is suppressed, and this is thought to have the effect of improving the coercive force necessary for a permanent magnet. Densification due to effect remains W
I16 flux density, leading to an improvement in maximum energy product.

金y!酸化物を主成分とする結晶質材料又は非晶質材料
は、微mでも保磁力を向上させる効果が見られるが、添
加aが多ずぎると残留磁束密度とともに最大エネルギー
積が減少する傾向があるので、1重機%までが限度であ
る。
Money! Crystalline or amorphous materials containing oxides as a main component have the effect of improving coercive force even with a small amount of m, but if too much a is added, the maximum energy product tends to decrease along with the residual magnetic flux density. Therefore, the limit is 1% for heavy machinery.

尚、R1−x−y Fc x Byにおいて、0.55
≦×≦0.85としているのは、「e金員は多くなると
極端に保磁力が小さくなって永久磁石材料としての機能
が損われ、少なすぎると残留磁束密度が低くなり、最大
エネルギー積も小さくなるためである。yの範囲を0.
01以上0.15以下とするのは、B含Edが多くなる
と残留磁束密度が減少し、又少なすぎると保磁力の低下
を生じるためである。
In addition, in R1-x-y Fc x By, 0.55
The reason why ≦×≦0.85 is set is that ``If the amount of e-gold is too large, the coercive force will be extremely small and the function as a permanent magnet material will be impaired, and if it is too small, the residual magnetic flux density will be low and the maximum energy product will also be This is because the range of y is set to 0.
The reason for setting it to 0.01 or more and 0.15 or less is because if the B-containing Ed increases, the residual magnetic flux density will decrease, and if it is too small, the coercive force will decrease.

実施例 実施例1 Nd O,+5FQ O,75B o、+oなる組成の
合金を、高周波炉を用い、アルゴン雰囲気中で溶製した
。次いで溶製合金をスタンプミルで粗粉砕し、ポットミ
ルで平均粒径3 sv程度まで粉砕した。これに軟化点
500℃の硼珪酸鉛系ガラスフリットを0.1重ω%添
加混合した。この混合粉末を10KOeの磁場中で約1
,5t/cシの圧力をかけて型成形し、得られた成形体
をアルゴン雰囲気中、1100℃で1時間焼結し、次い
で空温まで急冷し、更に600℃で1時間熱処理を行っ
て磁石を製造した。
Examples Example 1 An alloy having the following compositions: Nd 2 O, +5FQ O, 75B o, +o was melted in an argon atmosphere using a high frequency furnace. Next, the ingot alloy was coarsely ground using a stamp mill, and then ground to an average particle size of about 3 sv using a pot mill. A lead borosilicate glass frit having a softening point of 500° C. was added to this in an amount of 0.1% by weight and mixed. This mixed powder was mixed in a magnetic field of 10KOe with a
, 5t/c pressure was applied to form the mold, and the obtained molded body was sintered at 1100°C for 1 hour in an argon atmosphere, then rapidly cooled to air temperature, and further heat treated at 600°C for 1 hour. Manufactured a magnet.

得られた磁石材料の残留磁束密度(Sr)、保磁力(e
Hc 、tHc )及び最大エネルギー積(B H) 
maxを調べたところ、表1に示す結果が得られた。
The residual magnetic flux density (Sr) and coercive force (e
Hc, tHc) and maximum energy product (BH)
When max was investigated, the results shown in Table 1 were obtained.

実施例2〜6 ガラスフリットの添加量を表1のとおりとする以外は実
施例1と同様にして、それぞれ磁石を製造し、特性を表
1に示した。
Examples 2 to 6 Magnets were manufactured in the same manner as in Example 1 except that the amount of glass frit added was as shown in Table 1, and the characteristics are shown in Table 1.

比較例1 ガラスフリットを添加しない以外は実施例1と同様にし
て磁石を製造し、特性を表1に示した。
Comparative Example 1 A magnet was manufactured in the same manner as in Example 1 except that no glass frit was added, and the characteristics are shown in Table 1.

比較例2 ガラスフリットの添加mを1.5i1fi%とする以外
は実施例1と同様にして磁石を製造し、特性を表1に示
した。
Comparative Example 2 A magnet was produced in the same manner as in Example 1 except that the addition m of glass frit was 1.5i1fi%, and the characteristics are shown in Table 1.

表1 実施例7〜12 Nd o、+3FQ O,78B O,Q9なる組成の
合金を用い、又ガラスフリットとして軟化点620℃の
結晶性硼酸亜鉛系ガラスを表2に示す聞で使用して実施
例1と同様に磁石を製造した。この磁石の特性を調べ、
表2に示した。
Table 1 Examples 7 to 12 Conducted using alloys with the compositions Ndo, +3FQ O, 78BO, Q9, and crystalline zinc borate glass with a softening point of 620°C as the glass frit in the conditions shown in Table 2. A magnet was manufactured in the same manner as in Example 1. Investigate the characteristics of this magnet,
It is shown in Table 2.

