JPS6159664B2 - - Google Patents

Info

Publication number
JPS6159664B2
JPS6159664B2 JP2529179A JP2529179A JPS6159664B2 JP S6159664 B2 JPS6159664 B2 JP S6159664B2 JP 2529179 A JP2529179 A JP 2529179A JP 2529179 A JP2529179 A JP 2529179A JP S6159664 B2 JPS6159664 B2 JP S6159664B2
Authority
JP
Japan
Prior art keywords
film
gate electrode
gate
insulating film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2529179A
Other languages
Japanese (ja)
Other versions
JPS55118674A (en
Inventor
Isamu Myagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2529179A priority Critical patent/JPS55118674A/en
Priority to US06/127,337 priority patent/US4343078A/en
Publication of JPS55118674A publication Critical patent/JPS55118674A/en
Publication of JPS6159664B2 publication Critical patent/JPS6159664B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/66583Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with initial gate mask or masking layer complementary to the prospective gate location, e.g. with dummy source and drain contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、特に絶
縁ゲート型電界効果トランジスタの製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing an insulated gate field effect transistor.

従来の絶縁ゲート型電界効果トランジスタの一
つは、一導電型の半導体基板に逆導電型のドレイ
ン・ソース領域を形成し、これらの領域間の半導
体基板の表面に薄い絶縁ゲート膜を形成し、しか
る後ドレイン・ソース領域上方に被着する絶縁被
膜に開孔を設けてドレイン・ソース領域よりオー
ミツク電極を導出しこれと共にゲート膜上にゲー
ト電極を設けて得られる。
One of the conventional insulated gate field effect transistors is to form drain and source regions of opposite conductivity type on a semiconductor substrate of one conductivity type, and to form a thin insulated gate film on the surface of the semiconductor substrate between these regions. Thereafter, an opening is formed in the insulating film deposited above the drain/source region, an ohmic electrode is led out from the drain/source region, and a gate electrode is provided on the gate film together with the ohmic electrode.

この種の製造方法によれば写真蝕刻によつて絶
縁ゲート膜領域をドレイン・ソース領域間に位置
合せを行なうことからこの種のトランジスタの幾
何学的形状が大きくなり半導体モノリジツクIC
の集積度向上を妨げていた。また同じ理由によつ
てゲート電極とドレイン・ソース領域は夫々薄い
絶縁ゲート膜を挾んで上下に重なる領域が生じる
ため、ゲート電極が浮遊電気容量を持ち、この種
の絶縁ゲート型トランジスタの電気的特性向上が
妨げられるという欠点を有する。
According to this type of manufacturing method, the insulated gate film region is aligned between the drain and source regions by photolithography, which increases the geometrical shape of this type of transistor and makes it possible to create a semiconductor monolithic IC.
This was hindering the improvement of the degree of integration. In addition, for the same reason, the gate electrode and the drain/source regions overlap each other with a thin insulating gate film in between, so the gate electrode has a floating capacitance, which causes electrical characteristics of this type of insulated gate transistor. It has the disadvantage that improvement is hindered.

一方、上記の絶縁ゲート型トランジスタの欠点
を改良すべく、一導電型の半導体基板表面に薄い
絶縁ゲート膜を形成し、しかる後に多結晶シリコ
ン膜を気相成長しこの多結晶シリコン膜を選択腐
蝕してゲート電極形成部分のみに多結晶シリコン
を残ししかる後に不純物を拡散酸化することに因
つて基板と逆導電型のドレイン・ソース領域とゲ
ート電極を同時に形成し、しかる後に表面に被着
する絶縁膜に開孔を設けてドレイン・ソース領域
並びにゲート電極よりオーミツク電極を導出して
得られるシリコンゲート型電界効果型トランジス
タが提案された。
On the other hand, in order to improve the drawbacks of the above-mentioned insulated gate transistor, a thin insulated gate film is formed on the surface of a semiconductor substrate of one conductivity type, and then a polycrystalline silicon film is grown in a vapor phase, and this polycrystalline silicon film is selectively etched. After that, polycrystalline silicon is left only in the gate electrode formation part, and then impurities are diffused and oxidized to simultaneously form the drain/source region and gate electrode of the opposite conductivity type to the substrate, and then the insulation is deposited on the surface. A silicon gate field effect transistor has been proposed in which an ohmic electrode is led out from the drain/source region and gate electrode by providing an opening in the film.

