JPS6294985A - Manufacture of mos semiconductor device - Google Patents

Manufacture of mos semiconductor device

Info

Publication number
JPS6294985A
JPS6294985A JP23573985A JP23573985A JPS6294985A JP S6294985 A JPS6294985 A JP S6294985A JP 23573985 A JP23573985 A JP 23573985A JP 23573985 A JP23573985 A JP 23573985A JP S6294985 A JPS6294985 A JP S6294985A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
oxide film
forming
region
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23573985A
Other languages
Japanese (ja)
Inventor
Teiichirou Nishisaka
禎一郎 西坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23573985A priority Critical patent/JPS6294985A/en
Publication of JPS6294985A publication Critical patent/JPS6294985A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the MOS semiconductor device which is effective for the enhancement in velocity of a device by reducing a junction capacity by reducing a junction area of a source and drain region diffusion layer of a MOS transistor and reducing a junction area with a channel stopper layer as much as possible. CONSTITUTION:On a P-type semiconductor substrate 1, a channel stopper region 2 is formed in an inactive region, followed by selective oxidation to form a field insulating oxide film 3, and a gate oxide film 4 is formed in an active region. Next, a gate electrode 5 and a thermal oxide film 6 are formed on the gate oxide film 4 by photo-etching technique, etc. By the sufficient thermal oxidation of the whole surface of the semiconductor substrate, thermal oxidation films 8 and 9 are formed on the P-type semiconductor substrate 1 and on a silicon nitride film 7, respectively. After removing the silicon nitride film selectively, an opening 10 is formed in the active region of the P-type semiconductor substrate 1 and a polysilicon layer 11 is formed. Next, the polysilicon layer 11 is patterned and an N-type diffusion layer 12 is formed by heat treatment. Then an interlaminar insulating film 13 is formed over the entire surface of the semiconductor substrate. Lastly, an opening 14 is formed and an aluminum electrode 15 is formed there.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMOS型半導体装置の製造方法に関し、特にソ
ース・ドレイン領域拡散層とコンタクト部とゲート電極
を自己整合的に形成し、小型化に適し、しかもソース・
ドレイン拡散層の接合容量を囲域できるMOS型半導体
装置の製造方法に関するO 〔従来の技術〕 従来、MOa型トランジスタのソース及びドレイン領域
は、ゲート電極とフィールド絶縁層に対して自己整合法
によシ形成されていた。従って第2図の構造を有してい
た。第2図において、101はP型半導体基板、103
はフィールド絶縁酸化膜、102はフィールド絶縁叡化
膜領域直下の基板表面に形成された基板と同導電型のチ
ャンネルストッパ、104はゲート酸化膜、105は多
結晶シリコンゲート電極、106は多結晶シリコンゲー
ト電極の外側に形成された熱酸化膜、107はフィール
ド絶縁酸化膜103と多結晶シリコンゲート電極105
,106によシ自己整合的に形成されたソース・ドレイ
ン用のN型拡散層、108は層間絶縁膜、109はコン
タクト部、110はアルミニウム電極である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a MOS type semiconductor device, and in particular, a method for forming a source/drain region diffusion layer, a contact portion, and a gate electrode in a self-aligned manner to achieve miniaturization. Suitable and source
[Related technology] Conventionally, the source and drain regions of an MOa transistor are formed using a self-alignment method with respect to a gate electrode and a field insulating layer. It was formed. Therefore, it had the structure shown in FIG. In FIG. 2, 101 is a P-type semiconductor substrate, 103
102 is a field insulating oxide film, 102 is a channel stopper of the same conductivity type as the substrate formed on the substrate surface directly under the field insulating oxide film region, 104 is a gate oxide film, 105 is a polycrystalline silicon gate electrode, and 106 is polycrystalline silicon. A thermal oxide film 107 formed on the outside of the gate electrode is a field insulating oxide film 103 and a polycrystalline silicon gate electrode 105.
, 106 are N-type diffusion layers for source and drain formed in a self-aligned manner, 108 is an interlayer insulating film, 109 is a contact portion, and 110 is an aluminum electrode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のMOS型トランジスタでは、ソース・ド
レイン領域拡散層として、あらかじめコンタクトホール
が形成できるだけの十分な領域を用意しておかなければ
ならず、装置の小型化、高密度化に対し大きな欠点を有
していた。
In the above-mentioned conventional MOS transistor, it is necessary to prepare a sufficient area in advance to form a contact hole as a source/drain region diffusion layer, which is a major drawback in reducing the size and increasing the density of the device. had.

