JPS6214953B2 - - Google Patents

Info

Publication number
JPS6214953B2
JPS6214953B2 JP10195179A JP10195179A JPS6214953B2 JP S6214953 B2 JPS6214953 B2 JP S6214953B2 JP 10195179 A JP10195179 A JP 10195179A JP 10195179 A JP10195179 A JP 10195179A JP S6214953 B2 JPS6214953 B2 JP S6214953B2
Authority
JP
Japan
Prior art keywords
film
silicon
polycrystalline silicon
gate electrode
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10195179A
Other languages
Japanese (ja)
Other versions
JPS5626469A (en
Inventor
Isamu Myagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP10195179A priority Critical patent/JPS5626469A/en
Publication of JPS5626469A publication Critical patent/JPS5626469A/en
Publication of JPS6214953B2 publication Critical patent/JPS6214953B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement

Description

【発明の詳細な説明】 本発明はシリコンゲート型電界効果トランジス
タに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silicon gate field effect transistor.

従来のシリコンゲート型電界効果トランジスタ
は、シリコン単結晶基板に熱酸化を施して得られ
る二酸化硅素膜をゲート絶縁膜とし、この絶縁膜
上には、気相成長法で被着させた多結晶シリコン
膜に3価あるいは5価の不純物を熱拡散等で浸入
させたゲート電極があり、また、ゲート電極は熱
拡散後に施す熱酸化で生成される二酸化硅素、あ
るいはガラス質の二酸化硅素で覆われているのが
一般的であつた。
In conventional silicon gate field effect transistors, the gate insulating film is a silicon dioxide film obtained by thermally oxidizing a silicon single crystal substrate, and polycrystalline silicon deposited by vapor phase growth is deposited on this insulating film. There is a gate electrode in which trivalent or pentavalent impurities are infiltrated into the film by thermal diffusion, etc., and the gate electrode is covered with silicon dioxide produced by thermal oxidation after thermal diffusion, or glassy silicon dioxide. It was common for there to be.

一方、金属(たとえばアルミニユーム)と上記
ゲート電極を、オーミツク接続をするために、ゲ
ート絶縁膜上の多結晶シリコンを覆う二酸化硅素
に写真蝕刻で開孔を設けることは、次の理由から
不可能であつた。
On the other hand, in order to make an ohmic connection between a metal (for example, aluminum) and the gate electrode, it is impossible to make holes by photolithography in the silicon dioxide covering the polycrystalline silicon on the gate insulating film for the following reasons. It was hot.

すなわち、上記多結晶シリコンの結晶粒径は、
熱拡散・熱酸化の熱処理で処理条件にも依存する
が、成長時の粒径より数倍から数十倍大きくな
り、結晶粒間に空隙が生じる。そのために上記開
孔を開けるための二酸化硅素のエツチング液(ガ
ス)が上記空隙から浸入して、ゲート絶縁膜をも
除去し、ゲート電極と基板を短絡させるからであ
る。
That is, the crystal grain size of the polycrystalline silicon is
Although it depends on the processing conditions during heat treatment such as thermal diffusion and thermal oxidation, the grain size becomes several to several tens of times larger than when grown, and voids are created between the crystal grains. This is because the silicon dioxide etching solution (gas) used to open the openings enters through the gaps, removing the gate insulating film and causing a short circuit between the gate electrode and the substrate.

そこで、ゲート電極をアルミニユーム等の金属
でオーミツク接続するためには、ゲート電極を形
成する多結晶シリコンをゲート絶縁膜外まで延長
してオーミツク接続用の領域を設ける必要があ
り、モノリシツク集積回路の集積度向上の妨げと
なつていた。
Therefore, in order to connect the gate electrode ohmicly with a metal such as aluminum, it is necessary to extend the polycrystalline silicon that forms the gate electrode to the outside of the gate insulating film to provide an area for the ohmic connection. This was an impediment to improving performance.

本発明の目的は従来のこの種のトランジスタの
上記欠点を除いた集積度の大きい電界効果トラン
ジスタを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly integrated field effect transistor which eliminates the above-mentioned drawbacks of conventional transistors of this type.

