JPS6245071A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6245071A
JPS6245071A JP18531785A JP18531785A JPS6245071A JP S6245071 A JPS6245071 A JP S6245071A JP 18531785 A JP18531785 A JP 18531785A JP 18531785 A JP18531785 A JP 18531785A JP S6245071 A JPS6245071 A JP S6245071A
Authority
JP
Japan
Prior art keywords
gate electrode
layer
substrate
forming
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18531785A
Other languages
Japanese (ja)
Inventor
Kou Noguchi
江 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18531785A priority Critical patent/JPS6245071A/en
Publication of JPS6245071A publication Critical patent/JPS6245071A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To improve the reproducibility of the gate electrode length by a method wherein an impurity diffusion layer having a concentration higher than the diffusion layer is formed by self alignment by means of the ion implantation with a thermal oxide silicon film as a mask in a region which is spaced apart from the end of the gate electrode by the thickness of the silicon oxide film on the sides of the silicide layer. CONSTITUTION:After sequentially laminating and forming a gate oxide film 12, polycrystalline silicon layer 13 and high-melting point metal silicide layer 14 on a semiconductor substrate 11, the region of the laminate except for a predetermined gate electrode pattern is etched away, and impurity ions 19 of the conductivity type opposite to the substrate are implanted onto the substrate by self alignment with respect tot he gate electrode pattern, forming, a low concentration diffusion layer 15. Then, a heat treatment is applied, forming a thermal oxide silicon film 17 on the substrate surface and the gate electrode surface. The impurity ions 19 exhibiting the conductivity type opposite to the substrate are implanted in high concentration onto the substrate, forming a high concentration diffusion layer 16 having one end in a region which is spaced apart from the end of the gate electrode by the thickness of the oxide film on the sides of the high-melting point silicide layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、いわゆるLDD
 (Lightly Doped Drain )構造
を有する電界効果トランジスタの製造方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for manufacturing a semiconductor device, and relates to a method for manufacturing a semiconductor device.
The present invention relates to a method of manufacturing a field effect transistor having a (Lightly Doped Drain) structure.

〔従来の技術〕[Conventional technology]

従来、LDD構造を有する電界効果トランジスタを形成
する方法として例えば、第2図に示すような方法が知ら
れている。まず、第2図talに示すように、半導体基
板21上にゲート酸化膜22を形成し、その上の所定領
域に多結晶シリコン層23上に窒化シリコン膜28を有
するゲート電極パターンを異方性エツチング法により形
成する。次に、第2図の)に示すように窒化シリコン膜
28をマスクとして、等方性エツチング法により多結晶
シリコン層23の所定iffエツチング除去してゲート
電極を形成し、窒化シリコン膜28の側端部をひさし状
に突出させる。次に、窒化シリコン膜28をマスクとし
て半導体基板21上に基板と逆導電型を呈する不純物イ
オン29t−イオン注入して高濃度拡散層26を形成す
る。次に、第2図(C)に示すように窒化シリコン膜2
8を除去した後、多結晶シリコン層23をマスクとして
基板上に前記高濃度拡散層26と同一導電型を呈する不
純物イオン29を前記イオン注入量よりも少なくイオン
注入して、低濃度拡散層25を形成する。これにより、
ゲート酸化膜22下のチャネル領域と高濃度拡散層26
とが低濃度拡散層25を介して接続したLDD構造が得
られる。
Conventionally, as a method for forming a field effect transistor having an LDD structure, for example, a method as shown in FIG. 2 is known. First, as shown in FIG. 2, a gate oxide film 22 is formed on a semiconductor substrate 21, and a gate electrode pattern having a silicon nitride film 28 on a polycrystalline silicon layer 23 is anisotropically formed in a predetermined region thereon. Formed by etching method. Next, as shown in FIG. 2), using the silicon nitride film 28 as a mask, the polycrystalline silicon layer 23 is removed by isotropic etching to form a gate electrode. Make the end protrude like a canopy. Next, using the silicon nitride film 28 as a mask, impurity ions 29t- ions having a conductivity type opposite to that of the substrate are implanted onto the semiconductor substrate 21 to form a high concentration diffusion layer 26. Next, as shown in FIG. 2(C), a silicon nitride film 2
After removing 8, impurity ions 29 having the same conductivity type as the high concentration diffusion layer 26 are implanted onto the substrate using the polycrystalline silicon layer 23 as a mask in a smaller amount than the ion implantation amount to form the low concentration diffusion layer 25. form. This results in
Channel region under gate oxide film 22 and high concentration diffusion layer 26
An LDD structure is obtained in which the two are connected via the low concentration diffusion layer 25.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のLDD構造を有する電界効果トランジス
タの製造方法は、ゲート電極形成時に多結晶シリコン層
を等方性エツチング法で所定量だけエツチング除去する
が、エツチング量の制御が難しいため多結晶シリコン層
のエツチング後の長さ、すなわち、ゲート電極長を再現
性良く得ることが困難であり、設計値を再現性良く反映
した短チヤネルトランジスタを実現することが困難であ
る。
In the conventional manufacturing method of a field effect transistor having an LDD structure described above, when forming a gate electrode, a predetermined amount of the polycrystalline silicon layer is etched away using an isotropic etching method, but since it is difficult to control the amount of etching, the polycrystalline silicon layer is It is difficult to obtain the length after etching, that is, the gate electrode length, with good reproducibility, and it is difficult to realize a short channel transistor that reflects the design value with good reproducibility.