さらに、その製造方法においては、ソース・ドレイン領
域拡散層は、ゲート電極とフィールド絶縁領域とに自己
整合的に形成され、従って、ソース・ドレイン領域拡散
層は、フィールド絶縁領域直下のチャンネルストッパー
(ソース・ドレイ/領域と逆導電型の高濃度不純物層域
)との接合面積が非常に大きい。
Furthermore, in the manufacturing method, the source/drain region diffusion layer is formed in a self-aligned manner with the gate electrode and the field insulating region, and therefore the source/drain region diffusion layer is formed as a channel stopper (source・The junction area between the drain/region and the high concentration impurity layer region of the opposite conductivity type is extremely large.

以上の理由から、従来のMOS!トランジスタの構造及
び、製造方法で形成されたトランジスタは、小型化に限
界を生すると共に、そのソース・ドレイ/領域拡散層の
接合容量が非常に太きいために、デバイスの高速化には
不向きであるという欠点があった。
For the above reasons, conventional MOS! The structure of the transistor and the transistor formed by the manufacturing method limit miniaturization, and the junction capacitance of the source/drain/region diffusion layer is extremely large, making it unsuitable for increasing the speed of devices. There was a drawback.

本発明の目的は、MOS型トランジスタのソース・ドレ
イン領域拡散層の接合面積を小さくすると共にソース・
ドレイン領域拡散層がこれと逆導電型の高濃度不純物層
でおるチャンネルストッパ一層との接合面積を極力小さ
くシ、従って接合容量を低減できデバイスの高速化に効
果的なMOS型半導体装置を提供することにある。
An object of the present invention is to reduce the junction area of the source/drain region diffusion layer of a MOS transistor, and to
To provide a MOS type semiconductor device in which the junction area between a drain region diffusion layer and a channel stopper layer made of a high concentration impurity layer of the opposite conductivity type is minimized, thereby reducing the junction capacitance and being effective in increasing the speed of the device. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のMOSfi半導体装置の製造方法は、第1導t
mの半導体基板上に活性領域を形成する工程と、前記活
性領域にゲート酸化膜を形成する工程と、前記ゲート酸
化膜上に、不純物を含有した第1の多結晶シリコンから
なるゲート電極を形成する工程と、前記ゲート電極の少
なくとも側面及び上面部に酸化膜を形成する工程と、前
記ゲート電極側面に酸化膜を介して耐酸化マスク物質を
形成する工程と前記半導体基板を酸化する工程と、前記
耐酸化マスク物質を除去する工程と、前記耐酸化マスク
物質が存在した領域の直下で前記活性領域の前記第1導
電型半導体基板のみが露出し、かつ前記ゲート電極は酸
化膜に覆われているように酸化膜を除去する工程と、前
記半導体基板全面に前記半導体基板と逆導電型の第2導
電型不純物含有の第2の多結晶シリコン層を形成し、パ
ターニングする工程と、前記半導体基板を熱処理して前
記第2の多結晶7リコン層から前記半導体基板紐出部を
介しパターニングする工程と逆導電型の不純物を前記半
導体基板へ拡散しソース・ドレイ/領域を形成する工程
とを含んで構成される。
The method for manufacturing a MOSfi semiconductor device of the present invention includes a first conductor t.
forming an active region on a semiconductor substrate of m, forming a gate oxide film on the active region, and forming a gate electrode made of a first polycrystalline silicon containing impurities on the gate oxide film. a step of forming an oxide film on at least the side surfaces and an upper surface portion of the gate electrode; a step of forming an oxidation-resistant mask material on the side surface of the gate electrode via an oxide film; and a step of oxidizing the semiconductor substrate. removing the oxidation-resistant masking material, and exposing only the first conductivity type semiconductor substrate in the active region immediately below the region where the oxidation-resistant masking material was present, and the gate electrode being covered with an oxide film; forming and patterning a second polycrystalline silicon layer containing a second conductivity type impurity having a conductivity type opposite to that of the semiconductor substrate on the entire surface of the semiconductor substrate; patterning from the second polycrystalline silicon layer through the semiconductor substrate lead-out portion by heat treatment; and diffusing impurities of opposite conductivity type into the semiconductor substrate to form a source/drain/region. Consists of.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
。第1図(a)〜(h)は本発明の一実施例を説明する
ために工程順に示したMOS型半導体素子の断面図であ
る。
Next, embodiments of the present invention will be described with reference to the drawings. FIGS. 1(a) to 1(h) are cross-sectional views of a MOS type semiconductor device shown in order of steps to explain an embodiment of the present invention.