しかし、多結晶シリコンは不純物の拡散酸化後
にゲート電極の機能を果す必要からその膜厚は薄
くできず5000〜8000Åを必要とする。
However, since polycrystalline silicon needs to function as a gate electrode after diffusion and oxidation of impurities, its film thickness cannot be made thin and requires a thickness of 5,000 to 8,000 Å.

そのため多結晶シリコンの選択腐蝕の精度が悪
くなり、絶縁ゲート型電界効果トランジスタの電
気的特性に大きく寄与するトランジスタのチヤン
ネル長を精度よく短くすることが困難であつた。
As a result, the accuracy of selective corrosion of polycrystalline silicon deteriorates, making it difficult to accurately shorten the channel length of the transistor, which greatly contributes to the electrical characteristics of the insulated gate field effect transistor.

本発明の目的は以上の各種絶縁ゲート型電界効
果トランジスタの各欠点を除去し、製造容易にし
て、高精度の短チヤンネルを有する絶縁ゲート型
電界効果トランジスタの製造方法を提供すること
にある。
It is an object of the present invention to provide a method of manufacturing an insulated gate field effect transistor having short channels with high accuracy by eliminating the drawbacks of the various insulated gate field effect transistors described above and facilitating manufacturing.

本発明による絶縁ゲート型電界効果トランジス
タの製造方法は、一導電型半導体基板の一主平面
を絶縁被膜とこれよりも薄いゲート絶縁被膜で覆
う工程と該ゲート絶縁被膜上にゲート電極となる
被膜を形成する工程と該ゲート電極のみあるいは
写真蝕刻工程を追加して得るPRレジスト膜と該
ゲート電極をマスクとして上記絶縁被膜を除去し
基板面を露出させる工程と、この露出部より不純
物を浸入させて酸化し基板と逆導電型のドレイン
およびソース領域を形成する工程と、ドレイン・
ソース領域に写真蝕刻によつて開孔を形成しオー
ミツク電極を導出する工程とを含むことを特徴と
する。
The method for manufacturing an insulated gate field effect transistor according to the present invention includes a step of covering one principal plane of a semiconductor substrate of one conductivity type with an insulating film and a thinner gate insulating film, and forming a film to become a gate electrode on the gate insulating film. a step of forming the gate electrode, a PR resist film obtained by adding only the gate electrode or a photo-etching step, a step of removing the insulating film using the gate electrode as a mask to expose the substrate surface, and a step of infiltrating impurities from this exposed portion. A process of oxidizing to form drain and source regions of opposite conductivity type to the substrate, and
The method is characterized in that it includes the step of forming an opening in the source region by photolithography and leading out an ohmic electrode.

本発明によれば一導電型の半導体基板表面の薄
いゲート絶縁膜をマスクとして、基板と逆導電型
のドレイン・ソース領域が自己整合で形成され、
且つゲート電極とドレイン(ソース)領域の一部
が、該ゲート絶縁膜より厚い絶縁膜を挾んで重な
る絶縁ゲート型電界効果トランジスタが得られ
る。
According to the present invention, using a thin gate insulating film on the surface of a semiconductor substrate of one conductivity type as a mask, drain and source regions of the opposite conductivity type to the substrate are formed in self-alignment,
In addition, an insulated gate field effect transistor is obtained in which the gate electrode and the drain (source) region partially overlap with an insulating film thicker than the gate insulating film interposed therebetween.

次に本発明の一実施例を第1図を参照して説明
する。
Next, one embodiment of the present invention will be described with reference to FIG.