また、ゲート電極長の再現性が悪いことは、ゲート電極
端から高濃度拡散層端までの間に位置する低濃度拡散層
領域の長さの再現性が悪いことになり、ひいてはトラン
ジスタの相互コンダクタンスの再現性が悪いことを意味
し、従ってトランジスタの回路設計上困難をきたす。さ
らに、トランジスタ完成時の多結晶シリコン層からなる
ゲート電極長はゲートのマスク寸法に比べて等方性エツ
チングされた分だけ短いため、トランジスタの設計時に
あらかじめゲート電極長を大きめに見積もる必要がある
。従って、複数個のトランジスタを配置する場合、集積
度を上げられずトランジスタをLDD構造にして短チヤ
ネル化する利点がなくなる。
In addition, poor reproducibility of the gate electrode length means poor reproducibility of the length of the low concentration diffusion layer region located between the end of the gate electrode and the end of the high concentration diffusion layer, which in turn leads to poor reproducibility of the transistor's mutual conductance. This means that the reproducibility of is poor, which causes difficulties in transistor circuit design. Furthermore, the length of the gate electrode made of the polycrystalline silicon layer when the transistor is completed is shorter than the gate mask dimension by the amount of isotropic etching, so it is necessary to estimate the gate electrode length larger in advance when designing the transistor. Therefore, when a plurality of transistors are arranged, the degree of integration cannot be increased, and there is no advantage of using the LDD structure of the transistors to shorten the channel.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、−導電型の半導体基
板上にゲート絶縁膜を介して下層の多結晶シリコン層と
上層の高融点金属のシリサイド層からなる2層構造のゲ
ート電極を所定の形状に形成する工程と、前記ゲート電
極をマスクとじ友イオン注入法により前記基板に逆導電
型の低濃度不純物拡散層を自己整合的に形成する工程と
、前記基板表面及び前記ゲート電極表面を熱酸化して前
記ゲート電極のシリサイド層の側面及び上面に前記基板
表面及び前記ゲート電極の多結晶シリコン層の側面より
も厚いシリコン酸化膜を形成する工程と、前記シリサイ
ド層の側面の熱酸化シリコン膜をマスクとしたイオン注
入法により前記ゲート電極端から前記シリサイド層側面
のシリコン酸化膜厚分だけ離れた領域に前記拡散層より
も高濃度の不純物拡散層を自己整合的に形成する工程と
を含んで構成される。
A method for manufacturing a semiconductor device according to the present invention includes forming a gate electrode having a two-layer structure consisting of a lower polycrystalline silicon layer and an upper refractory metal silicide layer on a -conductivity type semiconductor substrate via a gate insulating film. forming a low concentration impurity diffusion layer of opposite conductivity type on the substrate in a self-aligned manner by masking the gate electrode and using an ion implantation method; heating the surface of the substrate and the surface of the gate electrode; oxidizing to form a silicon oxide film thicker than the substrate surface and the side surfaces of the polycrystalline silicon layer of the gate electrode on the side and top surfaces of the silicide layer of the gate electrode; and a thermally oxidized silicon film on the side of the silicide layer. forming an impurity diffusion layer with a higher concentration than the diffusion layer in a self-aligned manner in a region separated from the end of the gate electrode by the thickness of the silicon oxide film on the side surface of the silicide layer by an ion implantation method using a mask as a mask. Consists of.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(al〜(b)は本発明の一実施例の主要工程の
工程順縦断面図である。
FIGS. 1A to 1B are vertical cross-sectional views of main steps in an embodiment of the present invention.