まず、第1図(alに示すように、P型半導体基板l上
に、非活性領域にチャンネルストッパー領域2を形成し
たのち、選択酸化を行ない、フィールド絶縁酸化膜3を
形成し、また活性領域にはゲート酸化膜4を形成する。
First, as shown in FIG. 1 (al), a channel stopper region 2 is formed in an inactive region on a P-type semiconductor substrate l, and then selective oxidation is performed to form a field insulating oxide film 3, and a field insulating oxide film 3 is formed in an active region. A gate oxide film 4 is formed thereon.

次に、第1図(b)に示すように、ゲート酸化膜4上に
、リンドープの多結晶シリコン層を形成したのちフォト
エツチング技術により、ゲート電極5を形成し、基板全
体を熱酸化することにより、ゲート電極5の側面には、
熱酸化膜6が形成される。
Next, as shown in FIG. 1(b), a phosphorus-doped polycrystalline silicon layer is formed on the gate oxide film 4, and then a gate electrode 5 is formed by photoetching, and the entire substrate is thermally oxidized. Therefore, on the side surface of the gate electrode 5,
A thermal oxide film 6 is formed.

このとき、ゲート電極5は、通常、高濃度のリンを含有
しているために、熱酸化に対し、半導体基板に比べ充分
厚い熱酸化膜が形成される。その俊、半導体基板全面に
、窒化シリコン膜7を、化学気相成長法によシ形成する
At this time, since the gate electrode 5 usually contains phosphorus at a high concentration, a thermal oxide film that is sufficiently thicker than that of the semiconductor substrate is formed against thermal oxidation. Then, a silicon nitride film 7 is formed on the entire surface of the semiconductor substrate by chemical vapor deposition.

次に、第1図fc)に示すように、異方性のエツチング
を行なって、ゲート電極の側面にのみ窒化シリコン膜7
を残す。
Next, as shown in FIG. 1fc), anisotropic etching is performed to form a silicon nitride film 7 only on the side surfaces of the gate electrode.
leave.

次に、第1図fd)に示すように、半導体基板全面を十
分に熱酸化することによ、9P型型半体基板1上に熱酸
化膜8及び窒化シリコン膜7上に熱酸化膜9が形成され
る。
Next, as shown in FIG. is formed.

次に、熱酸化膜9が除去され窒化シリコン膜7が露出さ
れるのに十分であわ、かつ、トランジスタ素子領域にお
いて、P型半導体基板が露出されない程度の酸化膜エツ
チングを行なう。その後、窒化シリコン膜を選択除去し
たのち、さらに酸化膜る。
Next, the thermal oxide film 9 is removed and the oxide film is etched to a sufficient degree to expose the silicon nitride film 7, but not to expose the P-type semiconductor substrate in the transistor element region. Thereafter, after selectively removing the silicon nitride film, an oxide film is further formed.

次に、第1図ff)に示すように、半導体基板全面に、
N型不純物、たとえば燐を含有した多結晶シリコン層1
1を形成する。
Next, as shown in FIG. 1ff), the entire surface of the semiconductor substrate is covered with
Polycrystalline silicon layer 1 containing N-type impurity, for example, phosphorus
form 1.

次に、第1図(g)に示すように1多結晶シリコン層1
1をパターニングし、熱処理を行なうことによシ、N型
拡散層12を形成し、半導体基板全面に層間絶縁膜13
を形成する。
Next, as shown in FIG. 1(g), one polycrystalline silicon layer 1
By patterning 1 and performing heat treatment, an N-type diffusion layer 12 is formed, and an interlayer insulating film 13 is formed on the entire surface of the semiconductor substrate.
form.