比較例3.4 ガラスフリッ]−の添加量をそれぞれO及び1.5ff
i1%とする以外は実施例7と同様にして磁石を製造し
、特性を表2に示した。
Comparative Example 3.4 Addition amount of glass frit]- was O and 1.5ff, respectively.
A magnet was manufactured in the same manner as in Example 7 except that i was 1%, and the characteristics are shown in Table 2.

実施例13〜18 Nd o、+o Pr O,05FQ O,75B o
、+oなる組成の合金を用い、又ガラスフリットとして
軟化点740℃の珪酸バリウムナトリウム系ガラスを表
3に示す砧で使用して実施例1と同様に磁石を製造した
Examples 13-18 Ndo, +o Pr O, 05FQ O, 75B o
A magnet was manufactured in the same manner as in Example 1 using alloys having the compositions , +o and barium sodium silicate glass having a softening point of 740° C. as shown in Table 3 as the glass frit.

この磁石の特性を表3に示した。Table 3 shows the characteristics of this magnet.

比較例5.6 ガラスフリットの添加量をそれぞれOll、5車壱%と
する以外は実施例13と同様にして磁石を製造し、特性
を表3に示した。
Comparative Example 5.6 Magnets were produced in the same manner as in Example 13, except that the amounts of glass frit added were Oll and 5%, respectively, and the characteristics are shown in Table 3.

表2 表3 発明の効果 実施例からも明らかなように、本発明の永久磁石材料は
従来のR−Fe −B光材料に比べて保磁力が改善され
、(lf t!で高い残留磁束密度及び最大エネルギー
積を有するものであり、実用上極めて優れた・磁石材料
である。
Table 2 Table 3 Effects of the Invention As is clear from the examples, the permanent magnet material of the present invention has improved coercive force compared to the conventional R-Fe-B optical material, and has a high residual magnetic flux density (lf t!). It has the highest energy product and is an extremely excellent magnetic material in practical use.

Claims (1)

【特許請求の範囲】 1(A)組成式R_1_−_x_−_yFe_xB_y
で表される化合物(但しRはYを含む希土類元素の1種
又は2種以上であり、0.55≦x≦0.85、0.0
1≦y≦0.15)と、 (B)金属酸化物を主成分とする結晶質材料及び非晶質
材料の1種又は2種以上 からなり、(B)の配合量が重量で1%以下(但し0を
除く)である永久磁石材料。
[Claims] 1(A) Composition formula R_1_-_x_-_yFe_xB_y
A compound represented by (where R is one or more rare earth elements including Y, 0.55≦x≦0.85, 0.0
1≦y≦0.15), and (B) one or more types of crystalline materials and amorphous materials containing metal oxide as the main component, and the blending amount of (B) is 1% by weight. A permanent magnetic material that is as follows (excluding 0):
JP60296522A 1985-12-25 1985-12-25 Improved permanent magnet material Pending JPS62151541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60296522A JPS62151541A (en) 1985-12-25 1985-12-25 Improved permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60296522A JPS62151541A (en) 1985-12-25 1985-12-25 Improved permanent magnet material

Publications (1)

Publication Number Publication Date
JPS62151541A true JPS62151541A (en) 1987-07-06

Family

ID=17834622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60296522A Pending JPS62151541A (en) 1985-12-25 1985-12-25 Improved permanent magnet material

Country Status (1)

Country Link
JP (1) JPS62151541A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528903U (en) * 1991-05-20 1993-04-16 安藤建設株式会社 Scale ruler
WO1998058394A1 (en) * 1997-05-28 1998-12-23 Mikhailin Stanislav Vasilievic Material for permanent magnets
CN1046173C (en) * 1992-09-25 1999-11-03 沈阳三联特种磁性材料有限公司 Process for manufacturing rare-earth permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0528903U (en) * 1991-05-20 1993-04-16 安藤建設株式会社 Scale ruler
CN1046173C (en) * 1992-09-25 1999-11-03 沈阳三联特种磁性材料有限公司 Process for manufacturing rare-earth permanent magnet
WO1998058394A1 (en) * 1997-05-28 1998-12-23 Mikhailin Stanislav Vasilievic Material for permanent magnets

Similar Documents

Publication Publication Date Title
JP4743211B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH07509103A (en) Magnetic materials and their manufacturing methods
JPS60144906A (en) Permanent magnet material
JPS62151541A (en) Improved permanent magnet material
JPH0146575B2 (en)
JPS60144908A (en) Permanent magnet material
JPS60144907A (en) Permanent magnet material
JPH0660367B2 (en) Method of manufacturing permanent magnet material
JP2598558B2 (en) permanent magnet
JPS62151542A (en) Improved permanent magnet material
JPS6181604A (en) Preparation of rare earth magnet
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPS62181403A (en) Permanent magnet
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH08148315A (en) Production of rare earth magnet
JPS62158852A (en) Permanent magnet material
JP4645336B2 (en) Rare earth sintered magnet and manufacturing method thereof
JPH0477066B2 (en)
JPS62151543A (en) Improved permanent magnet material
JP4972919B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4802927B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3588692B2 (en) Permanent magnet synchronous motor magnet
JPS62188747A (en) Permanent magnet material made of alloy containing fluorine
JP6278192B2 (en) Magnet powder, bonded magnet and motor