P型シリコン単結晶基板1を全面熱酸化するこ
とによつて2000〜4000Å程度に成長した二酸化け
い素膜2に写真蝕刻を施し開孔し、しかる後再び
熱酸化し厚さ400〜800Åの薄いゲート絶縁膜とな
る二酸化けい素膜3を成長する(第1図A,
A′)、次に厚さ約6000Åの多結晶シリコン膜を気
相成長した後、写真蝕刻でゲート電極となる部分
4を残し他を除去する(第1図B,B′)。
A silicon dioxide film 2 grown to a thickness of about 2,000 to 4,000 Å by thermally oxidizing the entire surface of a P-type silicon single crystal substrate 1 is photo-etched to open holes, and then thermally oxidized again to form a thin film of 400 to 800 Å in thickness. A silicon dioxide film 3 that will become a gate insulating film is grown (see Fig. 1A,
A') Next, after a polycrystalline silicon film with a thickness of about 6000 Å is grown in a vapor phase, the remaining part is removed by photolithography, leaving only the part 4 that will become the gate electrode (FIGS. 1B and B').

次に写真蝕刻でレジスト膜に開孔5を設け(第
1図C,C′)、多結晶シリコン膜4とレジスト膜
をマスクとして二酸化けい素膜2をゲート絶縁膜
3の近傍まで除去し開孔7を設けて基板1表面を
露出させた後PRレジスト膜を除去する(第1図
D)。しかる後に多結晶シリコン膜片4並びに開
孔7から基板1にリンを拡散酸化しN導電型のド
レイン・ソース領域8とゲート電極9を同時形成
する(第7図E)。次に写真蝕刻に依つてドレイ
ン・ソース領域8上方、並びにゲート電極上方に
開孔を設けた後アルミニユーム配線を施してNチ
ヤンネル型電界効果トランジスタが得られる。
Next, an opening 5 is formed in the resist film by photolithography (FIG. 1 C, C'), and the silicon dioxide film 2 is removed to the vicinity of the gate insulating film 3 using the polycrystalline silicon film 4 and the resist film as a mask. After opening the hole 7 and exposing the surface of the substrate 1, the PR resist film is removed (FIG. 1D). Thereafter, phosphorus is diffused and oxidized into the substrate 1 through the polycrystalline silicon film piece 4 and the opening 7 to simultaneously form an N conductivity type drain/source region 8 and a gate electrode 9 (FIG. 7E). Next, holes are formed above the drain/source region 8 and above the gate electrode by photolithography, and aluminum wiring is then formed to obtain an N-channel field effect transistor.

一方、二酸化けい素膜2をエツチングする工程
(第1図D)でオーバエツチングにより多結晶シ
リコン膜片4と基板1間の薄いゲート絶縁膜2の
一部が過度にエツチングされた場合には、この空
隙を熱酸化に依つて二酸化けい素で満たす工程
(第1図E)を追加し、しかる後にリンをメルト
スルー拡散し酸化して、上記と同様の工程を施し
てNチヤンネル型電界効果トランジスタが得られ
る。
On the other hand, if a part of the thin gate insulating film 2 between the polycrystalline silicon film piece 4 and the substrate 1 is excessively etched due to overetching in the step of etching the silicon dioxide film 2 (FIG. 1D), By adding a step of filling this void with silicon dioxide by thermal oxidation (Fig. 1E), then melt-diffusion and oxidation of phosphorus, and performing the same steps as above, an N-channel field effect transistor is formed. is obtained.

次に第2図を参照して本発明の他の実施例を説
明する。
Next, another embodiment of the present invention will be described with reference to FIG.