まず、第1図(alに示すよう忙、半導体基板11上に
ゲート酸化膜12、多結晶シリコン層13、高融点金属
のシリサイド層14を順次積層形成した後、前記積層の
うち所定のゲート電極パターン以外の領域をエツチング
除去する。次に、基板上に基板と逆の導電型を呈する不
純物イオン19をゲート電極パターンに対して自己整合
的にイオン注入して低濃度拡散層15を形成する。
First, as shown in FIG. Regions other than the pattern are removed by etching.Next, impurity ions 19 having a conductivity type opposite to that of the substrate are implanted onto the substrate in a self-aligned manner with respect to the gate electrode pattern to form a low concentration diffusion layer 15.

次いで、第1図(ロ)に示すように、熱処理を施すこと
により基板表面及びゲート電極表面に熱酸化シリコン膜
17を形成する。この時、多結晶シリコン層13の側面
では側面の内向きと外向きにほぼ同じ厚さの酸化膜が形
成されるのに対し、高融点金属のシリサイド層表面は外
向きに酸化膜の大部分が形成され、かつ多結晶シリコン
層に比べて酸化速度が大きいため、高融点金属のシリサ
イド層の側面の酸化膜は、多結晶シリコン層の側面の酸
化膜よりもゲート電極の外側に突き出た状態になる。次
に、高融点金属シリサイド層側面の突出した熱酸化シリ
コン膜をマスクとして、基板上に基板と逆の導電型を呈
する不純物イオン19を、先に行ったイオン注入量より
も高濃度に注入する。
Next, as shown in FIG. 1(b), a thermal oxidation silicon film 17 is formed on the substrate surface and the gate electrode surface by performing heat treatment. At this time, on the side surface of the polycrystalline silicon layer 13, an oxide film of approximately the same thickness is formed on the inward and outward sides of the side surface, whereas on the surface of the refractory metal silicide layer, most of the oxide film is directed outward. is formed, and the oxidation rate is higher than that of the polycrystalline silicon layer, so the oxide film on the sides of the high-melting point metal silicide layer protrudes further to the outside of the gate electrode than the oxide film on the sides of the polycrystalline silicon layer. become. Next, using the protruding thermal oxidation silicon film on the side surface of the high melting point metal silicide layer as a mask, impurity ions 19 having a conductivity type opposite to that of the substrate are implanted onto the substrate at a higher concentration than the ion implantation amount performed previously. .

この結果、高融点金属のシリサイド層側面の酸化膜厚分
だけゲート電極端より離れた領域に一端を有する高濃度
拡散層16が形成される。
As a result, a high concentration diffusion layer 16 is formed having one end in a region separated from the end of the gate electrode by the thickness of the oxide film on the side surface of the high melting point metal silicide layer.

