JPS60178666A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS60178666A
JPS60178666A JP3424184A JP3424184A JPS60178666A JP S60178666 A JPS60178666 A JP S60178666A JP 3424184 A JP3424184 A JP 3424184A JP 3424184 A JP3424184 A JP 3424184A JP S60178666 A JPS60178666 A JP S60178666A
Authority
JP
Japan
Prior art keywords
film
source
gate electrode
insulating film
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3424184A
Other languages
Japanese (ja)
Other versions
JPH06101475B2 (en
Inventor
Katsutada Horiuchi
勝忠 堀内
Akira Kikuchi
菊地 彰
Shinji Okazaki
信次 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59034241A priority Critical patent/JPH06101475B2/en
Publication of JPS60178666A publication Critical patent/JPS60178666A/en
Publication of JPH06101475B2 publication Critical patent/JPH06101475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To enable the reduction in input-output capacitance and that in transistor dimension by a method wherein one end of a semiconductor thin film is constructed with due regard to self-alignment and a gate electrode. CONSTITUTION:A field insulation film 2 constructed by boring grooves in an Si substrate 1 and by filling the grooves with Si oxide films is formed. The Si surface of an active region is exposed, and a clean gate oxide film of 10nm thickness is formed; thereafter, a tungsten thin film 4 of about 0.3mum thickness is evaporated and an Si oxide film 13 slightly doped with phosphorus is deposited. An Si oxide film 14 having deposited at the flat part is selective removed by etching the oxide film 14 vertically to the surface of the Si substrate 1. A source diffused layer 6 and a drain diffused layer 7 are formed on activating heat treatment by ion-implanting arsenic via exposed gate insulation film 3. A double metallic wiring 20' is processed according to a desired circuit construction. A surface protection insulation film 10 made up of a phosphorus-doped Si oxide film is deposited, and hole opening to the surface protection insulation film 16 at a desired point of connection is carried out.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置に係り、特にソース・ドレイン拡散
層面積の微細化に適し、かつ」:記拡散層への電極接続
に好適な超微Jll M OS型電界効果1〜ランジス
タに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a semiconductor device, and is particularly suitable for miniaturizing the area of a source/drain diffusion layer, and is suitable for connecting an electrode to the diffusion layer. MOS type field effect 1 - related to transistors.

〔発明の背景〕[Background of the invention]

MO3型電界効果トランジスタ、又は絶縁ゲート型電界
効果トランジスタ(以降、単にトランジスタ、と称する
)におけるゲー1へ長、ゲート酸化膜厚、及び溶合深さ
等の素子寸法は公知の縮小期に基づいて微細化される傾
向が続いている。しかしながら、ソース・ドレイン拡散
層面積はゲート長等の寸法に比例して111[IIl化
されていない。上記は従来構造1−ランジスタに於て、
ソース−・ドレイン拡散層上のコンタクト孔が拡散層端
、及びゲート電極端に対し、自己整合で構成されていな
いことに基づく。すなわち、従来構造トランジスタに於
てはコンタク1〜孔の位置合せ予裕を確保する必要があ
る。電子線描画法等の最新の技術を用いて0.5 μm
口なる大きさのコンタクト孔を形成してもその周囲に各
々0.5 μmの位置合せ予裕を確保しなければならな
い。すなわち、従来構造トランジスタに於ては、ソース
・ドレイン幅を1.5μm以下には微細化できない欠点
を有している。
Device dimensions such as gate length, gate oxide film thickness, and weld depth in MO3 type field effect transistors or insulated gate type field effect transistors (hereinafter simply referred to as transistors) are based on known shrinkage periods. The trend toward miniaturization continues. However, the area of the source/drain diffusion layer is not reduced to 111 [IIl] in proportion to dimensions such as the gate length. The above is for conventional structure 1-transistor,
This is because the contact holes on the source/drain diffusion layer are not self-aligned with the ends of the diffusion layer and the end of the gate electrode. That is, in the conventional structure transistor, it is necessary to secure alignment margin for the contacts 1 to holes. 0.5 μm using the latest technology such as electron beam lithography
Even if a contact hole of the same size as the contact hole is formed, an alignment margin of 0.5 μm must be secured around each contact hole. That is, the conventional structure transistor has the drawback that the source/drain width cannot be miniaturized to 1.5 μm or less.

上記欠点を解消する目的で第1図に示すごとき自己整合
コンタクト構造が考えらJしている。第1図に於てlは
P導電型シリコン基板、2は素子間分離の為の厚いフィ
ルド酸化膜、3はゲート酸化膜厚 く設けられた絶縁膜、6及び7は各々ソース・ドレイン
拡散層、8及び9は高濃度に不純物が拡散されたシリコ
ン薄膜配線、10は表面保護絶縁膜、11及び12は各
々ソニ、ス及びドレイン金a電極である。第1図で代表
される自己整合コンタク1へ構造を含めて従来公知のト
ランジスタに於てはゲート電極4はフィルド酸化膜2に
対し自己整合で構成さ扛ていない。したがって従来構造
の超微細トランジスタに於てはゲート、電極の位置合せ
ずれの為所望幅のソース拡散層6及びドレイン拡散層7
を実現することが困難となる欠点を有している。
In order to eliminate the above-mentioned drawbacks, a self-aligned contact structure as shown in FIG. 1 has been devised. In FIG. 1, l is a P conductivity type silicon substrate, 2 is a thick filled oxide film for isolation between elements, 3 is an insulating film with a thick gate oxide film, 6 and 7 are source/drain diffusion layers, respectively. Reference numerals 8 and 9 are silicon thin film wirings into which impurities are diffused at a high concentration, 10 is a surface protection insulating film, and 11 and 12 are SONY, SO and drain gold a electrodes, respectively. In conventionally known transistors including the self-aligned contact structure 1 shown in FIG. 1, the gate electrode 4 is not self-aligned with the filled oxide film 2. Therefore, in an ultra-fine transistor with a conventional structure, the source diffusion layer 6 and the drain diffusion layer 7 have a desired width due to misalignment of the gate and electrode.
It has the disadvantage that it is difficult to realize.

すなわちソース及びドレイン拡散層面積のばらつきは拡
散層容量を変動させ、所望の入出力速度が実現できなく
なる欠点を有している。さらにフィルド酸化膜2は通常
LOCO5と称される選択酸化法により形成するがバー
ドビーク(Birds beak)と称される横方向へ
の酸化膜成長の為、フィルド酸化膜厚とほぼ同等の距離
だけソース・ドレイン領域がフィルド酸化膜2により侵
蝕される。したがって第1図のごとき従来構造の超微細
1−ランジスタに於ては極端な場合、ソース又はドレイ
ン領域が消滅する致命的欠点を生じることができる。
That is, variations in the area of the source and drain diffusion layers cause variations in the capacitance of the diffusion layers, resulting in a disadvantage that desired input/output speeds cannot be achieved. Furthermore, the filled oxide film 2 is usually formed by a selective oxidation method called LOCO5, but because the oxide film grows in the lateral direction called a bird's beak, the source oxide film 2 is formed by a distance approximately equal to the thickness of the filled oxide film. The drain region is eroded by the filled oxide film 2. Therefore, in an extreme case, an ultrafine 1-transistor having a conventional structure as shown in FIG. 1 may have a fatal defect in which the source or drain region disappears.

第1図の自己整合コンタクト構造はシリコン薄膜配a8
及び9でソース拡散Nj6及びドレイン拡散N7と直接
接続する構造であるが、上記構造による超微細]−ラン
ジスタに於ては他の欠点も生ずる。すなわち、シリコン
薄膜配線8及び9さらには表面保護絶縁@10には高濃
度に不純物が添加さ肛ている。したがって1表面保護絶
縁膜lOの平坦化懸処理等の高温熱処理時に不純物拡散
が生じ、極めて浅く構成すべきソース6及ドレイン拡散
層7の接合深さが不均一に、かつ深くなってしまう欠点
を有している。さらに第1図のごとき従来公知の自己整
合コンタクト構造に於てはシリコン薄膜配線8及び9を
ソース6及びドレイン拡散層7に対して位置合せをする
必要がある6したがってその位置合せ誤差によりコンタ
クト面積、及びグー1〜電極・コンタク1−間距離が変
化する欠点を有している。極めて浅い接合を有する超微
細トランジスタに於てはソース・ドレイン拡散抵抗が高
く、上記位置合せ誤差の影響は直列抵抗の変動、すなわ
ち電流量の変動となって表われる。
The self-aligned contact structure in Figure 1 is a silicon thin film arrangement A8.
and 9 are directly connected to the source diffusion Nj6 and the drain diffusion N7, but the ultra-fine transistor with the above structure also has other drawbacks. That is, the silicon thin film wirings 8 and 9 as well as the surface protection insulation @10 are doped with impurities at a high concentration. Therefore, impurity diffusion occurs during high-temperature heat treatment such as planarization of the surface protection insulating film 1O, and the junction depth of the source 6 and drain diffusion layer 7, which should be extremely shallow, becomes uneven and deep. have. Furthermore, in the conventionally known self-aligned contact structure as shown in FIG. , and the distance between the goo 1 and the electrode/contact 1 varies. In an ultra-fine transistor having an extremely shallow junction, the source/drain diffusion resistance is high, and the influence of the alignment error appears as a variation in series resistance, that is, a variation in the amount of current.

また、第1図で示される自己整合コンタク1−・1−ラ
ンジスタに於て、シリコン薄膜配線8及び9の一部は各
々ソース拡散層6、又はドレイン拡散層7の少なくとも
一部と接続するとと<43成しなければならない。しか
しながら、ゲート長が1μm以下と微細化された1〜ラ
ンジスタに於て、ソース・ドレイン拡散層面積も微細化
した場合、上記シリコン簿膜配線8及び9のソース拡散
層6又はトレイン拡散層7への位置合せが困難となる。
Furthermore, in the self-aligned contact 1- and 1-transistors shown in FIG. <43 must be achieved. However, in transistors 1 to 1 whose gate length is miniaturized to 1 μm or less, when the area of the source/drain diffusion layer is also miniaturized, the source diffusion layer 6 or the train diffusion layer 7 of the silicon film wirings 8 and 9 is alignment becomes difficult.

すなわち他端な場合にはソース側シリコン薄膜配線8の
一部がグー1−電極4上を乗越えてドレイン拡散層と接
続するごとき位置合せずれをも生ずる恐れがある。した
がって、従来構造′トランジスタに於てはゲー゛ト長の
微細化にもかかわらずソース・ドレイン拡散層面積の超
微細化はできなかった。
That is, in the case of the other end, there is a risk that a part of the source side silicon thin film wiring 8 may cross over the goo 1-electrode 4 and be connected to the drain diffusion layer, resulting in misalignment. Therefore, in the transistor with the conventional structure, the area of the source/drain diffusion layer cannot be ultra-miniaturized despite the miniaturization of the gate length.

すなわち、従来構造トランジスタに於てはソース・ドレ
イン拡散層面積を極限まで微細化できないため、ソース
・ドレイン拡散層容量の低減化が難しく高速動作が阻害
されていた。
That is, in a transistor with a conventional structure, the area of the source/drain diffusion layer cannot be miniaturized to the utmost limit, so it is difficult to reduce the capacitance of the source/drain diffusion layer, and high-speed operation is hindered.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述した従来技術の欠点を解消し、一定
の面積を有し、かつ極めて狭いソース・ドレイン拡散層
をゲート電極に対して自己整合的に構成し、入出力容量
の低減とトランジスタ寸法の微細化を可能にする構造を
提供することにある6本発明によれば位置合せ誤差に基
づく入出力抵抗、及びその変動幅を低減しソース・ドレ
イン接合深さに影響を与えない自己整合コンタクト構造
を提供することもできる。
The purpose of the present invention is to eliminate the drawbacks of the prior art described above, to configure extremely narrow source/drain diffusion layers having a constant area in a self-aligned manner with respect to the gate electrode, to reduce input/output capacitance, and to reduce the input/output capacitance of transistors. The object of the present invention is to provide a structure that enables miniaturization of dimensions.According to the present invention, the input/output resistance based on alignment error and its fluctuation range are reduced and the self-alignment method does not affect the source/drain junction depth. Contact structures can also be provided.