P型単結晶基板10を全面酸化して被着した膜
厚5000〜8000Åの二酸化けい素膜11に写真蝕刻
によつて開孔12を設ける(第2図A)。しかる
後に全面に気相成長によつて1000〜2000Åの窒化
シリコン膜13を被着させ、次にスチーム雰囲気
中、1000℃、100分の熱酸化で、窒化膜の一部を
酸化して、約100Å二酸化けい素膜14を生成さ
せる(第2図B)。次に写真蝕刻によつて、この
二酸化けい素膜に開孔を設けて、フオトレジスト
を除去した後、この二酸化けい素膜をマスクとし
て窒化シリコン膜13を除去して、基板10の表
面を露出させる(第2図C)。次にマスクとした
二酸化けい素膜14を全て除去し、しかる後にス
チーム雰囲気中、950℃ 10分の熱酸化を施して
基板の露出面を二酸化けい素に変えて500〜800Å
のゲート絶縁膜15を形成する(第2図D)。
Openings 12 are formed by photolithography in a silicon dioxide film 11 having a thickness of 5,000 to 8,000 Å, which is deposited by oxidizing the entire surface of the P-type single crystal substrate 10 (FIG. 2A). Thereafter, a silicon nitride film 13 with a thickness of 1000 to 2000 Å is deposited on the entire surface by vapor phase growth, and then a portion of the nitride film is oxidized by thermal oxidation at 1000°C for 100 minutes in a steam atmosphere. A silicon dioxide film 14 of 100 Å is formed (FIG. 2B). Next, holes are formed in this silicon dioxide film by photolithography, the photoresist is removed, and the silicon nitride film 13 is removed using this silicon dioxide film as a mask to expose the surface of the substrate 10. (Figure 2C). Next, the silicon dioxide film 14 used as a mask is completely removed, and then thermal oxidation is performed at 950°C for 10 minutes in a steam atmosphere to change the exposed surface of the substrate to silicon dioxide with a thickness of 500 to 800 Å.
A gate insulating film 15 is formed (FIG. 2D).

しかる後に多結晶シリコンを全面に被着させ、
写真蝕刻によつて、ゲート電極となる部分16を
残す(第2図E,E′)。次にこのゲート電極とな
る多結晶シリコン膜片16をマスクとして窒化膜
13を全て除去すればゲート絶縁膜15の幾何形
状は全く変らない(第2図F)。しかる後に、リ
ンを基板1と多結晶シリコン片16に拡散によつ
て浸入させて酸化を施し、N伝導型のドレイン・
ソース領域17、ゲート電極18を形成すれば第
2図Gに見られる如きNチヤンネル型電界効果ト
ランジスタが得られる。
After that, polycrystalline silicon is deposited on the entire surface,
By photolithography, a portion 16 that will become the gate electrode is left (FIG. 2 E, E'). Next, if the nitride film 13 is completely removed using the polycrystalline silicon film piece 16 that will become the gate electrode as a mask, the geometrical shape of the gate insulating film 15 will not change at all (FIG. 2F). Thereafter, phosphorus is diffused into the substrate 1 and the polycrystalline silicon piece 16 and oxidized to form an N-conducting drain.
By forming the source region 17 and the gate electrode 18, an N-channel field effect transistor as shown in FIG. 2G is obtained.

本実施例では第1図Cで対応するフオトレジス
ト膜6が不用であることと、第2図Dで生成した
ゲート絶縁膜15は後のすべての工程でも幾何形
状は変らないことを特徴としている。
This embodiment is characterized in that the photoresist film 6 corresponding to FIG. 1C is unnecessary, and that the geometry of the gate insulating film 15 produced in FIG. 2D does not change during all subsequent steps. .

本発明のこれらの実施例は次に述べる数々の利
点を有する。
These embodiments of the invention have a number of advantages as described below.

第1に各実施例で見られる如く、ドレイン・ソ
ース領域は多結晶シリコン膜片4,16と薄い二
酸化けい素膜3,15との接触面をマスクとして
セルフアライメントになつており、第7図D、第
2図Fに見られる如く、多結晶シリコン膜片4,
16下の間隙より基板1,10にリンを浸入させ
るために、本発明のトランジスタのチヤンネル長
は多結晶シリコン膜片4,16の作製精度に依存
せず第1図A、第2図C,Dに於ける薄い二酸化
けい素膜3,15の幾何学的形状の作製精度に依
つて決定される。
First, as seen in each embodiment, the drain/source regions are self-aligned using the contact surfaces between the polycrystalline silicon film pieces 4, 16 and the thin silicon dioxide films 3, 15 as masks, as shown in FIG. D. As seen in FIG. 2F, polycrystalline silicon film piece 4,
In order to allow phosphorus to infiltrate into the substrates 1, 10 from the gap below 16, the channel length of the transistor of the present invention does not depend on the manufacturing precision of the polycrystalline silicon film pieces 4, 16, and is set as shown in FIG. 1A, FIG. 2C, It is determined depending on the manufacturing precision of the geometrical shape of the thin silicon dioxide films 3 and 15 in D.