以上の工程により、ゲート電極下のチャネル領域と高濃
度拡散層16が低濃度拡散層15を介して接続するLD
D構造が得られる。
Through the above steps, an LD is formed in which the channel region under the gate electrode and the high concentration diffusion layer 16 are connected via the low concentration diffusion layer 15.
D structure is obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、濃度の異なる2種の不純
物拡散層をゲート電極に対して自己整合的にイオン注入
法により形成する場合、マスクとして低濃度拡散層形成
時は異方性エツチング法により形成したゲート電極を使
用し、また高濃度拡散層形成時は、ゲート電極の高融点
金属のシリサイド層を熱酸化して得られるシリサイド層
表面の熱酸化シリコン膜を使用する。これにより、ゲー
ト電極と低濃度及び高濃度拡散層との相互の位置関係を
再現性良く実現することができ、短チヤネルトランジス
タを再現性良く製造することが可能である。また、トラ
ンジスタの相互コンダクタンスの再現性も良くなるため
回路設計が容易になる。
As explained above, in the present invention, when two types of impurity diffusion layers with different concentrations are formed by ion implantation in a self-aligned manner with respect to the gate electrode, an anisotropic etching method is used when forming a low concentration diffusion layer as a mask. In addition, when forming a high concentration diffusion layer, a thermally oxidized silicon film on the surface of the silicide layer obtained by thermally oxidizing a silicide layer of a refractory metal of the gate electrode is used. Thereby, the mutual positional relationship between the gate electrode and the low-concentration and high-concentration diffusion layers can be realized with good reproducibility, and it is possible to manufacture a short channel transistor with good reproducibility. Furthermore, the reproducibility of the mutual conductance of the transistor is improved, which facilitates circuit design.

また、トランジスタ完成時の多結晶シリコン層のゲート
長がゲートのマスク寸法とほぼ同じであるため、複数個
のトランジスタを配置する場合集積度が上げられる。さ
らに、ゲート電極に高融点金属のシリサイド層を用いる
ことにょシゲート電極抵抗を下げることができるため高
速動作を可能にする効果がある。
Furthermore, since the gate length of the polycrystalline silicon layer when the transistor is completed is approximately the same as the gate mask dimension, the degree of integration can be increased when a plurality of transistors are arranged. Furthermore, by using a silicide layer of a high melting point metal for the gate electrode, the gate electrode resistance can be lowered, which has the effect of enabling high-speed operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1al〜中)は本発明の半導体装置の製造方法の
一実施例の主要工程の縦断面図、第2図(al〜(C1
は従来の半導体装置の製造方法の主要工程の縦断面図で
ある。 11.21・・・・・・半導体基板、12.22・・・
・・・ゲート酸化膜、13.23・・・・・・多結晶シ
リコン層、14・・・・・・高融点金属のシリサイド層
、15.25・・・・・・低濃度拡散層、16.26・
・・・・・高濃度拡散層、17・・・・・・熱酸化シリ
コン膜、19,29・・・・・・不純物イオン、28・
・・・・・窒化シリコン膜。 代理人 弁理士  内 原   晋 1JJJJJiJJ〜・り 1  冒  jmJJ〜・り 竿1回 1冒冒j j l k−・り 111111 @ J l−″・2 ?21fl
FIG. 1 (al to middle) is a vertical cross-sectional view of the main steps of an embodiment of the method for manufacturing a semiconductor device of the present invention, and FIG. 2 (al to (C1
1 is a vertical cross-sectional view of main steps in a conventional method for manufacturing a semiconductor device. 11.21... Semiconductor substrate, 12.22...
... Gate oxide film, 13.23 ... Polycrystalline silicon layer, 14 ... High melting point metal silicide layer, 15.25 ... Low concentration diffusion layer, 16 .26・
... High concentration diffusion layer, 17 ... Thermal oxidation silicon film, 19,29 ... Impurity ion, 28.
...Silicon nitride film. Agent Patent Attorney Susumu Uchihara 1JJJJJiJJ~・ri1 Exploration jmJJ〜・Rikan 1 time 1 adventurej j l k-・ri111111 @ J l-″・2 ?21fl