又、本発明によれば上述した従来技術の欠点を解消し、
超微細化されたソース・ドレイン拡散層に対しても自己
整合的に接続可能なソース・ドレイン引出し配線構造を
提供することもできる。又。
Further, according to the present invention, the drawbacks of the above-mentioned prior art are solved,
It is also possible to provide a source/drain lead wiring structure that can be connected in a self-aligned manner even to ultra-fine source/drain diffusion layers. or.

本発明によれば上記によりソース・ドレイン拡散層面積
の超微細化を可能にし、拡散層容量の低減化により動作
速度の向上されたトランジスタ構造を提供することもで
きる。
According to the present invention, it is possible to ultra-miniaturize the area of the source/drain diffusion layer and provide a transistor structure with improved operating speed due to the reduction in the diffusion layer capacitance.

〔発明の概要〕[Summary of the invention]

本発明は、半導体装置形成において、主要な工程のみに
、必要であれば目合わせをし、他の工程では上記主要な
工程によって特定された位置、又はその位置から、他の
プロセス要因による(例えば酸化膜厚、デポジション膜
厚等)一定の距離により特定された位置に所望領域を形
成して成る、いわゆる自己整合技術による半導体装置で
ある。
In semiconductor device formation, the present invention aligns only the main steps, if necessary, and in other steps, positions specified by the above main steps or from the positions are adjusted depending on other process factors (e.g. This is a semiconductor device using a so-called self-alignment technology in which a desired region is formed at a position specified by a certain distance (oxide film thickness, deposition film thickness, etc.).

すなわち、本発明をいわゆる単体のMO8型半導体装置
に適用した場合、ゲート電極形成時のみにホトマスクを
使用し、他は、まったく使用しないのでMOSトランジ
スタを形成することも可能である。但し、実際の半導体
装置では部分的に大まかに覆うマスクを使用する場合が
多くなる。これは、実際の適用上の問題であって、本発
明を応用する場合の問題であり本質的なものではない。
That is, when the present invention is applied to a so-called standalone MO8 type semiconductor device, a photomask is used only when forming the gate electrode, and nothing else is used at all, making it possible to form a MOS transistor. However, in actual semiconductor devices, a mask that roughly covers a portion is often used. This is a problem in actual application, a problem when applying the present invention, and is not essential.

本発明に於てはゲー1へ電極と自己整合の関係で極めて
狭いソース・ドレイン拡散層をfliU御性良く構成す
る為、ゲート電極に対して自己整合で構成するグー1−
保護絶縁膜の形成後、シリコン窒化膜とシリコン薄膜を
ゲート保護絶縁膜を介したゲート電極側壁にのみ選択的
に残置させる。上記シリコン薄膜をマスクにし、ゲート
電極側壁部以外のシリコン窒化膜を完全に除去した後、
上記シリコン@[も完全に除去する。シリコン窒化膜は
ゲート電極側壁部にのみシリコン薄膜膜厚分だけ残置さ
れるが上記シリコン窒化膜をマスクにして露出されたシ
リコン基板面を選択的に酸化し、シリコン窒化膜を除去
すればほぼシリコン薄膜膜厚分の幅を有する極めて狭い
シリコン基板面だけがゲート電極に対し自己整合の関係
でゲート側壁部にのみ露出する。上記露出部にソース・
ドレイン拡散層を形成するがその幅は上記シリコン薄膜
膜厚により決定され0.1〜0.3 μm程度が最も制
御可能な条件である。上記は従来公知のソース又はトレ
イン拡散層の最小幅より1/10以上も狭く。
In the present invention, in order to form an extremely narrow source/drain diffusion layer in the gate electrode in a self-aligned relationship with the gate electrode with good fliU control, the gate electrode is formed in a self-aligned relationship with the gate electrode.
After forming the protective insulating film, the silicon nitride film and the silicon thin film are selectively left only on the side walls of the gate electrode with the gate protective insulating film interposed therebetween. Using the above silicon thin film as a mask, after completely removing the silicon nitride film other than the side walls of the gate electrode,
The above silicon @[ is also completely removed. The silicon nitride film is left only on the side walls of the gate electrode by the thickness of the silicon thin film, but if the exposed silicon substrate surface is selectively oxidized using the silicon nitride film as a mask and the silicon nitride film is removed, almost all silicon Only a very narrow silicon substrate surface having a width equal to the thickness of the thin film is exposed only to the gate sidewalls in a self-aligned relationship with the gate electrode. Source on the exposed part above.
A drain diffusion layer is formed, and its width is determined by the thickness of the silicon thin film, and the most controllable condition is about 0.1 to 0.3 μm. The width is more than 1/10 narrower than the minimum width of a conventionally known source or train diffusion layer.

接合容量も十分に小さくできる。Junction capacitance can also be made sufficiently small.

上記の極めて狭いソース・ドレイン拡散層へのコンタク
ト形成は自己整合コンタクト構造による。
Contact formation to the extremely narrow source/drain diffusion layer described above is based on a self-aligned contact structure.

ここに於て、接続配線の位置合せ誤差に基づくコンタク
ト位置及びその面積の変動の影響を低減化する為ソース
・ドレイン拡散層表面に高融点金属又は遷移金属膜こよ
りシリサイド層をソース・ドレイン拡散層と自己整合で
形成し拡散層抵抗の低減化を行う。シリサイド化後、シ
リコン酸化膜上に未反応のまま残置されている高融点金
属、又は遷移金属膜を加工し配線とする。上記配線形成
に於て金属層のエツチング液によってはシリサイド層は
エツチングされない、したがってソース・ドレイン拡散
層と自己整合的に接続された金属配線が形成される。主
ジ゛リサイド層は通常の拡散層に比べて1桁以上低抵抗
の為配線金属の位置合せ誤差による影響は無視できる程
度に低減される。
Here, in order to reduce the influence of fluctuations in the contact position and its area due to alignment errors of the connection wiring, a silicide layer is added to the surface of the source/drain diffusion layer using a high melting point metal or transition metal film. The diffusion layer is formed by self-alignment to reduce the resistance of the diffusion layer. After silicidation, the refractory metal or transition metal film left unreacted on the silicon oxide film is processed to form wiring. In the above wiring formation, the silicide layer is not etched by the etching solution for the metal layer, so a metal wiring is formed which is connected to the source/drain diffusion layer in a self-aligned manner. Since the main silicide layer has a resistance more than one order of magnitude lower than that of a normal diffusion layer, the influence of alignment errors of wiring metal is reduced to a negligible level.

尚、上記シリサイド形成によってシリコン基板が侵食さ
れ極めて浅い接合を破壊する恐れも存在する。したがっ
て上記侵食を補償し浅い接合を保持する為、露出された
シリコン基板上にのみ選択的にシリコン薄膜を堆積させ
てからシリサイド化を行うことが望ましい。
Note that there is also a risk that the silicon substrate may be eroded by the silicide formation and an extremely shallow junction may be destroyed. Therefore, in order to compensate for the erosion and maintain a shallow junction, it is desirable to selectively deposit a silicon thin film only on the exposed silicon substrate before silicidation.

上記発明によれば拡散層幅が0.3 μm以下と超微細
なソース・ドレイン拡散層を有するトランジスタ構造を
実現できる。上記構造はソース・ドレイン拡散層の両端
をゲート電極と自己整合的に構成するものであるが、ゲ
ート電極長が0.5μm以下と超微細トランジスタに於
ては、ソース・ドレイン引出し電極の構成に従来技術を
用いると位置合せ余裕確保の点で問題が生ずる1本願出
願の他の発明はソース・ドレイン引出し配線の一端をゲ
ート電極上 上記問題を解消するものである。上記構成を実現するた
めに本発明では高融点金属、たとえばチタン(Ti)の
シリコン化合物(シリサイド)が王水で除去されるのに
対し、シリコン薄膜は除去されない現象に着目した。す
なわち、ゲート電極加工に於てゲート電極保護絶縁膜、
及びTi薄膜を同一マスクにより同時加工した後、ゲー
ト電極側壁絶縁膜によりゲート電極を保護する。しかる
後シリコン薄膜を全面に被着させ、露出された高融点金
属膜とシリコン薄膜を反応させゲート電極上にのみシリ
サイドを形成する。上記構造をたとえば王水でエツチン
グすればシリサイドだけが除去され、ゲート電極と自己
整合的にシリコン薄膜が存在しない構造が得られる。上
記、シリコン薄膜でソース・ドレイン引出し電極を構成
するがグー1−電極端部以外の引出し電極端は所望の形
状に蝕刻すればよい。
According to the above invention, a transistor structure having an ultra-fine source/drain diffusion layer with a diffusion layer width of 0.3 μm or less can be realized. In the above structure, both ends of the source/drain diffusion layer are configured in a self-aligned manner with the gate electrode, but in ultra-fine transistors where the gate electrode length is 0.5 μm or less, the structure of the source/drain lead electrodes is Another invention of the present application solves the above-mentioned problem in which the conventional technology causes a problem in securing alignment margins, by placing one end of the source/drain lead wiring on the gate electrode. In order to realize the above structure, the present invention focuses on the phenomenon that a silicon compound (silicide) of a high melting point metal such as titanium (Ti) is removed by aqua regia, but a silicon thin film is not removed. That is, in gate electrode processing, a gate electrode protective insulating film,
After simultaneously processing the and Ti thin films using the same mask, the gate electrode is protected by a gate electrode sidewall insulating film. Thereafter, a silicon thin film is deposited on the entire surface, and the exposed refractory metal film and silicon thin film are reacted to form silicide only on the gate electrode. If the above structure is etched with, for example, aqua regia, only the silicide is removed, and a structure in which no silicon thin film exists is obtained in self-alignment with the gate electrode. Although the source/drain lead electrodes are constructed of the silicon thin film described above, the ends of the lead electrodes other than the electrode end 1 may be etched into a desired shape.

ソース・ドレイン引出し電極と上部fLm配線間の接続
用開花も本発明の第4、及び第5の構造を用いれば上記
引出し電極に対して自己整合で構成することができる。
If the fourth and fifth structures of the present invention are used, the connection flower between the source/drain extraction electrode and the upper fLm wiring can also be configured in a self-aligned manner with respect to the extraction electrode.

上記i己整合開花を実現する為に本発明に於ては電子v
An光現象が下地の質量に依存し、質量が大きな物質が
存在する領域で電T−線しシスト膜の露光感度が極端に
増大する現象を利用する。すなわち、シリコン薄膜によ
るソース・ドレイン引出し電極の形成後、シリコンより
十分に大きな質量を有する高融点金属1例えばタングス
テン(W)膜を被着させ、上記引出しW1極をシリサイ
ド化させる。未反応の高融点金属膜は例えば過酸化水素
(H202) 、水溶液等で選択的に除去することがで
きる。上記構成の後、配線層間絶縁膜の堆積と、配線間
接続用開孔の為の電子線露光用レジストの塗布と、電子
線照射を施す。
In order to realize the above-mentioned self-consistent flowering, in the present invention, electron v
This method utilizes the phenomenon that the An optical phenomenon depends on the mass of the underlying material, and that the exposure sensitivity of the cyst film is extremely increased when an electric T-ray is applied in a region where a substance with a large mass is present. That is, after the source/drain lead electrodes are formed using a silicon thin film, a film of high melting point metal 1, such as tungsten (W), having a mass sufficiently larger than that of silicon is deposited, and the lead W1 pole is silicided. The unreacted high melting point metal film can be selectively removed using, for example, hydrogen peroxide (H202), an aqueous solution, or the like. After the above configuration, a wiring interlayer insulating film is deposited, a resist for electron beam exposure is applied to form openings for connection between wirings, and electron beam irradiation is performed.

