JPH0352221B2 - - Google Patents

Info

Publication number
JPH0352221B2
JPH0352221B2 JP13242482A JP13242482A JPH0352221B2 JP H0352221 B2 JPH0352221 B2 JP H0352221B2 JP 13242482 A JP13242482 A JP 13242482A JP 13242482 A JP13242482 A JP 13242482A JP H0352221 B2 JPH0352221 B2 JP H0352221B2
Authority
JP
Japan
Prior art keywords
film
oxidation
oxide film
resistant
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13242482A
Other languages
Japanese (ja)
Other versions
JPS5922343A (en
Inventor
Kikuo Yamabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13242482A priority Critical patent/JPS5922343A/en
Publication of JPS5922343A publication Critical patent/JPS5922343A/en
Publication of JPH0352221B2 publication Critical patent/JPH0352221B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • H01L21/76213Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose
    • H01L21/76216Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO introducing electrical inactive or active impurities in the local oxidation region, e.g. to alter LOCOS oxide growth characteristics or for additional isolation purpose introducing electrical active impurities in the local oxidation region for the sole purpose of creating channel stoppers

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、選択酸化法を利用した半導体装置の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device using a selective oxidation method.

〔発明の技術的背景およびその問題点〕[Technical background of the invention and its problems]

従来、MOS形半導体装置の製造方法としては、
シリコン基板上の酸化膜に耐酸化性マスクとして
作用するパターン化されたシリコン窒化膜を形成
した後、該シリコン窒化膜でおおわれていないフ
イールド領域を酸化処理して比較的肉厚のフイー
ルド酸化膜を形成し、ひきつづきシリコン窒化膜
及びその下の酸化膜を除去してシリコン基板を露
出させ、再び酸化してゲート酸化膜を形成する、
いわゆる選択酸化法の工程が採用され、高密度集
積回路に欠かせぬ技術として注目されている。
Conventionally, the manufacturing method for MOS type semiconductor devices is as follows:
After forming a patterned silicon nitride film that acts as an oxidation-resistant mask on the oxide film on the silicon substrate, the field region not covered with the silicon nitride film is oxidized to form a relatively thick field oxide film. forming a silicon nitride film and subsequently removing the silicon nitride film and the oxide film thereunder to expose the silicon substrate, and oxidizing it again to form a gate oxide film;
The so-called selective oxidation process is used and is attracting attention as an essential technology for high-density integrated circuits.