本発明による電界効果トランジスタは、ゲート
電極を第1の多結晶シリコン膜−ゲート絶縁膜の
エツチング材でエツチングされない物質−第2の
多結晶シリコン膜の順で積層する領域と、第1の
多結晶シリコン膜−多結晶第2のシリコン膜で積
層される領域で構成することを特徴とし、ゲート
絶縁膜上のゲート電極からオーミツク導出を可能
ならしめて、半導体モノリシツク集積回路の集積
度を向上させることが可能となる。
The field effect transistor according to the present invention includes a region in which a gate electrode is laminated in the order of a first polycrystalline silicon film, a material that is not etched by the etching agent for the gate insulating film, and a second polycrystalline silicon film, and a first polycrystalline silicon film. It is characterized by being composed of a region laminated with a silicon film and a polycrystalline second silicon film, and enables ohmic derivation from the gate electrode on the gate insulating film, thereby improving the degree of integration of semiconductor monolithic integrated circuits. It becomes possible.

以下、本発明の一実施例について、製造工程を
示し乍ら、特徴を詳しく説明する。
Hereinafter, the features of an embodiment of the present invention will be described in detail while showing the manufacturing process.

P導電型単結晶基板1に熱酸化を施して厚さ1
μ程度の二酸化硅素膜2を全面に生成させた後、
写真蝕刻によつて短形状に基板面を露出させる。
(第1図)。再び、熱酸化を施して厚さ800(A)゜程
度のゲート絶縁膜となる二酸化硅素膜3を形成す
る。次に気相成長法によつて、厚さ2000(A)゜程度
の多結晶シリコン膜4、厚さ500Å程度の窒化硅
素膜5、厚さ500Å程度の二酸化硅素膜6を被着
する。(第2図) 写真蝕刻によつて、二酸化硅素膜6の一部7を
除いて除去し、二酸化硅素膜片7をマスクとし
て、沸点近くまで温めたリン酸液中で窒化硅素膜
5を除去し、多結晶シリコン面4を露出させる
と、窒化硅素膜片8を得る(第3,4図)。次
に、弗酸水溶液にて二酸化硅素膜片7を除去す
る。この際、多結晶シリコン膜4は、気相成長時
の結晶粒径を大きくする程の熱処理工程を経てお
らず、同膜4がマスクの働きをして二酸化硅素膜
3はエツチングされない。
A P conductivity type single crystal substrate 1 is thermally oxidized to a thickness of 1
After forming a silicon dioxide film 2 of about μ on the entire surface,
The substrate surface is exposed in a rectangular shape by photolithography.
(Figure 1). Thermal oxidation is performed again to form a silicon dioxide film 3 having a thickness of about 800 (A) and serving as a gate insulating film. Next, by vapor phase growth, a polycrystalline silicon film 4 with a thickness of about 2000 (A) degrees, a silicon nitride film 5 with a thickness of about 500 Å, and a silicon dioxide film 6 with a thickness of about 500 Å are deposited. (Fig. 2) The silicon dioxide film 6 is removed except for a part 7 by photolithography, and the silicon nitride film 5 is removed in a phosphoric acid solution heated to near its boiling point using the silicon dioxide film piece 7 as a mask. Then, by exposing the polycrystalline silicon surface 4, a silicon nitride film piece 8 is obtained (FIGS. 3 and 4). Next, the silicon dioxide film piece 7 is removed using a hydrofluoric acid aqueous solution. At this time, the polycrystalline silicon film 4 has not been subjected to a heat treatment process sufficient to increase the crystal grain size during vapor phase growth, and the silicon dioxide film 3 is not etched because the polycrystalline silicon film 4 acts as a mask.