この場合、電子線照射領域は開孔予定領域により大き〈
実施しても質量の大きな高融点金属によりシリサイド化
されたソース・ドレイン引出し電極上における露光感度
が高い為、ソース・ドレイ、ン引出し電極と自己整合的
に開孔領域のレジスト膜が露光され、開孔が可能となる
In this case, the electron beam irradiation area is larger than the planned hole opening area.
Even if this process is carried out, the resist film in the opening area is exposed in a self-aligned manner with the source/drain extraction electrodes because the exposure sensitivity is high on the source/drain extraction electrodes, which are silicided with a high-melting point metal having a large mass. Pores can be opened.

グーl−電極がWのごとく質量の大きな材料で構成され
ている場合、上記手法によりゲート電極上にまで開花が
形成される恐れがある。上記欠点を克服為、本発明に於
ては開孔を欲しないゲート電極上の配線層間絶縁膜の膜
厚をソース・ドレイン引出し電極」二の絶縁膜膜厚に比
して厚く構成する。
If the goo electrode is made of a material with a large mass such as W, there is a possibility that the above method may cause blooms to be formed even on the gate electrode. In order to overcome the above-mentioned drawbacks, in the present invention, the thickness of the wiring interlayer insulating film on the gate electrode where openings are not desired is made thicker than the insulating film thickness of the source/drain lead-out electrode.

上記植成に於てはゲート電極上の露光感度は絶縁膜厚差
の為に増大されずソース・ドレイン引出しi!!極上に
のみ自己整合的に開孔が施される。開花を欲しないゲー
ト電極上へ選択的に厚く層間絶縁膜を構成する手法につ
いては実施例で詳細に説明するがゲート電極長が0.5
μm以下の超微細トランジスタに於て、眉間絶縁1M堆
積前のゲート電極上が凹形形状に構成されていればグー
1〜電極上にのみ厚く堆積させることは極めて容易であ
る。すなわち凹形形状を埋めるだけの膜厚の層間絶縁膜
を全面に堆積すればよい。
In the above implantation, the exposure sensitivity on the gate electrode is not increased due to the difference in insulating film thickness, and the source/drain extraction i! ! Apertures are made in a self-aligned manner only on the very top. The method of selectively forming a thick interlayer insulating film on the gate electrode where flowering is not desired will be explained in detail in Examples, but when the gate electrode length is 0.5
In ultra-fine transistors of micrometers or less, if the gate electrode is formed in a concave shape before the glabellar insulation 1M is deposited, it is extremely easy to deposit thickly only on the goo 1 to electrode. That is, an interlayer insulating film having a thickness sufficient to fill the concave shape may be deposited over the entire surface.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によってさらに詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

説明の都合上、図面をもって説明するが要部が拡大して
示されでいるので注意を要する。
For convenience of explanation, the explanation will be made using drawings, but please note that important parts are shown enlarged.

実施例1 第2図乃至第6図は本発明による半導体装置の一実施例
を示した図で、1はp導電型比抵抗1Ω−国のシリコン
基板であ゛る。シリコン基板lに公知の素子分離技術に
より溝をほり、シリコン酸化膜により溝部を埋込んだ構
成のフィルド絶縁膜2を形成した。上記フィルド絶縁膜
2は従来の選択酸化法により形成したもの、又は溝部壁
面に絶縁膜を形成し、内部にシリコン膜を埋込んだいオ
)ゆるU−1絶縁法によるもので構成しても良い、フィ
ルド絶縁膜2の形成後、活性領域のシリコン表面を露出
し、10nmの清浄なゲート酸化膜βを形成する。しか
る後、約0.3 μmのタングステン薄膜4の蒸着とわ
ずかに燐を添加したシリコン酸化膜13の堆積を行う。
Embodiment 1 FIGS. 2 to 6 are diagrams showing an embodiment of a semiconductor device according to the present invention, in which reference numeral 1 denotes a p-conductivity type silicon substrate with a specific resistance of 1 Ω. A trench was bored in a silicon substrate 1 using a known device isolation technique, and a filled insulating film 2 was formed by filling the trench with a silicon oxide film. The filled insulating film 2 may be formed by a conventional selective oxidation method, or may be formed by a U-1 insulation method in which an insulating film is formed on the wall of the trench and a silicon film is embedded inside. After forming the filled insulating film 2, the silicon surface of the active region is exposed and a clean gate oxide film β of 10 nm is formed. Thereafter, a tungsten thin film 4 of approximately 0.3 μm is deposited and a silicon oxide film 13 slightly doped with phosphorus is deposited.

その後写真館側法によりタングステン薄g4とシリコン
酸化膜13を同時に蝕刻し、ゲート電極4とゲート保護
絶縁膜13を同一寸法で形成した。次に再び化学気相反
応により0.1 μmのシリコン酸化膜14を全面に堆
積した。上記シリコン酸化膜14を反応性スパッタエツ
チングによりシリコン基板1表面と垂直方向にエツチン
グし、平坦部に堆積されていたシリコン酸化膜14を選
択的に除去した。上記エツチングの結果、堆積シリコン
酸化膜1゛4はゲート電極4の側壁にのみ選択的に残置
され、ゲート電極4はシリコン酸化膜13及び14によ
り覆われる。
Thereafter, the tungsten thin film 4 and the silicon oxide film 13 were etched at the same time using a photo studio method to form the gate electrode 4 and the gate protection insulating film 13 with the same dimensions. Next, a 0.1 μm silicon oxide film 14 was deposited over the entire surface again by chemical vapor phase reaction. The silicon oxide film 14 was etched in a direction perpendicular to the surface of the silicon substrate 1 by reactive sputter etching, and the silicon oxide film 14 deposited on the flat portions was selectively removed. As a result of the above etching, the deposited silicon oxide film 14 is selectively left only on the side walls of the gate electrode 4, and the gate electrode 4 is covered with the silicon oxide films 13 and 14.

しかる後、約20nm厚のシリコン窒化膜15と0.3
5 μmのシリコン薄膜16を化学気相反応により順次
堆積した(第2図)1次に再び反応性スパッタエツチン
グ法によりシリコン基板1表面と垂直方向にシリコン薄
膜16をエツチングさせると平坦部に堆積されたシリコ
ン薄膜16は除去され、ゲート電極14の側壁部にのみ
ゲート側壁シリコン酸化膜14を介して選択的に残置さ
れる。
After that, a silicon nitride film 15 with a thickness of about 20 nm and a silicon nitride film 15 with a thickness of 0.3 nm are formed.
A silicon thin film 16 of 5 μm in thickness was sequentially deposited by chemical vapor phase reaction (FIG. 2). Next, the silicon thin film 16 was etched in a direction perpendicular to the surface of the silicon substrate 1 using a reactive sputter etching method, and was deposited on a flat area. The silicon thin film 16 is removed and selectively left only on the sidewalls of the gate electrode 14 with the gate sidewall silicon oxide film 14 interposed therebetween.

この状態でシリコン*ll1i16をマスクにして加熱
した燐酸(113PO4)により露出したシリコン窒化
lB115を除去した(第3図)。次にゲート電極4の
側壁部に残置しているシリコン薄膜16をフッ酸(II
F)と硝酸(llNO3)の混合液で除去するとシリコ
ン薄膜16下に選択的に残置されていたシリコン窒化膜
15はそのまま保存される。次に残置されているシリコ
ン窒化膜15をマスクにし露出されているゲート酸化膜
3を除去してから熱酸化法により露出したシリコン基板
1表面を酸化し約0.15 μmのシリコン酸化膜によ
る第2のフィルド絶縁@17を形成した。上記第2のフ
ィルドRf!3縁膜17の形成前に所望により硼1(B
)をイオン打込みにより露出しているシリコン基板1内
に注入しても良い、上記第2のフィルド絶縁膜17は残
置されているシリコン窒化膜15端よす約0.15 μ
mシリコン窒化膜15下に侵入して形成された。第2の
フィルド絶縁膜17の形成後再び加熱した燐酸液を用い
て残置されているシリコン窒化膜15を除去した。続い
て露出したゲート絶i11+II3を介してドーズ量I
 X 10 ”cm−2の砒素(As)をイオン打込み
し、その後の900℃なる温度の活性化熱処理によりソ
ース拡散層6、及びドレイン拡散層7を形成した。本実
施例では約0.15 μmの深さに形成したが本発明で
は、ソース・ドレイン領域は、ゲートによって形成され
るチャネルに充分に近ければよいのであり、それにより
深さも種々変更して問題ない。その後、露出されたゲー
ト酸化膜3を除去しシリコン基板1表面を露出させた(
第4図)。この状態で、0.1 μm厚のパラジウム(
Pd)膜20を全面に蒸着した後250℃の低温熱処理
を行う、上記熱処理により50nmの厚のパラジウムシ
リサイド(Pd2コ)層18及び19を各々ソース拡散
層6及びドレイン拡散層7上に形成した。Pd膜20は
シリコン酸化膜とは反応をおこさすシリコンが露出した
ソース拡散層6及びド【ツイン拡散層7上にのみ選択的
にPdz 51M18及び19が形成5大 される(第5図)。次に輪化アンモニウム(N114 
I)と沃素(I2)の水溶液で未反応のPd膜20を除
去した後、Pd25iyP11 B及び19の低抵抗I
6の為の熱処理を600℃で実施した。上記の低抵抗化
熱処理の後、20nm厚のチタンニウム(Ti)膜と0
.2 μmのPd膜を順次蒸着し、2重金Jハ配線膜2
0′を形成した。次に上記の2重金属配線20′を所望
の回路構成に従い加工した。エツチングはI2によるド
ライエツチングによった。上記のエツチングに於てはP
d2 Si層18及び19はまったく侵食されない。し
たがって2重金属配線膜20′のエツチング工程で多少
の位置合せずれが生じても2重金属配線膜20′とPd
7Si層18及び19が局部的にでも接触している限り
ソース・ドレイン拡散層抵抗は十分に低く、かつ変動幅
も小さく抑えられる。上記はソース拡散層6及びドレイ
ン拡散層7の全表面が自己整合的に低抵抗のPd2 S
i層18及び19で各々覆われていることによる。5重
金属配線膜20′による配線、及びPdPd25i 8
及び19との接続工程の後、公知の方法に従って燐を添
加したシリコン酸化膜による表面保護絶縁膜lOを堆積
した。
In this state, the exposed silicon nitride lB115 was removed using heated phosphoric acid (113PO4) using silicon *ll1i16 as a mask (FIG. 3). Next, the silicon thin film 16 remaining on the side wall of the gate electrode 4 is coated with hydrofluoric acid (II).
When removed with a mixed solution of F) and nitric acid (IINO3), the silicon nitride film 15 selectively left under the silicon thin film 16 is preserved as it is. Next, the exposed gate oxide film 3 is removed using the remaining silicon nitride film 15 as a mask, and then the exposed surface of the silicon substrate 1 is oxidized by a thermal oxidation method to form a silicon oxide film of about 0.15 μm. 2 filled insulation@17 was formed. The second field Rf! 3. Before forming the rim film 17, if desired, the borium 1 (B
) may be implanted into the exposed silicon substrate 1 by ion implantation.
It was formed by penetrating under the m silicon nitride film 15. After forming the second filled insulating film 17, the remaining silicon nitride film 15 was removed using heated phosphoric acid solution again. Subsequently, the dose amount I is applied via the exposed gate isolation i11+II3.
A source diffusion layer 6 and a drain diffusion layer 7 were formed by ion implantation of arsenic (As) of X 10 "cm-2 and subsequent activation heat treatment at a temperature of 900°C. In this example, the thickness was approximately 0.15 μm. However, in the present invention, the source/drain region only needs to be sufficiently close to the channel formed by the gate, and therefore the depth can be varied.Then, the exposed gate oxide is Film 3 was removed to expose the surface of silicon substrate 1 (
Figure 4). In this state, 0.1 μm thick palladium (
After the Pd) film 20 was deposited on the entire surface, a low-temperature heat treatment at 250° C. was performed. Through the above heat treatment, palladium silicide (Pd2) layers 18 and 19 with a thickness of 50 nm were formed on the source diffusion layer 6 and drain diffusion layer 7, respectively. . In the Pd film 20, Pdz 51M18 and 19 are selectively formed only on the source diffusion layer 6 and the doped twin diffusion layer 7 where silicon, which reacts with the silicon oxide film, is exposed (FIG. 5). Next, ammonium cyclide (N114
After removing the unreacted Pd film 20 with an aqueous solution of I) and iodine (I2), the low resistance I of Pd25iyP11B and 19
The heat treatment for No. 6 was carried out at 600°C. After the above resistance-lowering heat treatment, a 20 nm thick titanium (Ti) film and a
.. A Pd film of 2 μm thickness was sequentially deposited, and a double gold J-layer wiring film 2 was formed.
0' was formed. Next, the above double metal wiring 20' was processed according to a desired circuit configuration. Etching was performed by dry etching using I2. In the above etching, P
d2 Si layers 18 and 19 are not eroded at all. Therefore, even if some misalignment occurs during the etching process of the double metal wiring film 20', the double metal wiring film 20' and the Pd
As long as the 7Si layers 18 and 19 are in contact with each other even locally, the resistance of the source/drain diffusion layer is sufficiently low and the fluctuation range is suppressed to a small level. In the above, the entire surface of the source diffusion layer 6 and drain diffusion layer 7 is made of Pd2S with low resistance in a self-aligned manner.
This is because they are covered with i-layers 18 and 19, respectively. Wiring by 5 heavy metal wiring film 20' and PdPd25i 8
After the connection step with 19 and 19, a surface protection insulating film 10 made of a silicon oxide film doped with phosphorus was deposited according to a known method.