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基板上にゲート絶縁膜を介して下層の
多結晶シリコン層と上層の高融点金属のシリサイド層か
らなる2層構造のゲート電極を所定の形状に形成する工
程と、前記ゲート電極をマスクとしたイオン注入法によ
り前記基板に逆導電型の低濃度不純物拡散層を自己整合
的に形成する工程と、前記基板表面及び前記ゲート電極
表面を熱酸化して前記ゲート電極のシリサイド層の側面
及び上面に前記基板表面及び前記ゲート電極の多結晶シ
リコン層の側面よりも厚いシリコン酸化膜を形成する工
程と、前記シリサイド層の側面の熱酸化シリコン膜をマ
スクとしたイオン注入法により前記ゲート電極端から前
記シリサイド層側面のシリコン酸化膜厚分だけ離れた領
域に前記拡散層よりも高濃度の不純物拡散層を自己整合
的に形成する工程とを含むことを特徴とする半導体装置
の製造方法。
A step of forming a gate electrode having a two-layer structure consisting of a lower polycrystalline silicon layer and an upper layer of high melting point metal silicide layer on a semiconductor substrate of one conductivity type with a gate insulating film interposed therebetween; forming a low concentration impurity diffusion layer of opposite conductivity type on the substrate in a self-aligned manner by ion implantation using a mask as a mask, and thermally oxidizing the substrate surface and the gate electrode surface to form a silicide layer of the gate electrode. The gate is formed by forming a silicon oxide film thicker than the substrate surface and the side surface of the polycrystalline silicon layer of the gate electrode on the side and top surfaces, and by ion implantation using the thermally oxidized silicon film on the side surface of the silicide layer as a mask. A method for manufacturing a semiconductor device, comprising the step of forming in a self-aligned manner an impurity diffusion layer with a higher concentration than the diffusion layer in a region separated from the electrode end by the thickness of the silicon oxide film on the side surface of the silicide layer. .
JP18531785A 1985-08-22 1985-08-22 Manufacture of semiconductor device Pending JPS6245071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18531785A JPS6245071A (en) 1985-08-22 1985-08-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18531785A JPS6245071A (en) 1985-08-22 1985-08-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6245071A true JPS6245071A (en) 1987-02-27

Family

ID=16168722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18531785A Pending JPS6245071A (en) 1985-08-22 1985-08-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6245071A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045486A (en) * 1990-06-26 1991-09-03 At&T Bell Laboratories Transistor fabrication method
US5439847A (en) * 1993-11-05 1995-08-08 At&T Corp. Integrated circuit fabrication with a raised feature as mask
KR19990057347A (en) * 1997-12-29 1999-07-15 김영환 Manufacturing method of semiconductor device
US6876045B2 (en) 2002-04-17 2005-04-05 Matsushita Electric Industrial Co., Ltd. Semiconductor device and process for manufacturing the same
US8030199B2 (en) 1996-01-16 2011-10-04 Agere Systems Inc. Transistor fabrication method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045486A (en) * 1990-06-26 1991-09-03 At&T Bell Laboratories Transistor fabrication method
US5439847A (en) * 1993-11-05 1995-08-08 At&T Corp. Integrated circuit fabrication with a raised feature as mask
US8030199B2 (en) 1996-01-16 2011-10-04 Agere Systems Inc. Transistor fabrication method
KR19990057347A (en) * 1997-12-29 1999-07-15 김영환 Manufacturing method of semiconductor device
US6876045B2 (en) 2002-04-17 2005-04-05 Matsushita Electric Industrial Co., Ltd. Semiconductor device and process for manufacturing the same

Similar Documents

Publication Publication Date Title
JP2662325B2 (en) Structure of field effect semiconductor device and method of manufacturing the same
JPS6245071A (en) Manufacture of semiconductor device
JP2519284B2 (en) Method of manufacturing embedded gate type MOSFET
JP2624948B2 (en) MOS-FET manufacturing method
JP2626532B2 (en) Semiconductor device and manufacturing method thereof
JPS6237543B2 (en)
JP2751336B2 (en) Method for manufacturing semiconductor device
JP2594121B2 (en) Method for manufacturing semiconductor device
JPS6294985A (en) Manufacture of mos semiconductor device
JPH0536716A (en) Semiconductor device and its manufacture
JP2967596B2 (en) Method for manufacturing semiconductor device
KR0135670B1 (en) Method of manufacturing semiconductor device
JPH03120835A (en) Manufacture of insulated gate field effect transistor
JPH0128509B2 (en)
KR0167669B1 (en) Method for fabricating semiconductor device
JPS5917866B2 (en) hand tai souchi no seizou houhou
JPS6316672A (en) Manufacture of semiconductor element
JPH03285334A (en) Manufacture of semiconductor device
JPH06204472A (en) Manufacture of trench-type source/ drain mosfet
JPH0582066B2 (en)
JPH0571191B2 (en)
JPH0342842A (en) Manufacture of semiconductor device
JPH0353533A (en) Manufacture of semiconductor device
JPS59138380A (en) Semiconductor device
JPH08204192A (en) Mos semiconductor device and its manufacture