最後に、開孔部14を形成し、アルミニウム電極15を
形成することによシ、本発明におけるデバイスは完了す
る。
Finally, the device of the present invention is completed by forming the opening 14 and forming the aluminum electrode 15.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明における製造方法によれば
、MOS型トランジスタのソース・ドレイン領域拡散層
の接合面積が非常に小さくできるうえ、ソース・ドレイ
ン領域拡散層が、これと逆導電型の高濃度不純物層であ
るチャンネルストッパ一層との接合面積が極力おさえら
れ、従って接合容量がかなシ低減できるという効果があ
り、デバイスの高速化にはきわめて有効である。
As explained above, according to the manufacturing method of the present invention, the junction area of the source/drain region diffusion layer of a MOS transistor can be made extremely small, and the source/drain region diffusion layer is of the opposite conductivity type. The junction area with the channel stopper layer, which is a concentrated impurity layer, is minimized, and therefore the junction capacitance can be significantly reduced, which is extremely effective for increasing the speed of devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(h)は、本発明の一実施例を説明する
ために、工程順に示しだMOS型半導体素子の断面図、
第2図は従来のMOS型半導体装置の一例の断面図であ
る。 1 、101・・・・・・P型半導体基板、2,102
・・・・・・チャンネルストッパー、3,103・・団
・フィールド絶縁酸化膜、4,104・山・・ゲート酸
化膜、5,105・・・・・・多結晶シリコンゲート電
極、6,8,9,106・・・・・・熱酸化膜、7・・
・・・・窒化シリコン膜、10・・・・・。 P型半導体基板開孔部、11・・・・・・多結晶シリコ
ン層、12,107・・・・・・N型拡散層、13,1
08・・・・・・層間絶縁膜、14・・・・・・多結晶
シリコン層開孔部、15・・・・・・アルミニウム電極
、109・旧・・コンタクト部。 代理人 弁理士  内 原   二 ′□・・、′・l
:j:;:、z \1.−一 躬1 図 湾2図
FIGS. 1(a) to (h) are cross-sectional views of a MOS type semiconductor element shown in the order of steps for explaining one embodiment of the present invention;
FIG. 2 is a cross-sectional view of an example of a conventional MOS type semiconductor device. 1, 101...P-type semiconductor substrate, 2, 102
・・・・・・Channel stopper, 3,103・・Group・Field insulating oxide film, 4,104・・Mountain・・Gate oxide film, 5,105・・・・Polycrystalline silicon gate electrode, 6,8 , 9, 106... thermal oxide film, 7...
...Silicon nitride film, 10... P-type semiconductor substrate opening, 11... Polycrystalline silicon layer, 12, 107... N-type diffusion layer, 13, 1
08... Interlayer insulating film, 14... Polycrystalline silicon layer opening, 15... Aluminum electrode, 109 Old... Contact part. Agent Patent Attorney Uchihara 2 ′□・・・′・l
:j:;:,z \1. -Ippin 1 Tuwan 2

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板上に活性領域を形成する
工程と、前記活性領域にゲート酸化膜を形成する工程と
、前記ゲート酸化膜上に不純物を含有した第1の多結晶
シリコンからなるゲート電極を形成する工程と、前記ゲ
ート電極の少なくとも側面及び上面部に酸化膜を形成す
る工程と、前記ゲート電極側面に酸化膜を介して耐酸化
性マスク物質を形成する工程と、前記半導体基板を酸化
する工程と、前記耐酸化性マスク物質を除去する工程と
、前記耐酸化性マスク物質が存在した領域の直下で前記
活性領域の前記第1導電型半導体基板のみが露出し、か
つ、前記ゲート電極は、酸化膜に覆われているように酸
化膜を除去する工程と、前記半導体基板全面に前記半導
体基板と逆導電型の第2導電型不純物を含有した第2の
多結晶シリコン層を形成しパターニングする工程と、前
記半導体基板を熱処理して前記第2の多結晶シリコン層
から前記半導体基板露出部を介して前記半導体基板と逆
導電型の不純物を前記半導体基板へ拡散しソース・ドレ
イン領域を形成する工程とを含むことを特徴とするMO
S型半導体装置の製造方法。
(1) Forming an active region on a semiconductor substrate of a first conductivity type, forming a gate oxide film on the active region, and forming a first polycrystalline silicon containing impurities on the gate oxide film. a step of forming an oxide film on at least side and top surfaces of the gate electrode; a step of forming an oxidation-resistant mask material on the side surfaces of the gate electrode via an oxide film; oxidizing the substrate, removing the oxidation-resistant masking material, and exposing only the first conductivity type semiconductor substrate in the active region immediately below the region where the oxidation-resistant masking material was present, and The gate electrode includes a step of removing an oxide film so that it is covered with an oxide film, and a second polycrystalline silicon layer containing impurities of a second conductivity type opposite to that of the semiconductor substrate on the entire surface of the semiconductor substrate. forming and patterning the semiconductor substrate, and heat-treating the semiconductor substrate to diffuse impurities of a conductivity type opposite to that of the semiconductor substrate from the second polycrystalline silicon layer through the exposed portion of the semiconductor substrate to form a source. An MO characterized by comprising the step of forming a drain region.
A method for manufacturing an S-type semiconductor device.
(2)耐酸化性マスク物質が窒化シリコン膜である特許
請求の範囲第(1)項記載のMOS型半導体装置の製造
方法。
(2) The method of manufacturing a MOS type semiconductor device according to claim (1), wherein the oxidation-resistant mask material is a silicon nitride film.
JP23573985A 1985-10-21 1985-10-21 Manufacture of mos semiconductor device Pending JPS6294985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23573985A JPS6294985A (en) 1985-10-21 1985-10-21 Manufacture of mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23573985A JPS6294985A (en) 1985-10-21 1985-10-21 Manufacture of mos semiconductor device