続いて所望接続箇所における表面保護絶縁膜16への開
花を行った。上記開孔に用いたフォトレジスト膜が残置
した状態でTiW膜を全面に被着させた。この状態で上
記フォトレジスト膜を除去すると開花部に対応する領域
にのみ選択的・にTiW21及び22が残置した。尚T
iW膜の形成は上記方法によらずども2重金属配線膜2
0′の蒸着に於て、さらにTiW膜を重ねて蒸着した3
重金属配線膜となし、所望の回路方式により配線工程を
実施しても良い。TiW21及び22を選択的に開花部
に残置した後、アルミニウム(AQ)を全面に蒸着し、
公知の配線工程により所望の回路構成に従いソース電極
11及びドレイン電極15゜さらには配線を構成した(
第6図)。
Subsequently, the surface protection insulating film 16 was bloomed at the desired connection location. A TiW film was deposited on the entire surface with the photoresist film used for the openings remaining. When the photoresist film was removed in this state, TiW 21 and 22 remained selectively only in the area corresponding to the flowering part. Nao T
Although the iW film is formed by the above method, the double metal wiring film 2
In the evaporation of 0', a TiW film was further deposited on top of 3.
The wiring process may be performed using a heavy metal wiring film and using a desired circuit system. After selectively leaving TiW21 and 22 on the flowering part, aluminum (AQ) was deposited on the entire surface,
A source electrode 11, a drain electrode 15, and wiring were constructed according to a desired circuit configuration using a known wiring process (
Figure 6).

上記のJl!!造工程を経て製造されたトランジスタに
於てはソース拡散層6及びドレイン拡散層7共その幅は
0.2 μmと従来構造1−ランジスタにおける最小幅
3μmに比べて15倍も狭く構成され、かつ良好なトラ
ンジスタ特性を示した。さらに本実施例に基づくトラン
ジスタの入出力容量は従来構造における容量の約半分に
まで減少し、その入出力速度も2倍以上高速化が達成さ
れた。ゲート長が0.8 μmなる条件のトランジスタ
に関し、ソース・ドレイン及びゲートからなる活性化領
域の面積を比較すると本実施例に基づくものは従来構造
のものの約115倍にまで縮小され、かつ入出力抵抗が
低く伝達コンダクタンスを向上していた。上記は従来構
造に於けるチャネル端からソース、又はドレインのコン
タクト孔までの距離が本実施例構造に於ては極端に縮小
されかつ、シリサイド化により拡散抵抗が低下したため
の効果と考えられる。
Above Jl! ! In the transistor manufactured through the manufacturing process, the width of both the source diffusion layer 6 and the drain diffusion layer 7 is 0.2 μm, which is 15 times narrower than the minimum width of 3 μm in the conventional structure 1-transistor, and It showed good transistor characteristics. Furthermore, the input/output capacitance of the transistor based on this example was reduced to about half of that of the conventional structure, and the input/output speed was more than doubled. Comparing the area of the active region consisting of the source, drain, and gate for transistors with a gate length of 0.8 μm, the area of the active region consisting of the source, drain, and gate is reduced to about 115 times that of the conventional structure, and the input/output The resistance was low and the transfer conductance was improved. The above is thought to be due to the fact that the distance from the channel end to the source or drain contact hole in the conventional structure is extremely reduced in the structure of this embodiment, and the diffusion resistance is reduced by silicidation.

実施例2 第7図乃至第8図は本発明の他の実施例を示した図であ
る。前記第1の実施例において、第2のフィルド絶縁膜
17の選択形状に用いたシリコン窒化膜I5、及びその
下のゲート酸化[3を除去したのち、ジクロルシラン(
SiHz CQx )と塩酸(HCfl)の化学気相反
応を775℃の温度でおこない0.2μm厚の多結晶質
又は非晶質のシリコン薄膜23及び24を露出されたシ
リコン基板上に選択的に堆積させた。L記シリコン薄膜
の形成条件は5ill、CQ、200cc、I((,9
60ccの条件であり堆積速度は3.Onm1分である
Embodiment 2 FIGS. 7 and 8 are diagrams showing another embodiment of the present invention. In the first embodiment, after removing the silicon nitride film I5 used for the selective shape of the second filled insulating film 17 and the gate oxide [3] thereunder, dichlorosilane (
A chemical vapor phase reaction between SiHz CQx ) and hydrochloric acid (HCfl) is performed at a temperature of 775° C. to selectively deposit polycrystalline or amorphous silicon thin films 23 and 24 with a thickness of 0.2 μm on the exposed silicon substrate. I let it happen. The formation conditions for the silicon thin film L are 5ill, CQ, 200cc, I((,9
The condition is 60cc and the deposition rate is 3. Onm is 1 minute.

上記条件に於ては被堆積表面にシリコン窒化膜が存在し
ない限りシリコン薄膜23.24はシリコン基板上にの
み選択的に堆積され、側壁のシリコン酸化膜14との境
界部に於てもファゼットと称される凹形状は発生しない
。尚、第2のフィルド絶縁膜I7上に於てはフィルド[
li膜17@より約0.1μm程、のり上げるごとくシ
リコン薄膜23及び24は堆積された(第7図)。シリ
コン薄膜23及び24を選択的に堆積した後、シリコン
堆積膜23及び24にAsイオンを注入した。
Under the above conditions, unless a silicon nitride film is present on the surface to be deposited, the silicon thin films 23 and 24 are selectively deposited only on the silicon substrate, and even at the boundary with the silicon oxide film 14 on the sidewall, there is a fazzet. The so-called concave shape does not occur. Note that on the second filled insulating film I7, the filled [
The silicon thin films 23 and 24 were deposited approximately 0.1 μm above the Li film 17 (FIG. 7). After selectively depositing the silicon thin films 23 and 24, As ions were implanted into the silicon deposited films 23 and 24.

上記注入量は7 X 1013c+n−’である。次に
1100℃30秒なる条件の短時間熱処理を実施し、注
入イオンの活性化を行なってソース拡散領域6及びドレ
イン拡散領域7を形成した。多結晶質、又は非晶質で構
成されたシリコン薄膜23及び24内における不純物の
拡散係数は単結晶シリコン内における拡散係数に比べて
lO乃至20倍も大きい。
The above injection amount is 7 x 1013c+n-'. Next, short-time heat treatment was performed at 1100° C. for 30 seconds to activate the implanted ions and form a source diffusion region 6 and a drain diffusion region 7. The diffusion coefficient of impurities in polycrystalline or amorphous silicon thin films 23 and 24 is 10 to 20 times larger than the diffusion coefficient in single crystal silicon.

したがって上記の短時間熱処理によりシリコン薄膜23
及び24内における不純物分布はほぼ均一分布であり、
下地シリコン基板内への拡散は接合深さ約35nmと極
めて浅く制御することができた。ソース拡散層6及びド
レイン拡散WJ7 (深さ約0.1μm)’の形成後P
d、Si層18及び19を前記第1の実施例に従って形
成し恭その後の工程も前記実施例に従ってトランジスタ
を製造した(第8図)。
Therefore, by the above-mentioned short-time heat treatment, the silicon thin film 23
and impurity distribution within 24 is approximately uniform distribution,
Diffusion into the underlying silicon substrate could be controlled to an extremely shallow junction depth of about 35 nm. After forming the source diffusion layer 6 and drain diffusion WJ7 (depth approximately 0.1 μm)
d. The Si layers 18 and 19 were formed in accordance with the first embodiment, and the subsequent steps were also carried out in accordance with the embodiment to manufacture a transistor (FIG. 8).

上記の製造]二程を経て製造されたトランジスタに於て
はPd、 5i)W 18及び19形成がシリコンf’
it膜23及び24上で行なわれる為シリサイド形成時
に消費されるシリコン層厚を補償するごとくシリコン薄
膜23及び24の膜厚をあらかじめ設定すればシリサイ
ド化による接合破壊を防ILできる。すなわち、本実施
例に基づいて、35nmと極めて浅い接合を有するトラ
ンジスタを前記第1の実施例に基づくトランジスタの特
徴を一つも損うことなく実現することができた。さらに
特願昭58−76110号に記載した超微細トランジス
タの高耐圧化構造も本実施例に基づいて約115の素子
面積に縮小することができた。本実施例に基づくトラン
ジスタのソース・ドレイン拡散層表面不純物濃度は最終
的に5X10111cm’と低く構成された。上記、低
濃度ドレイン拡散層の採用によりソース・ドレイン間の
高耐圧化が実現され0.2μmなるゲート長を有するト
ランジスタに於てソース・ドレイン間耐圧は8vと前記
特願昭58−76119号によるトランジスタと同じ値
が得られた。上記耐圧は従来構造1−ランジスタのもの
の2乃至3倍の値である。
[Manufacturing above] In the transistor manufactured through the two steps, Pd, 5i) W 18 and 19 are formed by silicon f'
If the film thicknesses of the silicon thin films 23 and 24 are set in advance to compensate for the silicon layer thickness consumed during silicide formation because it is performed on the IT films 23 and 24, junction breakdown due to silicide formation can be prevented. That is, based on this example, a transistor having an extremely shallow junction of 35 nm could be realized without impairing any of the characteristics of the transistor based on the first example. Furthermore, the high breakdown voltage structure of the ultra-fine transistor described in Japanese Patent Application No. 76110/1980 was also able to be reduced to a device area of approximately 115 mm based on this embodiment. The surface impurity concentration of the source/drain diffusion layer of the transistor based on this example was finally configured to be as low as 5×10111 cm′. By employing the above-mentioned low concentration drain diffusion layer, a high breakdown voltage between the source and drain is realized, and in a transistor having a gate length of 0.2 μm, the breakdown voltage between the source and drain is 8V, according to the above-mentioned Japanese Patent Application No. 76119/1983. The same value as the transistor was obtained. The above-mentioned breakdown voltage is two to three times higher than that of the conventional one-transistor structure.