再び、気相成長法に因つて厚さ4000(Å)程度
の多結晶シリコン膜9を全面に被着する。このと
き、窒化シリコン膜片8で覆われる領域外の多結
晶シリコン膜4の面は同膜9と接触する。(第5
図) 次に写真蝕刻を施して、ゲート電極となる領域
にPR膜10を残す。プラズマエツチング法で多
結晶シリコン膜4,9を除去し、ゲート電極1
1,12を得る(第6,7図)。プラズマエツチ
ング法では多結晶シリコンだけでなく、窒化硅素
も腐蝕できるから、PR膜10は必ずしも窒化硅
素膜片7を第7図に見られる如く、包合する必要
はない。
Again, a polycrystalline silicon film 9 having a thickness of about 4000 (Å) is deposited over the entire surface using the vapor growth method. At this time, the surface of the polycrystalline silicon film 4 outside the region covered by the silicon nitride film piece 8 comes into contact with the same film 9. (5th
(Figure) Next, photolithography is performed to leave the PR film 10 in the area that will become the gate electrode. Polycrystalline silicon films 4 and 9 are removed by plasma etching, and gate electrode 1 is removed.
1 and 12 are obtained (Figures 6 and 7). Since the plasma etching method can corrode not only polycrystalline silicon but also silicon nitride, the PR film 10 does not necessarily need to encapsulate the silicon nitride film pieces 7 as shown in FIG.

次に、PR膜を除去した後、熱拡散(950℃、1
時間)で、リンを基板1中に浸入させた後、スチ
ーム雰囲気中で950℃、10分の熱酸化を施す。こ
のとき、基板中にN型半導体層のドレイン領域1
3、ソース領域14が形成され、これらの領域は
厚さ5000Å程度の二酸化硅素膜15,16で覆わ
れる。また前述の熱拡散熱酸化の熱処理で、多結
晶シリコン片11,12にも、リンが拡散されて
全てN型半導体となると同時に、同片11,12
の境界はなくなり、ゲート電極17を形成する。
尚、上記熱処理条件は、窒化硅素膜片8上の多結
晶シリコンが厚さ1000Å程度N型半導体として残
るように選択する。また、窒化膜片8直下にある
多結晶シリコン片11の領域をより抵抗率の低い
N型半導体にするために、更に窒化ガス雰囲気中
で1000℃20分の熱処理を追加して、リンを多結晶
シリコン中で再拡散させてもよい(第8図)。
Next, after removing the PR film, thermal diffusion (950℃, 1
After infiltrating phosphorus into the substrate 1 (time), thermal oxidation is performed at 950° C. for 10 minutes in a steam atmosphere. At this time, the drain region 1 of the N-type semiconductor layer is placed in the substrate.
3. Source regions 14 are formed, and these regions are covered with silicon dioxide films 15 and 16 having a thickness of about 5000 Å. In addition, in the thermal diffusion thermal oxidation heat treatment described above, phosphorus is also diffused into the polycrystalline silicon pieces 11 and 12, and at the same time, the same pieces 11 and 12 become all N-type semiconductors.
The boundary of the gate electrode 17 is eliminated and the gate electrode 17 is formed.
The above heat treatment conditions are selected so that the polycrystalline silicon on the silicon nitride film piece 8 remains as an N-type semiconductor with a thickness of about 1000 Å. In addition, in order to make the region of the polycrystalline silicon piece 11 directly under the nitride film piece 8 into an N-type semiconductor with lower resistivity, heat treatment was additionally performed at 1000°C for 20 minutes in a nitride gas atmosphere to increase the amount of phosphorus. It may also be re-diffused in crystalline silicon (FIG. 8).

次に、写真蝕刻によつてドレイン領域13、ソ
ース領域14、ゲート電極17上にある二酸化硅
素にコンタクト孔18,19,20を設ける(第
9図)。
Next, contact holes 18, 19, and 20 are formed in the silicon dioxide on the drain region 13, source region 14, and gate electrode 17 by photolithography (FIG. 9).

最後に、ドレイン電極、ソース電極、ゲート電
極からアルミ配線21,22,23を引き出せ
ば、第10図を平面図とし、第11図、第12図
が第10図のAA,BB′の断面図である所望のN
チヤンネル型のシリコンゲート型電界効果トラン
ジスタが得られる。
Finally, if the aluminum wirings 21, 22, and 23 are drawn out from the drain electrode, source electrode, and gate electrode, Fig. 10 is a plan view, and Figs. 11 and 12 are cross-sectional views of AA and BB' in Fig. 10. the desired N
A channel type silicon gate field effect transistor is obtained.