一方薄い二酸化けい素膜3,15の幾何学的形
状は膜厚1000〜2000Åの二酸化けい素膜2(窒化
膜13)、のエツチング精度で決定されるが、こ
の種のエツチングは、4000〜6000Åの多結晶シリ
コンのエツチングと比べてより精度よく制御可能
であるから、多結晶シリコン膜のエツチングに依
つてチヤンネル長が決定される従来のシリコンゲ
ート型電界効果トランジスタよりも容易に短チヤ
ンネルのトランジスタが実現できる。
On the other hand, the geometric shapes of the thin silicon dioxide films 3 and 15 are determined by the etching accuracy of the silicon dioxide film 2 (nitride film 13) with a thickness of 1000 to 2000 Å, but this type of etching is limited to 4000 to 6000 Å. This allows for more precise control than etching of polycrystalline silicon, making it easier to create short channel transistors than conventional silicon gate field effect transistors, where the channel length is determined by etching the polycrystalline silicon film. realizable.

第2に従来のシリコンゲート型電界効果トラン
ジスタは短チヤンネル化に従つてゲート電極とな
る多結晶シリコンの幾何学的形状はチヤンネル幅
方向に細くする必要があり、そのために多結晶シ
リコンによるゲート電極のチヤンネル幅方向の内
部抵抗が増大し、この種のトランジスタの電気的
特性を低下させていたが、本実施例では第1図
E、第2図Gに見られる如くチヤンネル長とゲー
ト電極となる多結晶シリコン膜片の幾何形状は独
立に決定できるからこの種の欠点は除去される。
Second, as the channels of conventional silicon gate field effect transistors become shorter, the geometric shape of the polycrystalline silicon that serves as the gate electrode needs to be narrower in the channel width direction. The internal resistance in the channel width direction increases, deteriorating the electrical characteristics of this type of transistor, but in this example, as shown in FIGS. 1E and 2G, the channel length and the gate electrode This type of drawback is eliminated since the geometry of the crystalline silicon film pieces can be determined independently.

第3図、第4図は本発明の他の利点を説明する
ためのものであり、第3図は、第1図C′の多結
晶シリコン片4が“ト”の字型形状19になつて
いる点を除けば他は全て同様であり、第4図は本
説明例での拡散層領域部のみを示したものであ
る。
3 and 4 are for explaining other advantages of the present invention, and FIG. 3 shows that the polycrystalline silicon piece 4 of FIG. Everything else is the same except that FIG. 4 shows only the diffusion layer region in this example.