実施例3 第9図乃至第12図は本発明による半導体装置の一実施
例を示した図で、1はp導電型、比抵抗1Ω−cl の
シリコン基板である。シリコン基板1に公知の素子分離
技術を利用して0.5μrnの厚いフィルド酸化膜2を
選択的に形成した後、活性領域のシリコン表面を露出し
、10nmの清浄なゲート酸化膜3を形成する。しかる
後、0.35μrnのW膜と0.3μmのわずかに燐が
添加されたシリコン酸化膜と0.2μmのTi膜を順次
堆積した。
Embodiment 3 FIGS. 9 to 12 are diagrams showing an embodiment of a semiconductor device according to the present invention, in which reference numeral 1 denotes a silicon substrate of p-conductivity type and specific resistance of 1 Ω-cl. After selectively forming a 0.5 μrn thick filled oxide film 2 on a silicon substrate 1 using a known device isolation technique, the silicon surface of the active region is exposed and a 10 nm clean gate oxide film 3 is formed. . Thereafter, a 0.35 μrn W film, a 0.3 μm silicon oxide film slightly doped with phosphorus, and a 0.2 μm Ti film were sequentially deposited.

上記三層膜を写真蝕刻法により同時に蝕刻し、ゲート電
極4.ゲート保護酸化膜13、及びゲート電極4と整合
して加工されたTi膜31を形成した。上記写嘉蝕刻後
のゲート電極4の幅、すなわちゲート長は0.5μn)
であった。次にモノシラン(S iH4を用いた化学気
相反応により0.3μmなる膜厚を有するシリコン酸化
1摸5′を全面に堆積した(第9図)。上Bdシリコン
酸化膜5′には化学気相反応時にフォスフイン(pH,
)を小量導入することによりわずかに屏が添加されてい
る。
The three-layer film is etched simultaneously by photolithography, and the gate electrode 4. A Ti film 31 processed in alignment with the gate protective oxide film 13 and the gate electrode 4 was formed. The width of the gate electrode 4 after the above photo-etching, that is, the gate length is 0.5 μn)
Met. Next, a silicon oxide film 5' having a thickness of 0.3 μm was deposited on the entire surface by a chemical vapor reaction using monosilane (SiH4) (Fig. 9). During the phase reaction, phosphine (pH,
) is added in small amounts to add a slight amount of filtering.

上記のシリコン酸化膜5′を反応性スパツタエツ゛チン
グによりシリコン基板表面と垂直方向にエツチングを行
い、平坦部に堆積されたシリコン酸化膜を除去するとゲ
ート電極3の側壁部にのみシリコン酸化膜(ゲート側壁
酸化膜5)が残置される。
The silicon oxide film 5' is etched in a direction perpendicular to the surface of the silicon substrate by reactive sputter etching to remove the silicon oxide film deposited on the flat areas. A gate sidewall oxide film 5) is left behind.

この状態で0.35μmのシリコン薄膜32をSiH4
の熱分解により全面に堆積させた。上記の熱分解温度は
約720℃であったが、上記堆積に於て、]゛i膜31
上では堆積されるシリコン薄膜が’I’ i膜31と反
応し、チタンシリサイド(TiSi2)膜31’が形成
された(第io図)。
In this state, the silicon thin film 32 of 0.35 μm is coated with SiH4
It was deposited on the entire surface by thermal decomposition. The above thermal decomposition temperature was about 720°C, but in the above deposition]
Above, the deposited silicon thin film reacted with the 'I' i film 31 to form a titanium silicide (TiSi2) film 31' (FIG. io).

上記のシリサイド化反応に於て、Ti膜31の膜厚が0
.2μmと薄いにもかかわらずTi膜31上に堆積され
たシリコン薄膜はすべて反応し、シリサイド化された。
In the above silicidation reaction, the thickness of the Ti film 31 is 0.
.. Although the silicon thin film was as thin as 2 μm, all of the silicon thin film deposited on the Ti film 31 reacted and was turned into silicide.

上記はダイシリサイド(D 1silicide)形成
に於ては侵食されるシリコンの比が大きい為と考えられ
る。TiSi、膜31′の選択形成の後、王水によりT
 i S i 2膜31’ を除去した。上記エツチン
グに於て、シリコン薄膜32は除去されない為、ゲート
電極4端と自己整合的にゲート電極4上にはシリコン薄
膜32が存在しない構造が得られる。この状態で残置し
たシリコン薄膜32を所望の形状に蝕刻し、ソース引出
し電極8’ (32)及びドレイン引出し電ぽ9′(3
2)を形成した。しかる後、ソース引出し電極8′及び
ドレイン引出し電極9′へ砒素(As)を加速エネルギ
ー70KeVドーズ量5 X 10 ”cIl−”なる
条件のイオン打込により注入した。上記のイオン打込み
の後、注入イオンの活性化とシリコン基板への拡散層引
伸しの熱処理を1000℃で行い、ソース引出し電極8
′及びドレイン引出し電極9′の低抵抗化とソース拡散
層6、及びトレイン拡散層7を形成した(第11図)。
The above is thought to be due to the fact that the ratio of silicon that is eroded during the formation of disilicide (D 1 silicide) is large. After selective formation of the TiSi film 31', T is removed using aqua regia.
The iS i 2 film 31' was removed. In the above etching, the silicon thin film 32 is not removed, so that a structure in which the silicon thin film 32 does not exist on the gate electrode 4 in self-alignment with the end of the gate electrode 4 is obtained. The silicon thin film 32 left in this state is etched into a desired shape, and the source lead electrode 8' (32) and the drain lead electrode 9' (32) are etched into a desired shape.
2) was formed. Thereafter, arsenic (As) was implanted into the source lead-out electrode 8' and the drain lead-out electrode 9' by ion implantation at an acceleration energy of 70 KeV and a dose of 5 x 10 "cIl-". After the above ion implantation, heat treatment for activating the implanted ions and stretching the diffusion layer on the silicon substrate is performed at 1000°C.
' and drain lead-out electrode 9', and a source diffusion layer 6 and a train diffusion layer 7 were formed (FIG. 11).

しかる後。After that.

公刈の技術を用いて表面保護絶縁膜10を堆積し、ソー
ス引出し電極8′及びドレイン引出しffi極9’上の
表面保護絶縁膜lOに公知の写真蝕刻法により開孔を施
した。続いて、ソース引出し電極8′及びドレイン引出
し電極9′と接続すべき配線11及び12を含む配線を
所望の回路方式にしたがって形成した(第12図)。
A surface protection insulating film 10 was deposited using Kokari's technique, and holes were formed in the surface protection insulating film 10 on the source lead-out electrode 8' and drain lead-out ffi electrode 9' by a known photolithography method. Subsequently, wires including wires 11 and 12 to be connected to the source lead electrode 8' and drain lead electrode 9' were formed according to a desired circuit system (FIG. 12).

上記の製造工程を経て製造されたトランジスタに於ては
ソース・ドレイン拡散層領域6及び7を公知の選択酸化
法により構成したにもかかわらず、ソース・ドレイン引
出し電極8′及び9′の各端部をゲート電極4の端部と
自己整合で構成できるためソース・ドレイン引出し電極
とソース・ドレイン拡散層間の位置合せ予裕を必要とし
ない。したがってソース・ドレイン拡散層幅を1μmと
従来構造トランジスタの1/3程度にまで縮小すること
ができた。ソース・ドレイン拡散層面積が従来構造トラ
ンジスタ番;比べて1/3に微細化された事により、入
出力容量が減少し、本発明によるトランジスタに於ては
動作速度も従来構造トランジスタに比べ約20%改善す
ることができ、た。
In the transistor manufactured through the above manufacturing process, although the source/drain diffusion layer regions 6 and 7 were formed by a known selective oxidation method, each end of the source/drain lead electrodes 8' and 9' Since the portion can be constructed in self-alignment with the end portion of the gate electrode 4, there is no need for alignment margin between the source/drain lead electrode and the source/drain diffusion layer. Therefore, the width of the source/drain diffusion layer could be reduced to 1 .mu.m, which is about 1/3 that of a transistor with a conventional structure. The area of the source/drain diffusion layer has been miniaturized to 1/3 of that of a transistor with a conventional structure, which reduces the input/output capacitance, and the operating speed of the transistor according to the present invention is approximately 20% higher than that of a transistor with a conventional structure. % could be improved.

実施例4 第13図乃至第19図は本発明の他の実施例を示した図
である゛。前記第1の実施例において、素子間分離用フ
ィルド酸化膜2は公知の埋込み酸化法により形成した。
Embodiment 4 FIGS. 13 to 19 are diagrams showing other embodiments of the present invention. In the first embodiment, the element isolation filled oxide film 2 was formed by a well-known buried oxidation method.

フィルド酸化1112の形成後前記第1の実施例に従い
ゲート酸化膜3、W膜及びゲート保護酸化膜を順次形成
した。W膜及びゲート保護酸化膜の各膜厚はいずれも0
.15μmであった。続いて0.15μmの第2のWI
II、及び5・Onmなる膜厚の第2のゲート保護酸化
膜を堆積した。上記の第1.第2のW膜、及び第1.第
2のゲート保護酸化膜からなる4層の重合せ膜を写真蝕
刻法により同時に蝕刻し、ゲート電t@4と自己整合に
加工された第2のW膜34.及び第1.第2のゲート保
護酸化膜13.33を形成した。しかる後前記第1の実
施例に従いゲート側壁酸化膜5を形成した。次に約20
nm厚のシリコン窒化膜15と0.35μmのシリコン
薄膜16を化学気相反応により順次堆積した(第13図
)。
After forming the field oxide 1112, a gate oxide film 3, a W film, and a gate protective oxide film were successively formed according to the first embodiment. The thickness of both the W film and the gate protective oxide film is 0.
.. It was 15 μm. followed by a second WI of 0.15 μm
A second gate protective oxide film with a thickness of 5.0 nm was deposited. No. 1 above. the second W film, and the first. The four-layer superimposed film consisting of the second gate protective oxide film is etched at the same time by photolithography, and the second W film 34 is processed to be self-aligned with the gate electrode t@4. and 1st. A second gate protection oxide film 13.33 was formed. Thereafter, a gate sidewall oxide film 5 was formed in accordance with the first embodiment. Then about 20
A silicon nitride film 15 with a thickness of nm and a silicon thin film 16 with a thickness of 0.35 μm were sequentially deposited by chemical vapor phase reaction (FIG. 13).

次に再び反応性スパッタエツチング法によりシリコン基
板1表面と垂直方向にシリコン薄膜16をエツチングす
ると、平坦部に堆積゛されたシリコン薄rf1416は
除去され、ゲート側壁酸化[5の側壁部にのみ選択的に
残置された。この状態でシリコン薄膜16をマスクにし
て加熱した燐酸(H,Po、’)により露出したシリ−
ン酸化膜15を除去した(第14図)。
Next, when the silicon thin film 16 is etched again in the direction perpendicular to the surface of the silicon substrate 1 by the reactive sputter etching method, the thin silicon RF 1416 deposited on the flat portion is removed, and the gate sidewall oxidation [5] is selectively etched only on the sidewall of the gate sidewall. was left behind. In this state, using the silicon thin film 16 as a mask, heated phosphoric acid (H, Po,') removes the exposed silicon.
The oxide film 15 was removed (FIG. 14).