しかしながら、上記方法にあつてはシリコン窒
化膜を耐酸化性マスクとして水蒸気中で酸化処理
すると、水蒸気とシリコン窒化膜とが反応してア
ンモニアを発生する。このアンモニアはシリコン
窒化膜下のシリコン酸化膜中を拡散してゆき、そ
の下のシリコン基板表面に到達してその表面を窒
化する。この表面窒化物はその後の工程で再び耐
酸化性マスクとなるため、例えばこの領域にゲー
ト酸化膜を形成すると、そのゲート酸化膜自体の
耐圧が極端に低下する。最近ではこの酸化膜耐圧
の劣化を防ぐために、ゲート酸化前に一度シリコ
ン表面を酸化し、上記ゲート酸化のマスクとなる
窒化膜を除去する方法が一般に採られている。し
かしこのような手段をとつてもなおかつ、選択酸
化法によるゲート酸化膜の酸化膜欠陥密度は超高
密度集積回路で使用できる程十分なレベルまで低
下しない。
However, in the above method, when oxidation treatment is performed in water vapor using the silicon nitride film as an oxidation-resistant mask, the water vapor and the silicon nitride film react to generate ammonia. This ammonia diffuses through the silicon oxide film under the silicon nitride film, reaches the surface of the silicon substrate underneath, and nitrides the surface. Since this surface nitride becomes an oxidation-resistant mask again in a subsequent process, for example, if a gate oxide film is formed in this region, the withstand voltage of the gate oxide film itself is extremely reduced. Recently, in order to prevent this oxide film breakdown voltage from deteriorating, a method has generally been adopted in which the silicon surface is oxidized once before gate oxidation, and the nitride film that serves as a mask for the gate oxidation is removed. However, even with such measures, the oxide film defect density of the gate oxide film obtained by the selective oxidation method cannot be reduced to a level sufficient for use in ultra-high density integrated circuits.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、選択酸化法によりフイールド
酸化膜を形成する半導体装置において、選択酸化
後に基板表面に形成するゲート酸化膜等の絶縁膜
を欠陥のない良質なものとする方法を提供するこ
とにある。
An object of the present invention is to provide a method for making an insulating film such as a gate oxide film formed on a substrate surface after selective oxidation defect-free in a semiconductor device in which a field oxide film is formed by a selective oxidation method. be.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、耐酸化性膜として用いる
CVDシリコン窒化膜を形成直後もしくはフイー
ルド酸化直前に不活性ガス中で熱処理し、CVD
シリコン窒化膜中の原子の結合を強め、フイール
ド酸化中にCVDシリコン窒化膜に拡散してくる
酸化剤(水蒸気や酸素)がCVDシリコン窒化膜
と反応するのを抑制することにある。
The gist of the present invention is to use it as an oxidation-resistant film.
CVD silicon nitride film is heat-treated in an inert gas immediately after formation or immediately before field oxidation, and CVD
The purpose of this method is to strengthen the bonds between atoms in the silicon nitride film and to prevent the oxidizing agents (water vapor and oxygen) that diffuse into the CVD silicon nitride film during field oxidation from reacting with the CVD silicon nitride film.

すなわち本発明は、半導体基板表面に第1の酸
化膜を形成しその上に耐酸化性膜を形成する工程
と、上記耐酸化性膜を選択エツチングして耐酸化
性マスクを形成し高温熱酸化によりフイールド酸
化膜を形成する工程と、前記耐酸化性マスクおよ
び第1の酸化膜を除去し露出した基板表面に第2
の酸化膜または窒化膜を形成する工程とを有する
半導体装置の製造方法において、前記耐酸化性膜
として気相成長法により形成したシリコン窒化膜
を用い、該膜形成直後もしくはフイールド酸化直
前に1000〔℃〕以上の不活性ガス中で熱処理を施
すようにした方法である。
That is, the present invention includes the steps of forming a first oxide film on the surface of a semiconductor substrate and forming an oxidation-resistant film thereon, selectively etching the oxidation-resistant film to form an oxidation-resistant mask, and performing high-temperature thermal oxidation. a step of forming a field oxide film by removing the oxidation-resistant mask and the first oxide film and forming a second field oxide film on the exposed substrate surface;
In the method of manufacturing a semiconductor device, the oxidation-resistant film is a silicon nitride film formed by a vapor phase epitaxy method, and a silicon nitride film formed by a vapor phase epitaxy method is used as the oxidation-resistant film. This is a method in which heat treatment is performed in an inert gas at a temperature of 10°C or higher.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ゲート絶縁膜等として用いら
れる第2の酸化膜または窒化膜を効果的に無欠陥
膜とすることができ、従つてMOS集積回路等の
素子の一層の小形化、高集積化を信頼性よく達成
することが可能となる。
According to the present invention, it is possible to effectively make the second oxide film or nitride film used as a gate insulating film or the like defect-free, thereby further downsizing and highly integrating elements such as MOS integrated circuits. This makes it possible to achieve reliable results.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明をMOS半導体装置に適用した
実施例につき図面を参照して説明する。
Hereinafter, embodiments in which the present invention is applied to a MOS semiconductor device will be described with reference to the drawings.