尚、ゲート電極17のコンタクト孔20は、第
10図に見られる如く、窒化硅素膜片8に含まれ
る様にしてあるから、開孔20を設ける際、二酸
化硅素のエツチング液は、窒化硅素膜片8で浸入 (弗酸:水=1:10) を阻まれ、ゲート絶縁膜の二酸化硅素3はエツチ
ングされない。従つて、ゲート電極17と基板1
7と基板1が短絡することが防止できる。また、
窒化シリコン膜片8は、ゲート電極であるN型多
結晶シリコン中に埋没させてあるために、電荷蓄
積現象等を惹起することはなく、本発明によるト
ランジスタの閾値電圧は、従来のシリコンゲート
型電界効果トランジスタと同程度の安定性を有す
る。
The contact hole 20 of the gate electrode 17 is included in the silicon nitride film piece 8 as shown in FIG. The silicon dioxide 3 of the gate insulating film is not etched because the penetration is blocked by the piece 8 (hydrofluoric acid:water = 1:10). Therefore, the gate electrode 17 and the substrate 1
7 and the substrate 1 can be prevented from being short-circuited. Also,
Since the silicon nitride film piece 8 is buried in the N-type polycrystalline silicon that is the gate electrode, it does not cause any charge accumulation phenomenon, and the threshold voltage of the transistor according to the present invention is lower than that of the conventional silicon gate type. It has stability comparable to that of field effect transistors.

本実施例での多結晶シリコン膜中に埋めた絶縁
膜8の代りとして、絶縁膜に限らず、ゲート絶縁
膜1のエツチング液(ガス)で腐蝕されない物質
層を少なくとも一層含む多重層を用いてもよいこ
とは明らかであろう。
In place of the insulating film 8 buried in the polycrystalline silicon film in this embodiment, it is possible to use not only an insulating film but also a multilayer including at least one material layer that is not corroded by the etching solution (gas) of the gate insulating film 1. It is obvious that this is a good thing.

本発明は、シリコンゲート型電界効果トランジ
スタにおけるチヤンネル領域上の多結晶シリコン
によるゲート電機から直接、金属配線を施せるか
らこの種のトランジスタによる半導体モノリシツ
ク集積回路のパターン設計の自由度が増し、集積
度向上に寄与する。
The present invention allows metal wiring to be applied directly from the polycrystalline silicon gate circuit on the channel region of a silicon gate field effect transistor, increasing the degree of freedom in pattern design of semiconductor monolithic integrated circuits using this type of transistor, and improving the degree of integration. Contribute to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図、第5図〜第6図、第8図〜第
9図、および第11図は本発明の実施例を説明す
るための工程順の断面図であり、第4図、第7図
および第10図は、夫々第3図、第6図および第
11図の平面図である。第11図、第12図は、
第10図の夫々AA′,BB′における断面図であ
る。 1……P型単結晶基板、2・15・16,3…
…熱酸化による二酸化硅素膜、同膜のゲート絶縁
膜、4・9,11・12……気相成長法による多
結晶シリコン膜、同膜片、5,8……気相成長法
による窒化硅素膜、同膜片、6,7……気相成長
法による二酸化硅素膜、同膜片、10……PR
膜、13,14……N導電型ドレイン拡散層、同
ソース層、17……ゲート電極、18,19,2
0……ドレイン、ソース、ゲートコンタクト孔、
21,22,23……ドレイン、ソース、ゲート
電極引出し用アルミ配線。
1 to 3, 5 to 6, 8 to 9, and 11 are cross-sectional views in the order of steps for explaining embodiments of the present invention, and FIG. , 7 and 10 are plan views of FIGS. 3, 6 and 11, respectively. Figures 11 and 12 are
10 are cross-sectional views at AA' and BB', respectively; FIG. 1...P-type single crystal substrate, 2, 15, 16, 3...
...Silicon dioxide film by thermal oxidation, gate insulating film of the same film, 4, 9, 11, 12... Polycrystalline silicon film, piece of the same film by vapor phase growth method, 5, 8... Silicon nitride film by vapor phase growth method Film, piece of the same film, 6, 7...Silicon dioxide film by vapor phase growth method, piece of the same film, 10...PR
Film, 13, 14... N conductivity type drain diffusion layer, same source layer, 17... Gate electrode, 18, 19, 2
0...Drain, source, gate contact hole,
21, 22, 23... Aluminum wiring for leading out drain, source, and gate electrodes.