次にゲート側壁酸化膜5の側壁部に選択的に残置してい
るシリコン薄膜16をフッ酸(HF)と硝酸(HN O
s )の混合液で除去すると選択的に残置されていたシ
リコン薄11116下のシリコン窒化膜15のみが残置
される。続いて、残置されたシリコン窒化115115
をマスクにして露出されているゲート酸化膜3を除去し
てから熱酸化法により露出したシリコン基板1表面を酸
化Lk4約0.15μm、のシリ−フン酸化膜による第
2のフィルド酸化膜17を形成した。第2のフィルド酸
化膜は残置されているシリコン窒化膜15端より約O,
t Sμm、シリコン窒化膜15下に侵入して形成され
た。第2のフィルド酸化膜17の形成後、再び加熱燐酸
液により残置されているシリコン酸化膜15を除去し、
続いて露出したゲート酸化膜3も除去した(第15図)
Next, the silicon thin film 16 selectively left on the sidewalls of the gate sidewall oxide film 5 is treated with hydrofluoric acid (HF) and nitric acid (HNO2).
When it is removed with the mixed solution of s), only the silicon nitride film 15 under the silicon thin film 11116 that was selectively left remains. Subsequently, the remaining silicon nitride 115115
After removing the exposed gate oxide film 3 using the mask as a mask, the exposed surface of the silicon substrate 1 is oxidized by a thermal oxidation method to form a second filled oxide film 17 made of a silicon oxide film with a thickness of about 0.15 μm. Formed. The second filled oxide film is approximately O from the edge of the remaining silicon nitride film 15.
t S μm, and was formed penetrating under the silicon nitride film 15 . After forming the second filled oxide film 17, the remaining silicon oxide film 15 is removed again using a heated phosphoric acid solution.
Subsequently, the exposed gate oxide film 3 was also removed (Fig. 15).
.

次に電子線レジスト液RE50000 (商品名)を全
面i;塗布後、−照射量10μC/r+ITなる電子線
を全面に照射し、現象したところ、第2のW膜34上の
レジスト膜のみが選択的に除去され、他領域上のレジス
ト[37はρ置したままであった。上記、レジスト膜3
7の選択的残膜効果を利用し、第2のW膜34上の第2
のゲート保M#化833のみを選択的に除去した(第1
6図)。電子線照射によるレジスト膜の選択的残膜効果
は第19図に示す特性に基づく、23の曲線はシリコン
酸化膜下にWのごとく質量が大きい物質が存在する場合
であり、24の曲線はシリコン酸化膜下がシリコン基板
の場合についての電子線照射、及び現象後のレジスト残
膜率である。すなわちLOttC/dなる条件で電子線
照射を行うとWm上ではレジスト膜が完全に除去される
がシリコン基板上では約50%屡のレジスト膜が残置さ
れる。この現象を利用することによりW等、質量の大き
な物質上のレジスト膜を選択的に除去することができる
Next, after coating the entire surface with electron beam resist solution RE50000 (trade name), the entire surface was irradiated with an electron beam at a dose of -10 μC/r+IT, and when a phenomenon occurred, only the resist film on the second W film 34 was selected. The resist [37] on other areas remained at ρ. Above, resist film 3
7 on the second W film 34.
selectively removed only the gate protection M# 833 (first
Figure 6). The selective residual film effect of the resist film by electron beam irradiation is based on the characteristics shown in FIG. This figure shows the resist remaining film rate after electron beam irradiation and the phenomenon when the silicon substrate is under the oxide film. That is, when electron beam irradiation is performed under the condition of LOttC/d, the resist film is completely removed on Wm, but about 50% of the resist film remains on the silicon substrate. By utilizing this phenomenon, it is possible to selectively remove a resist film on a substance having a large mass such as W.

上記現象は電子線の反射量が下地物質の質量差に依存す
る現象によるものであり、上記現象を防止する為には下
地物質までの距離、すなわちW膜上の酸化膜厚を他に比
べて厚くするなどの方法を採ればよい、第2のW膜34
表面を選択的に露出した後、前記第1の実施例に従って
0.3μmのシリコン基板膜の堆積と、第2のW膜34
部で形成されたタングステンシリサイド膜を王水で除去
すると第1のW膜4上にのみ選択的にシリコン簿膜が存
在しない構造が得られた。この状態により前記第1の実
施例に従い、ソース引出し電極8′、ドレイン引出し電
極9′、及びソース拡散層6、ドレイン拡散層7を形成
した。その後Ttを全面に堆積させ、720℃のシリサ
イド化熱処理と未反応Ti膜の選択除去によりソース引
出し電極8′上及びドレイン引出し電極上に各々チタン
シリサイド電極35及び36を形成した。未反応Ti膜
の除去には過酸化水素水とアンモニア水の混合水溶液を
用いたが上記混合液によってはチタンシリサイド膜は除
去されず、ゲート電極4と自己整合で構成されたソース
・ドレイン引出し電極上だけにシリサイド層が残、置さ
れた(第17図)、シかる後、前記第1の実施例に基づ
いて表面保護絶縁膜の形成と、所望部への開孔、及びソ
ース・ドレイン引出し電極への接続を含む配線工程を実
施した(第18図)。
The above phenomenon is due to the fact that the amount of reflection of the electron beam depends on the mass difference of the underlying material, and in order to prevent the above phenomenon, the distance to the underlying material, that is, the thickness of the oxide film on the W film, must be adjusted compared to others. The second W film 34 may be made thicker, etc.
After selectively exposing the surface, a 0.3 μm silicon substrate film is deposited according to the first embodiment, and a second W film 34 is deposited.
When the tungsten silicide film formed in the section was removed with aqua regia, a structure was obtained in which no silicon film was selectively present only on the first W film 4. In this state, a source lead electrode 8', a drain lead electrode 9', a source diffusion layer 6, and a drain diffusion layer 7 were formed according to the first embodiment. Thereafter, Tt was deposited on the entire surface, and titanium silicide electrodes 35 and 36 were formed on the source lead electrode 8' and the drain lead electrode, respectively, by silicidation heat treatment at 720° C. and selective removal of the unreacted Ti film. Although a mixed aqueous solution of hydrogen peroxide and ammonia water was used to remove the unreacted Ti film, the titanium silicide film was not removed depending on the mixed solution, and the source/drain extraction electrodes configured in self-alignment with the gate electrode 4 were removed. A silicide layer is left only on the top (FIG. 17). After silicide, a surface protection insulating film is formed based on the first embodiment, holes are formed in desired areas, and source/drain leads are formed. A wiring process including connection to electrodes was performed (FIG. 18).

上記の製造工程を経て製造されたトランジスタに於ては
ソース・ドレイン拡散層6.及び7の幅が0.2μmと
極めて微細に形成でき、かつ上記超微細拡散層へ、配線
の短絡、及び接触不良をおこすことなく、自己整合的に
引出し電極を形成することができた。さらに上記の引出
し電極はシリサイド化されている為、ソース・ドレイン
の直列抵抗もシリコン薄膜で形成された従来配線に比べ
1/I Oの配線抵抗にす葛ことができた。配線抵抗の
低抵抗化、及びソース・ドレイン拡散層の超微細化によ
り、本実施例に基づくトランジスタに於ては動作速度を
従来構造のものの約2倍に向上することができた。
In the transistor manufactured through the above manufacturing process, the source/drain diffusion layer 6. and 7 could be formed extremely finely with a width of 0.2 μm, and the extraction electrode could be formed in a self-aligned manner to the ultra-fine diffusion layer without causing wiring short circuits or poor contact. Furthermore, since the above-mentioned lead-out electrodes are silicided, the series resistance of the source and drain can be reduced to 1/I0 compared to the conventional wiring formed of a silicon thin film. By lowering the wiring resistance and making the source/drain diffusion layers ultra-fine, the operating speed of the transistor based on this example could be increased to about twice that of the conventional structure.

実施例5 第20図は本発明の他の実施例を示した図である。本実
施例は引出し電極上に設けたシリサイド層(35,36
)を利用して電極11.12を設ける孔を自己整合で設
けるものである。
Embodiment 5 FIG. 20 is a diagram showing another embodiment of the present invention. In this example, silicide layers (35, 36
) is used to provide holes in which the electrodes 11 and 12 are provided in a self-aligned manner.

すなわち、シリサイド層(35,36)上のホトレジス
トのみ除去できることを利用するものである。
That is, this method takes advantage of the fact that only the photoresist on the silicide layers (35, 36) can be removed.

前記第2の実施例に従ってソース引出しftt極8′及
びドレイン引出し電極9′上に各々TiSi、層35及
び36を自己整合的に形成した。尚、ゲート電極4の長
けは0.3μmであり、ソース・ドレインの各引出し電
極間の距離も同様に0.3μmであった。また第2のゲ
ート保護絶縁膜33の膜厚は0.1511 mであった
。Ti5iz層の形成後0,5μmの膜厚の表面保護絶
縁膜IOを全面に堆積させたがゲート電極4上に於ける
絶縁膜膜厚はゲート保護酸化膜13も含め約1μmとな
った。この状態に於いて、電子線レジストの塗布とlO
μC/Jなる条件による電子線照射をソース引出し電極
及びドレイン引出し電極部に選択的に行った。
According to the second embodiment, TiSi layers 35 and 36 were formed in a self-aligned manner on the source lead-out ftt electrode 8' and drain lead-out electrode 9', respectively. The length of the gate electrode 4 was 0.3 μm, and the distance between the source and drain electrodes was also 0.3 μm. Further, the film thickness of the second gate protection insulating film 33 was 0.1511 m. After forming the Ti5iz layer, a surface protection insulating film IO with a thickness of 0.5 μm was deposited on the entire surface, and the thickness of the insulating film on the gate electrode 4 including the gate protection oxide film 13 was about 1 μm. In this state, electron beam resist application and lO
Electron beam irradiation under conditions of μC/J was selectively applied to the source extraction electrode and drain extraction electrode portions.

上記に於て、貿五数の大きな’i’isi、y上では照
射電子線の反射量が多く現、像後はレジスト膜残膜は存
在しなかった。しかしながらゲート電極4上に於ては下
地絶縁膜の膜厚がTiSi、層上に比べて倍程度である
ためかレジスト膜の残膜率は約1/2となり開孔は形成
されなかった。シリコン基板上のレジスト残膜率は同様
に1/2程度であった。上記電子線照射領域の位置合せ
精度を粗く設定したにもかかわらず、ソース・ドレイン
引出し電極と外部配線との接続孔の開孔はシリサイド化
されたソース・ドレイン引出し電極35及び36にのみ
自己整合的に形成さオした。この場合において、位置合
せが非常にズしてしまったとしても、電極11.12用
孔は、第20図A部に対応する(シリサイド°35,3
6の上部)部分以外には形成されない。表面保護絶縁膜
10の除去される部分は、照射され、かつ、A部に対応
するボ;−レジストの部分のみとなるのである。
In the above case, the amount of reflection of the irradiated electron beam was large on 'i'isi, y with a large trade-off number, and there was no residual resist film after the image was developed. However, on the gate electrode 4, the remaining film ratio of the resist film was about 1/2, and no opening was formed, probably because the thickness of the underlying insulating film was about twice that of the TiSi layer. Similarly, the resist remaining film rate on the silicon substrate was about 1/2. Even though the alignment accuracy of the electron beam irradiation area is set coarse, the openings of the connection holes between the source/drain extraction electrodes and the external wiring are self-aligned only with the silicided source/drain extraction electrodes 35 and 36. It was specially formed. In this case, even if the alignment is extremely misaligned, the holes for electrodes 11 and 12 correspond to part A in FIG.
It is not formed anywhere other than the upper part of 6). The portion of the surface protection insulating film 10 that is removed is only the portion of the resist that is irradiated and corresponds to portion A.