第1図aに示すように面方位(100)、比抵抗5
〜20〔Ω−cm〕のP型シリコン基板1を用意し、
その表面を1150〔℃〕のArと微量酸素雰囲気中で
2時間酸化し、表面に500〔Å〕のシリコン酸化膜
2(第1の酸化膜)を形成し次いで、例えば
CVD法によつて耐酸化性膜である1000〔Å〕程度
のシリコン窒化膜3を堆積する。続いて、1000
〔℃〕の不活性ガス中でシリコン窒化膜3を熱処
理する。次に、第1図bに示すように写真蝕刻工
程により素子形成領域上にレジスト膜4を形成
し、このレジスト膜4をマスクとしてシリコン窒
化膜3を選択的にエツチング除去し、さらにレジ
スト膜4とシリコン窒化膜3をマスクとしてフイ
ールド領域のシリコン基板中にボロンイオン注入
層5を形成する。つづいてレジスト膜4を除去し
たのち第1図cに示すようにシリコン窒化膜3を
マスクとして1000〔℃〕、ウエツト酸素雰囲気中で
酸化を行ない厚さ1.0〔μm〕のフイールド酸化膜
6を成長させる。これにより、イオン注入層5は
活性化してP+層7となる。ひきつづき、緩衡フ
ツ化水素液でシリコン窒化膜3上に形成されたシ
リコン酸化膜8を除去した後、CF4とO2を高周波
で励起したガス中でシリコン窒化膜3を除去す
る。このあと再び1000〔℃〕のウエツト酸素雰囲
気で20分酸化処理を施し、第1図eに示すように
シリコン酸化膜9を形成する。このあと、素子形
成領域にある酸化膜9を除去し、続いて乾燥酸素
雰囲気中で第1図eに示すようにゲート酸化膜と
なる厚さ400〔Å〕のシリコン酸化膜12(第2の
酸化膜)を成長させ、その上に厚さ3000〔Å〕の
燐添加多結晶シリコン膜をCVD法によつて堆積
したのち、写真蝕刻法によりこの燐添加多結晶シ
リコン膜をパターニングしてゲート電極13を形
成する。次にこのゲート電極13をマスクとし酸
化膜12をエツチングし、前記フイールド酸化膜
6とゲート電極13をマスクとして砒素イオンの
注入を行なつて、第1図fに示すようにn型の高
濃度不純物層としての深さ0.6〔μm〕のソース1
4及びドレイン15を形成し、次いで、全面に厚
さ3000〔Å〕のCVD酸化膜16及び厚さ4000〔Å〕
の燐硅化ガラス膜17(PSG膜)を堆積する。
そして第1図gに示すように、ソース14及びド
レイン15に対応する部分に写真蝕刻法によりコ
ンタクトホールを形成し、全面にAl膜を真空蒸
着し写真蝕刻法によりパターニングして取出し、
電極18,19を形成して、nチヤンネルMOS
電界効果トランジスタを製造した。
As shown in Figure 1a, the surface orientation (100) and the specific resistance 5
Prepare a P-type silicon substrate 1 of ~20 [Ω-cm],
The surface is oxidized for 2 hours in an Ar and trace oxygen atmosphere at 1150 [°C] to form a 500 [Å] silicon oxide film 2 (first oxide film) on the surface, and then, for example,
A silicon nitride film 3 having a thickness of approximately 1000 Å is deposited by the CVD method as an oxidation-resistant film. Then 1000
The silicon nitride film 3 is heat-treated in an inert gas at [° C.]. Next, as shown in FIG. 1B, a resist film 4 is formed on the element formation region by a photolithography process, and the silicon nitride film 3 is selectively etched away using this resist film 4 as a mask. Then, a boron ion implantation layer 5 is formed in the silicon substrate in the field region using the silicon nitride film 3 as a mask. After removing the resist film 4, as shown in FIG. 1c, oxidation is performed in a wet oxygen atmosphere at 1000 [°C] using the silicon nitride film 3 as a mask to grow a field oxide film 6 with a thickness of 1.0 [μm]. let As a result, the ion implantation layer 5 is activated and becomes the P + layer 7. Subsequently, the silicon oxide film 8 formed on the silicon nitride film 3 is removed using a buffered hydrogen fluoride solution, and then the silicon nitride film 3 is removed in a gas in which CF 4 and O 2 are excited at a high frequency. Thereafter, oxidation treatment is performed again for 20 minutes in a wet oxygen atmosphere at 1000°C to form a silicon oxide film 9 as shown in FIG. 1e. After that, the oxide film 9 in the element formation region is removed, and then the silicon oxide film 12 (second silicon oxide film) with a thickness of 400 Å, which will become the gate oxide film, is removed in a dry oxygen atmosphere as shown in FIG. 1e. After growing a 3000 Å thick phosphorus-doped polycrystalline silicon film on it using the CVD method, this phosphorus-doped polycrystalline silicon film is patterned using photolithography to form a gate electrode. form 13. Next, the oxide film 12 is etched using the gate electrode 13 as a mask, and arsenic ions are implanted using the field oxide film 6 and the gate electrode 13 as masks to form an n-type high-concentration material as shown in FIG. Source 1 with a depth of 0.6 [μm] as an impurity layer
4 and drain 15 are formed, and then a CVD oxide film 16 with a thickness of 3000 [Å] and a thickness of 4000 [Å] is formed on the entire surface.
A phosphorus silicide glass film 17 (PSG film) is deposited.
Then, as shown in FIG. 1g, contact holes are formed in portions corresponding to the source 14 and drain 15 by photolithography, and an Al film is vacuum deposited on the entire surface and patterned by photolithography to take it out.
By forming electrodes 18 and 19, an n-channel MOS
A field effect transistor was manufactured.