Publications (1)

Publication Number Publication Date
JPS6294985A true JPS6294985A (en) 1987-05-01

Family

ID=16990502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23573985A Pending JPS6294985A (en) 1985-10-21 1985-10-21 Manufacture of mos semiconductor device

Country Status (1)

Country Link
JP (1) JPS6294985A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981810A (en) * 1990-02-16 1991-01-01 Micron Technology, Inc. Process for creating field effect transistors having reduced-slope, staircase-profile sidewall spacers
US5132757A (en) * 1990-11-16 1992-07-21 Unisys Corporation LDD field effect transistor having a large reproducible saturation current
US5144394A (en) * 1989-09-01 1992-09-01 Hitachi, Ltd. Semiconductor device and method for fabricating same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171163A (en) * 1983-03-17 1984-09-27 Sanyo Electric Co Ltd Manufacture of metal oxide semiconductor field effect transistor
JPS60178666A (en) * 1984-02-27 1985-09-12 Hitachi Ltd Semiconductor device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171163A (en) * 1983-03-17 1984-09-27 Sanyo Electric Co Ltd Manufacture of metal oxide semiconductor field effect transistor
JPS60178666A (en) * 1984-02-27 1985-09-12 Hitachi Ltd Semiconductor device and manufacture thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144394A (en) * 1989-09-01 1992-09-01 Hitachi, Ltd. Semiconductor device and method for fabricating same
US4981810A (en) * 1990-02-16 1991-01-01 Micron Technology, Inc. Process for creating field effect transistors having reduced-slope, staircase-profile sidewall spacers
US5132757A (en) * 1990-11-16 1992-07-21 Unisys Corporation LDD field effect transistor having a large reproducible saturation current

Similar Documents

Publication Publication Date Title
JPS63140571A (en) Bipolar transistor and manufacture thereof
JPH05206451A (en) Mosfet and its manufacture
JPH03222336A (en) Manufacture of semiconductor device
JPS5951153B2 (en) Manufacturing method of semiconductor device
JPS6294985A (en) Manufacture of mos semiconductor device
JPS6116573A (en) Manufacture of mis type semiconductor device
JPS608636B2 (en) Manufacturing method of semiconductor device
JPS6366069B2 (en)
JPS6245071A (en) Manufacture of semiconductor device
JP2568854B2 (en) Thin film transistor and method of manufacturing the same
JPS6244862B2 (en)
JP2925910B2 (en) Manufacturing method of insulated gate semiconductor device
JPS6237543B2 (en)
JPS603157A (en) Manufacture of semiconductor device
JP2594121B2 (en) Method for manufacturing semiconductor device
JPS6057968A (en) Manufacture of mos transistor
JP2943855B2 (en) Method for manufacturing semiconductor device
JPH03285334A (en) Manufacture of semiconductor device
JPS61258476A (en) Manufacture of semiconductor device
JPS61180485A (en) Manufacture of mos semiconductor device
JPS6370572A (en) Mos field-effect transistor
JPS63299167A (en) Manufacture of semiconductor device
JPH02275639A (en) Manufacture of semiconductor device
JPS6353977A (en) Manufacture of semiconductor device
JPS6362381A (en) High-breakdown-strength mos field-effect semiconductor integrated circuit device