上記レジスト膜の開孔部の表面保護絶縁IFJを除去し
た後、所望の回路構成に従いアルミニウム配線による接
続を行づた(第20図)。
After removing the surface protection insulation IFJ in the openings of the resist film, connections were made using aluminum wiring according to the desired circuit configuration (FIG. 20).

上記の製造工程を経て製造されたトランジスタに於ては
ソース・ドレイン拡散M6、及び7の幅が前記第2の実
施例の場合と同様に0.2μ■1と極めて微細に構成で
き、前記第2の実施例に於けるトランジスタのものと同
様の超eta・高速動作特性を接続不良等を招くことな
く実現することができた。さらに、ソース・ドレイン引
出しW1極への配線接続孔形成も自己整合で構成するこ
とがで色た為、接続孔に関する位置合せ予裕、通常配線
幅より広い領域を形成するいわゆるドックボーンと称さ
れる構成、を不用とすることができた。上記の結果、配
線面積の大幅な減少を可能にすることができた。本発明
による配線占有面積の大幅な減少は特に論理回路MO5
LSIに於て特に有効である。
In the transistor manufactured through the above manufacturing process, the width of the source/drain diffusions M6 and M7 can be extremely finely configured as 0.2μ1 as in the case of the second embodiment. Super eta and high-speed operation characteristics similar to those of the transistor in the second embodiment could be achieved without causing connection failure or the like. Furthermore, since the wiring connection hole formation to the source/drain lead W1 pole can be configured by self-alignment, there is no alignment margin for the connection hole, so it is called a so-called dog bone, which forms an area wider than the normal wiring width. This made it possible to eliminate the need for the configuration. As a result of the above, it was possible to significantly reduce the wiring area. The significant reduction in the area occupied by wiring according to the present invention is particularly achieved in the logic circuit MO5.
This is particularly effective in LSI.

尚、本実施例に於てソース・ドレイン引出し電極上とゲ
ート電極上に於ける絶縁膜厚比は1.5倍乃至2倍以上
あることが望ましく、上記条件に於ては本実施例に記載
したごとくソース・ドレイン引出し電極上のレジスト膜
のみ自己整合的に電子線照射によって現像除去すること
ができる。
In this example, it is desirable that the insulating film thickness ratio on the source/drain extraction electrode and on the gate electrode is 1.5 to 2 times or more, and under the above conditions Thus, only the resist film on the source/drain extraction electrodes can be developed and removed by electron beam irradiation in a self-aligned manner.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、0.2乃至0.3μmと極めて狭いソ
ース・ドレイン拡散層をゲート電極と自己整合的に構成
することができるのでソース・ドレイン拡散層の占有面
積を従来構造に比べて1715以下に縮小することがで
きる。上記トランジスタに於てはソース・ドレインの各
接合容量が従来構造に比べて1桁以上低減化されるので
入出力速度も2倍以上向上させることができる。さらに
本発明によればシリサイド化された狭いソース・ドレイ
ン拡散層と自己整合的に配線の接続ができるので拡散層
抵抗の低減化と共に直列抵抗の低減化、及びその変動幅
の縮小が可能となる。したがった伝達コンダクタンスが
向上する効果がある。本発明は0.2μm程度のゲート
長を有する高耐圧・超微細トランジスタにも適用できる
。したがって本発明によれば8vのソース・ドレイン耐
圧を有する0、2μmゲート長トランジスタを従来構造
より115以下の占有面積で構成することができる。
According to the present invention, the extremely narrow source/drain diffusion layer of 0.2 to 0.3 μm can be formed in a self-aligned manner with the gate electrode, so the area occupied by the source/drain diffusion layer can be reduced by 1715 μm compared to the conventional structure. It can be reduced to: In the above transistor, each junction capacitance of the source and drain is reduced by more than one order of magnitude compared to the conventional structure, so the input/output speed can be increased by more than twice. Furthermore, according to the present invention, interconnections can be connected in a self-aligned manner with narrow silicided source/drain diffusion layers, making it possible to reduce the resistance of the diffusion layer, reduce the series resistance, and reduce the range of variation thereof. . Therefore, there is an effect of improving the transfer conductance. The present invention can also be applied to high-voltage, ultra-fine transistors having a gate length of about 0.2 μm. Therefore, according to the present invention, a 0.2 μm gate length transistor having a source-drain breakdown voltage of 8 V can be constructed with an occupied area of 115 μm or less compared to the conventional structure.

前記第1及び第2の実施例からも明らかなごとく本発明
による半導体装置はグー1−ffl極を形成した後、第
2のフィルド絶縁膜を形成する製造方法に基づいている
。したがって第1のフィルド絶縁膜2は第2図乃至第8
図のごとく第2のフィルド絶縁膜17及びゲート電極上
化 は設置する必要がなく、図面と垂直方向、すなわちチャ
ネル幅方向に第2のフィルド絶縁膜17と接するごとく
設置するだけでもさしつかえない。
As is clear from the first and second embodiments, the semiconductor device according to the present invention is based on a manufacturing method in which the second filled insulating film is formed after forming the 1-ffl electrode. Therefore, the first filled insulating film 2 is
As shown in the figure, it is not necessary to provide the second filled insulating film 17 and the gate electrode, and it is sufficient to simply provide the second filled insulating film 17 in contact with the second filled insulating film 17 in the direction perpendicular to the drawing, that is, in the channel width direction.

尚、前記第1及び第2の実施例に於て、ソース拡散層6
及びドレイン拡散層7と同一不純物領域を第4図乃至第
8図で図示される領域以外にも設置する場合は第2図の
状態において所望領域上に写真蝕刻用にマスクを選択的
に設置しシリコン薄膜16をエツチングし、その後、第
1又は第2の実施例に基づいて製造すれば良い。
In addition, in the first and second embodiments, the source diffusion layer 6
If the same impurity region as the drain diffusion layer 7 is to be provided in areas other than those shown in FIGS. 4 to 8, a mask for photolithography is selectively placed over the desired area in the state shown in FIG. The silicon thin film 16 may be etched and then manufactured based on the first or second embodiment.

前記、第1及び第2の実施例に於ては説明の都合上、シ
リサイド層18及び19としてPd、 Siの場合につ
いて記載したが上記シリサイド層はTi、Zr、)If
、V、Nb、Ta、Cr;、Mo。
In the first and second embodiments, for convenience of explanation, the silicide layers 18 and 19 are made of Pd and Si, but the silicide layers are made of Ti, Zr, If
, V, Nb, Ta, Cr;, Mo.

W、Nj、r’tなど他の高融点金属、又は遷移金属の
シリサイド層であってもかまわない6また二重金属配線
膜20′もTiとPd重合せ膜に限定されない。シリコ
ン酸化膜との良好な密着性が要求される第1層目の金属
膜はTi以外にTiW。
It may also be a silicide layer of other high melting point metals such as W, Nj, r't, or transition metals6. Furthermore, the double metal wiring film 20' is not limited to the Ti and Pd polymerized film. The first layer metal film, which requires good adhesion to the silicon oxide film, is made of TiW in addition to Ti.

Mo、Zr、AQ、Ta、Cr等の他の金属又はその混
合膜であってもよい。さらに上記Pd膜に対応する第2
層目の金属膜はAu、Cuさらには前記した種々の高融
点金属、又は遷移金属であっても良い。また上記2重金
屈配線20′のかわりに前記した第1層目の金属単独で
配線層を構成してもさしつかえない。
It may also be a film of other metals such as Mo, Zr, AQ, Ta, Cr, or a mixture thereof. Furthermore, a second film corresponding to the above Pd film is
The metal film in the second layer may be made of Au, Cu, or the various high melting point metals mentioned above, or transition metals. Further, instead of the double metal bending wiring 20', the wiring layer may be formed solely of the metal of the first layer described above.

本発明の第3〜第5の実施例によればソース・ドレイン
拡散層からの引出し電極をゲート電極に対して自己整合
で構成できるため、配線間短絡等の不良を生ずることな
くソース・ドレイン拡散層面積を極端に縮少することが
できる。したがって拡散層容量を大幅に低減する効果が
ある。さらに本発明によればソース・ドレイン引出し電
極への接続用開孔を自己整合で構成できるため開孔位置
合せ予裕を不用にすることができ配線占有面積を実効的
に縮少する効果がある。さらに本発明によればソース・
トレイン引出し電極をシリサイド7ヒする為ソース・ド
レイン直列抵抗の低減化効果も利用でき、高利得・高速
動作が可能となる。
According to the third to fifth embodiments of the present invention, the lead electrode from the source/drain diffusion layer can be self-aligned with the gate electrode, so that the source/drain diffusion layer can be formed without causing defects such as short circuits between wirings. The layer area can be extremely reduced. Therefore, it has the effect of significantly reducing the diffusion layer capacitance. Furthermore, according to the present invention, since the openings for connection to the source/drain extraction electrodes can be constructed in a self-aligned manner, allowances for positioning the openings can be made unnecessary, and the area occupied by the wiring can be effectively reduced. . Furthermore, according to the present invention, the source
Since the train lead-out electrode is silicided, the effect of reducing the source-drain series resistance can also be utilized, allowing high gain and high-speed operation.

前記、第3〜第5の各実施例に於ては説明の都合上ゲー
ト電極4上にゲート保1!酸化膜13を介して自己整合
的に形成するシリサイド膜31′としてWSi2.又は
TiSi2の場合について記載したがシリコン簿膜がエ
ツチングされないエツチング液で除去される他の高融点
金属、又は遷移金属のシリサイド膜であってもよい。ま
たこれらの除去液も王水に限定されることはない。さら
に前記第4乃至第5の実施例に記載したソース・ドレイ
ン引出し電極のシリサイド化もTiSi2に限定される
ことなく、Siより質量数の大きい高融点金属(又は遷
移金属)Mo、Ta、W、Zr。
In each of the third to fifth embodiments described above, for convenience of explanation, a gate electrode 1! is provided on the gate electrode 4. WSi2. Alternatively, although the case of TiSi2 has been described, it may be a silicide film of other high melting point metal or transition metal that is removed with an etching solution that does not etch the silicon film. Furthermore, these removal solutions are not limited to aqua regia. Furthermore, the silicidation of the source/drain extraction electrodes described in the fourth and fifth embodiments is not limited to TiSi2, but may also include high melting point metals (or transition metals) with a mass number greater than Si, such as Mo, Ta, W, etc. Zr.

Hf、V、Cr、Ni、Pt、Pdなどのシリサイドで
あればよい。
Any silicide such as Hf, V, Cr, Ni, Pt, or Pd may be used.