Claims (1)

【特許請求の範囲】[Claims] 1 ゲート電極が第1の多結晶シリコン膜、ゲー
ト絶縁膜のエツチング材でエツチングされない物
質および第2の多結晶シリコン膜の順で積層され
る領域と、該第1の多結晶シリコン膜および該第
2の多結晶シリコン膜の順で積層される領域とを
有することを特徴とする電界効果トランジスタ。
1. A region in which a gate electrode is laminated in this order of a first polycrystalline silicon film, a substance that is not etched with the gate insulating film etching agent, and a second polycrystalline silicon film, and a region in which the first polycrystalline silicon film and the second polycrystalline silicon film 1. A field effect transistor comprising a region in which two polycrystalline silicon films are stacked in this order.
JP10195179A 1979-08-10 1979-08-10 Field-effect transistor Granted JPS5626469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10195179A JPS5626469A (en) 1979-08-10 1979-08-10 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10195179A JPS5626469A (en) 1979-08-10 1979-08-10 Field-effect transistor

Publications (2)

Publication Number Publication Date
JPS5626469A JPS5626469A (en) 1981-03-14
JPS6214953B2 true JPS6214953B2 (en) 1987-04-04

Family

ID=14314191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10195179A Granted JPS5626469A (en) 1979-08-10 1979-08-10 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPS5626469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501319A (en) * 1988-04-19 1991-03-22 エス・ベー・エフ・アウト ‐ エレクトリツク・ゲー・エムベーハー Electric motor for wiper motors to drive windshield wiper devices in automobiles
JPH087803Y2 (en) * 1989-09-14 1996-03-04 自動車電機工業株式会社 Motor with reduction mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4789883A (en) * 1985-12-17 1988-12-06 Advanced Micro Devices, Inc. Integrated circuit structure having gate electrode and underlying oxide and method of making same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501319A (en) * 1988-04-19 1991-03-22 エス・ベー・エフ・アウト ‐ エレクトリツク・ゲー・エムベーハー Electric motor for wiper motors to drive windshield wiper devices in automobiles
JPH087803Y2 (en) * 1989-09-14 1996-03-04 自動車電機工業株式会社 Motor with reduction mechanism

Also Published As

Publication number Publication date
JPS5626469A (en) 1981-03-14

Similar Documents

Publication Publication Date Title
JPS588139B2 (en) Manufacturing method of semiconductor device
JPS6252963A (en) Manufacture of bipolar transistor
JPS6214953B2 (en)
JP2762473B2 (en) Method for manufacturing semiconductor device
JPH0473296B2 (en)
JP2712401B2 (en) Method for manufacturing semiconductor device
JPS6231507B2 (en)
JPH0511668B2 (en)
JPH0127589B2 (en)
JPS5933271B2 (en) Manufacturing method of semiconductor device
JP2707536B2 (en) Method for manufacturing semiconductor device
JPH0117256B2 (en)
JPS6259463B2 (en)
JP2761334B2 (en) Semiconductor device manufacturing method
JPS6113383B2 (en)
JP2822382B2 (en) Semiconductor device and manufacturing method thereof
JPH0155585B2 (en)
JPS6117144B2 (en)
JPS5826177B2 (en) Manufacturing method of semiconductor device
JPS6159664B2 (en)
JPH0352221B2 (en)
JPS6160578B2 (en)
JPH06196553A (en) Semiconductor device
JPS6255305B2 (en)
JPS5980968A (en) Manufacture of semiconductor integrated circuit device