さて、PRレジスト開孔部20で“ト”の字型
多結晶シリコン膜片19をマスクとして、第1図
Aの二酸化けい素膜2に相当する部分を除去すれ
ば、多結晶シリコン膜片19の引出し部直下は空
隙となり、次工程の不純物拡散酸化によつて生じ
るドレイン・ソース領域は、従来のシリコンゲー
ト型電界効果トランジスタでは片19の引出し部
直下は不純物が拡散されず、ドレイン(あるいは
ソース)領域は2つに分離されていたのであるが
本発明では、第4図に示す如く、片19の直下で
拡散層は分離されずに形成されると同時にゲート
電極は拡散酸化に生じる二酸化けい素によつて各
拡散層領域とは電気的に絶縁されている。従つて
本発明ではトランジスタのゲート電極は任意の方
向から取り出すことが可能となりモノリジツク半
導体集積回路の集積度向上に寄与できる。
Now, if we remove the portion corresponding to the silicon dioxide film 2 in FIG. In the conventional silicon gate field effect transistor, impurities are not diffused directly under the lead-out part of piece 19, and the drain/source region is created by impurity diffusion oxidation in the next process. ) region was separated into two regions, but in the present invention, as shown in FIG. It is electrically insulated from each diffusion layer region by the element. Therefore, in the present invention, the gate electrode of the transistor can be taken out from any direction, which can contribute to improving the degree of integration of monolithic semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A〜Fは本発明の一実施例によるシリコ
ンゲート型電界効果トランジスタ製造の各工程に
おける断面図であり、第1図A′〜C′は第1図A
〜Cに対応した平面図である。第2図A〜Gは本
発明の他の実施例を説明するための工程順の断面
図であり、第2図E′は第2図Eに対応した平面
図である。第3図および第4図は本発明の利点を
説明するための平面図であり特に第4図は拡散層
領域を示すものである。 1,10……半導体基板、2,11……絶縁
膜、13……シリコン窒化膜。
1A to 1F are cross-sectional views at each step of manufacturing a silicon gate field effect transistor according to an embodiment of the present invention, and FIGS. 1A' to C' are sectional views of FIGS.
It is a top view corresponding to ~C. FIGS. 2A to 2G are cross-sectional views in the order of steps for explaining another embodiment of the present invention, and FIG. 2E' is a plan view corresponding to FIG. 2E. 3 and 4 are plan views for explaining the advantages of the present invention, and in particular, FIG. 4 shows the diffusion layer region. 1, 10... Semiconductor substrate, 2, 11... Insulating film, 13... Silicon nitride film.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体基板の一主平面に絶縁被膜と
ゲート絶縁膜を形成する工程と、該ゲート絶縁被
膜上にゲート電極となる被膜を形成する工程と、
上記絶縁被膜を上記ゲート電極をマスクとして除
去し該基板面を露出させる工程と、該露出部よ
り、逆導電型の不純物を上記基板に侵入させて該
基板中に逆導電型のドレインおよびソース領域を
形成する工程とを含むことを特徴とする半導体装
置の製造方法。
1. A step of forming an insulating film and a gate insulating film on one principal plane of a semiconductor substrate of one conductivity type, and a step of forming a film to become a gate electrode on the gate insulating film.
removing the insulating film using the gate electrode as a mask to expose the substrate surface; and infiltrating impurities of opposite conductivity type into the substrate from the exposed portion to form drain and source regions of opposite conductivity type in the substrate. A method of manufacturing a semiconductor device, the method comprising: forming a semiconductor device.
JP2529179A 1979-03-05 1979-03-05 Fabricating method of semiconductor device Granted JPS55118674A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2529179A JPS55118674A (en) 1979-03-05 1979-03-05 Fabricating method of semiconductor device
US06/127,337 US4343078A (en) 1979-03-05 1980-03-05 IGFET Forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2529179A JPS55118674A (en) 1979-03-05 1979-03-05 Fabricating method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS55118674A JPS55118674A (en) 1980-09-11
JPS6159664B2 true JPS6159664B2 (en) 1986-12-17

Family

ID=12161905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2529179A Granted JPS55118674A (en) 1979-03-05 1979-03-05 Fabricating method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS55118674A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153370A (en) * 1979-05-18 1980-11-29 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPS55118674A (en) 1980-09-11

Similar Documents

Publication Publication Date Title
US4425700A (en) Semiconductor device and method for manufacturing the same
US4074304A (en) Semiconductor device having a miniature junction area and process for fabricating same
US4306915A (en) Method of making electrode wiring regions and impurity doped regions self-aligned therefrom
JPS58139468A (en) Semiconductor device and method of producing same
JP3229665B2 (en) Method of manufacturing MOSFET
JPH04348077A (en) Thin-film transistor
JPH08274166A (en) Semiconductor device and its manufacture
JPS5918874B2 (en) hand tai souchi no seizou houhou
JPS6159664B2 (en)
US4343078A (en) IGFET Forming method
JPH0127589B2 (en)
JPS6231507B2 (en)
JPS6237543B2 (en)
JPS6013313B2 (en) Manufacturing method of semiconductor device
JP2594121B2 (en) Method for manufacturing semiconductor device
JPS6294985A (en) Manufacture of mos semiconductor device
JP2817184B2 (en) Method for manufacturing semiconductor device
JPH0582066B2 (en)
JPH0475346A (en) Manufacture of semiconductor device
JPS5943832B2 (en) Manufacturing method of semiconductor device
JPS5838936B2 (en) hand dryer
JPS6126223B2 (en)
JPS6113392B2 (en)
JPS621256B2 (en)
JPH07245339A (en) Semiconductor device and its manufacture