前記の各実施例に於ては説明の都合上p導電型基板に!
1型不純物によるソース・ドレイン領域を構成するいわ
ゆるnチャネル型トランジスタについて示したが、本発
明に基づく半導体装置はn導電型基板とp型不純物によ
るソース・ドレイン領域で構成されるいわゆるPチャネ
ルトランジスタにも適用できる。さらに本発明の前記の
ごとき単体トランジスタに限定されることなく相補型ト
ランジスタや半導体集積回路装置に対しても適用できる
In each of the above embodiments, for convenience of explanation, a p conductivity type substrate is used!
Although the so-called n-channel transistor in which the source and drain regions are formed by type 1 impurities has been described, the semiconductor device according to the present invention is also applicable to a so-called p-channel transistor which is formed by the n-conductivity type substrate and the source and drain regions to be formed by p-type impurities. can also be applied. Furthermore, the present invention is not limited to the above single transistors, but can also be applied to complementary transistors and semiconductor integrated circuit devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はソース・ドレイン拡散層への自己整合接続を行
う従来構造MO5型電界効果トランジスタの断面を示す
図、第2図乃至第6図は本発明の第1の実施例を示す断
面図、第7図乃至第8図は本発明の第2の実施例を示す
断面図、第9図乃至第12図は本発明の第3の実施例を
示す断面図、第13図乃至第18図は本発明の第4の実
施例を示す断面図、第19図はポジ型電子線レジストの
電子線照射条件依存特性に関し、下地物質依存性をパラ
メータとして示した図であり、本発明の第4及び第5の
実施例に於ける自己整合開孔技術を説明する図、第20
図は本発明の第5の実施例を示す断面図である。 l・・・半導体基板、2・・・分離用絶縁膜、3・・・
グー1〜絶縁膜、4・・・ゲート電極、5・・・絶B膜
、6,7・・・ソース及びドレイン領域、8,9.8’
 、9’ ・・・引出し電極、10・・・表面保護絶縁
膜、11,12、、、ll?j%jワtA、、、mmm
m1亡−、−X+11−+41v噌化膜、16・・・シ
リコン層、17・・・シリコン酸化膜、18.19・・
・シリサイド層、20.20’ ・・・引出し電極、2
1.22・・・TiW膜、23.24・・・シリコン層
、31・・・T+膜、31′・・・チタンシリサイド膜
、32・・・シリコン酸化膜、33・・・絶縁膜、34
・・・W膜1.i5,36・・・チタンシリサイド膜、
■ 1 国 5132図 YJ 3 図 ■ 4 図 ′fJ 5 図 ′fJt 図 冨 7 用 箔 8 図 第 C/ 目 fJ10 口 個 11 図 VJl、3 図 茅 14 図 宴 15 閃 ¥J !7 図 箔 18 図
FIG. 1 is a cross-sectional view of a conventional MO5 field effect transistor with self-aligned connection to the source/drain diffusion layer, and FIGS. 2 to 6 are cross-sectional views showing a first embodiment of the present invention. 7 to 8 are cross-sectional views showing a second embodiment of the present invention, FIGS. 9 to 12 are cross-sectional views showing a third embodiment of the present invention, and FIGS. 13 to 18 are cross-sectional views showing a third embodiment of the present invention. FIG. 19 is a cross-sectional view showing the fourth embodiment of the present invention, and is a diagram showing the underlying material dependence as a parameter regarding the electron beam irradiation condition dependence characteristics of a positive electron beam resist. Diagram 20 explaining the self-aligned hole opening technique in the fifth embodiment
The figure is a sectional view showing a fifth embodiment of the present invention. l... Semiconductor substrate, 2... Insulating film for isolation, 3...
Goo 1 - insulating film, 4... gate electrode, 5... isolation B film, 6, 7... source and drain region, 8, 9.8'
, 9'...Extraction electrode, 10...Surface protection insulating film, 11, 12,...ll? j%jwatA,,,mmm
m1 dead-, -X+11-+41v solidified film, 16... silicon layer, 17... silicon oxide film, 18.19...
・Silicide layer, 20.20'... Extraction electrode, 2
1.22...TiW film, 23.24...Silicon layer, 31...T+ film, 31'...Titanium silicide film, 32...Silicon oxide film, 33...Insulating film, 34
...W film 1. i5,36...Titanium silicide film,
■ 1 Country 5132 map YJ 3 Figure ■ 4 Figure 'fJ 5 Figure 'fJt Figure 7 Foil 8 Figure C/ Item fJ10 Kuchi piece 11 Figure VJl, 3 Figure Kaya 14 Figure 'fJ' 5 Figure 'fJt! 7 Figure foil 18 Figure

Claims (1)

【特許請求の範囲】 1、ゲート電極の側壁に構成さ肛た絶縁膜を介してゲー
ト電極と隣接し、一部は上記絶縁膜上を覆い、かつ半導
体基板内のソース、又はドレイン領域と少なくとも一部
で接するごとく構成された半導体薄膜を有する絶縁ゲー
ト型電界効果トランジスタに於いて、上記半導体薄膜の
一端は上記ゲート電極と自己整合の関係で構成されるこ
とを特徴とする半導体装置。 2、特許請求の範囲第1項記載の半導体装置において、
上記半導体薄膜が高融点金属又は遷移金属との化合物で
yIbれるごとく構成されること導体装置において、上
記ゲート電極上を覆う絶8V14の少なくとも一部が上
記半導体薄膜、又は高融点金属、あるいは遷移金属との
化合物上を覆う絶縁膜にくらべて厚く構成されることを
特徴とする半導体装置。 4、ゲート電極と、該ゲート電極を覆う絶縁膜とソース
又はドレイン領域を有し、該ソース又はドレイン領域は
、素子分離領域と、上記絶縁膜によって規定される位置
にあり、上記素子分離領域は、上記ゲート電極と製造工
程の少なくとも一つの要因により一定の距離に位置する
ことを特徴とする半導体装置。 5、ソース、又はドレイン領域が少なくとも第1及び第
2の絶縁膜領域により外部から分離された絶縁ゲート型
電界効果トランジスタに於て、上記第2の絶縁膜領域は
上記第1の絶縁膜領域と少なくともその一辺を接し、か
つ上記第1の絶縁膜領域と境界を共有しない上記第2の
絶縁膜領域の一辺はゲート電極端と自己整合で構成され
ることを特徴とする半導体装置。 6、特許請求の範囲第4項記載の半導体装置において、
ソース又はドレイン領域上の少なくとも一部には半導体
薄膜と、高融点金属又は遷移金属のシリコン化合物層と
、上記高融点金属又は遷移金属膜が構成され、かつ上記
高融点金属又は遷移金属膜は上記第2の絶縁膜上の少な
くとも一部を覆うごとく構成されることを特徴とする半
導体装置。 7、−半導体素子を形成する工程、該半導体素子形成工
程のうち、素子領域を決定する主要な工程の後に素子間
分離領域を形成する工程を行なうことを特徴とする半導
体装置の製造方法。 8、上記主要な工程は、MO8型トランジスタのゲート
電極を形成する工程であることを特徴とする特許請求の
範囲第6項記載の半導体装v1製造方法。
[Claims] 1. Adjacent to the gate electrode via an insulating film formed on the side wall of the gate electrode, partially covering the insulating film, and at least connected to the source or drain region in the semiconductor substrate. 1. A semiconductor device in an insulated gate field effect transistor having a semiconductor thin film that is partially in contact with the semiconductor thin film, wherein one end of the semiconductor thin film is configured in a self-aligned relationship with the gate electrode. 2. In the semiconductor device according to claim 1,
The semiconductor thin film is made of a compound with a high melting point metal or a transition metal. A semiconductor device characterized in that the insulating film is thicker than the insulating film covering the compound. 4. It has a gate electrode, an insulating film covering the gate electrode, and a source or drain region, the source or drain region is located at a position defined by an element isolation region and the insulating film, and the element isolation region is , a semiconductor device characterized in that the gate electrode is located at a certain distance from the gate electrode due to at least one factor of the manufacturing process. 5. In an insulated gate field effect transistor in which the source or drain region is separated from the outside by at least first and second insulating film regions, the second insulating film region is separated from the first insulating film region. A semiconductor device characterized in that one side of the second insulating film region that is in contact with at least one side and that does not share a boundary with the first insulating film region is self-aligned with an end of the gate electrode. 6. In the semiconductor device according to claim 4,
A semiconductor thin film, a silicon compound layer of a refractory metal or transition metal, and the refractory metal or transition metal film are formed on at least a portion of the source or drain region, and the refractory metal or transition metal film is comprised of the refractory metal or transition metal film. A semiconductor device characterized in that it is configured to cover at least a portion of a second insulating film. 7. - A method for manufacturing a semiconductor device, comprising: a step of forming a semiconductor element; and a step of forming an isolation region between elements after the main step of determining an element region in the semiconductor element forming step. 8. The semiconductor device v1 manufacturing method according to claim 6, wherein the main step is a step of forming a gate electrode of an MO8 type transistor.
JP59034241A 1984-02-27 1984-02-27 Method for manufacturing semiconductor device Expired - Lifetime JPH06101475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59034241A JPH06101475B2 (en) 1984-02-27 1984-02-27 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59034241A JPH06101475B2 (en) 1984-02-27 1984-02-27 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS60178666A true JPS60178666A (en) 1985-09-12
JPH06101475B2 JPH06101475B2 (en) 1994-12-12

Family

ID=12408659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59034241A Expired - Lifetime JPH06101475B2 (en) 1984-02-27 1984-02-27 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH06101475B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294985A (en) * 1985-10-21 1987-05-01 Nec Corp Manufacture of mos semiconductor device
JPS62162362A (en) * 1986-01-10 1987-07-18 Mitsubishi Electric Corp Mos integrated circuit and manufacture thereof
JPS62224973A (en) * 1986-03-27 1987-10-02 Toshiba Corp Mis type semiconductor device and manufacture thereof
JPS6316673A (en) * 1986-07-09 1988-01-23 Hitachi Ltd Manufacture of semiconductor device
JPS6362271A (en) * 1986-09-02 1988-03-18 Nec Corp Manufacture of mis field-effect transistor
JPS6376374A (en) * 1986-09-18 1988-04-06 Nec Corp Manufacture of semiconductor device
JPS6446975A (en) * 1987-08-18 1989-02-21 Hitachi Ltd Semiconductor integrated circuit and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179A (en) * 1981-06-25 1983-01-05 Seiko Epson Corp Manufacturing method for semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179A (en) * 1981-06-25 1983-01-05 Seiko Epson Corp Manufacturing method for semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294985A (en) * 1985-10-21 1987-05-01 Nec Corp Manufacture of mos semiconductor device
JPS62162362A (en) * 1986-01-10 1987-07-18 Mitsubishi Electric Corp Mos integrated circuit and manufacture thereof
JPS62224973A (en) * 1986-03-27 1987-10-02 Toshiba Corp Mis type semiconductor device and manufacture thereof
JPS6316673A (en) * 1986-07-09 1988-01-23 Hitachi Ltd Manufacture of semiconductor device
JPS6362271A (en) * 1986-09-02 1988-03-18 Nec Corp Manufacture of mis field-effect transistor
JPS6376374A (en) * 1986-09-18 1988-04-06 Nec Corp Manufacture of semiconductor device
JPS6446975A (en) * 1987-08-18 1989-02-21 Hitachi Ltd Semiconductor integrated circuit and manufacture thereof

Also Published As

Publication number Publication date
JPH06101475B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
JP3626058B2 (en) Manufacturing method of semiconductor device
JPS58176975A (en) Method of producing integrated mos field effect transistor circuit
JPS6260812B2 (en)
JPS615580A (en) Manufacture of semiconductor device
JPH10294462A (en) Manufacture of semiconductor device
JPH0343778B2 (en)
JP3232043B2 (en) Method for manufacturing semiconductor device
US5518960A (en) Method of manufacturing a wiring layer including amorphous silicon and refractory metal silicide
JP2585140B2 (en) Wiring contact structure of semiconductor device
JPH0837164A (en) Manufacture of semiconductor device
JP2664757B2 (en) Method for manufacturing semiconductor device
JPS60178666A (en) Semiconductor device and manufacture thereof
JP3190858B2 (en) Semiconductor device and method of manufacturing the same
US5877085A (en) Method of manufacturing semiconductor device
JP3794915B2 (en) Manufacturing method of semiconductor device
US5714411A (en) Process for forming a semiconductor device including a capacitor
JP3196241B2 (en) Method for manufacturing semiconductor device
KR100353525B1 (en) Method for forming gate electrode in semiconductor device
JPH06112149A (en) Manufacture of semiconductor device
JP3063703B2 (en) MOS type semiconductor device and method of manufacturing the same
JP2665972B2 (en) Method for manufacturing semiconductor device
JPH10144915A (en) Semiconductor device and its manufacturing method
JPH09162392A (en) Semiconductor device
JPH10284438A (en) Semiconductor integrated circuit and its manufacture
JPH0427166A (en) Manufacture of semiconductor nonvolatile memory