この実施例によれば、耐酸化性膜として用いる
CVDシリコン窒化膜を形成直後に1000〔℃〕以上
の不活性ガス中で熱処理することによりシリコン
酸化膜2とシリコン基板1との界面に窒化物が形
成されるのを抑制でき、ゲート酸化膜の欠陥を著
しく減少させることが可能となつた。第2図a,
bはゲート酸化膜の耐圧分布を示す特性図で、a
は従来方法、bは本実施例方法によるものを示し
ている。この図からもゲート酸化膜の欠陥が著し
く減少されるのが明らかである。
According to this example, it is used as an oxidation-resistant film.
Immediately after forming the CVD silicon nitride film, heat treatment in an inert gas at a temperature of 1000 [°C] or higher can suppress the formation of nitride at the interface between the silicon oxide film 2 and the silicon substrate 1. It has become possible to significantly reduce defects. Figure 2a,
b is a characteristic diagram showing the breakdown voltage distribution of the gate oxide film;
1 shows the conventional method, and b shows the method of this embodiment. It is clear from this figure that defects in the gate oxide film are significantly reduced.

なお、本発明は上述した実施例に限定されず、
種々変更を加え得るものである。例えば前記耐酸
化性膜としてのCVDシリコン窒化膜の熱処理は、
該膜形成直後に限るものではなく、フイールド酸
化直前に行つてもよい。また、MOSトランジス
タに限らず、各種の半導体装置に適用できるのは
勿論のことである。
Note that the present invention is not limited to the above-mentioned embodiments,
Various changes can be made. For example, the heat treatment of the CVD silicon nitride film as the oxidation-resistant film is
The process is not limited to immediately after the film is formed, but may be performed immediately before the field oxidation. Moreover, it goes without saying that the present invention can be applied not only to MOS transistors but also to various semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜gは本発明の一実施例に係わる
MOSトランンジスタ製造工程を示す断面図、第
2図a,bはゲート酸化膜の耐圧分布を示す特性
図でaは従来方法によるもの、bは上記実施例方
法によるものである。 1……シリコン基板、2……シリコン酸化膜
(第1の酸化膜)、3……シリコン窒化膜(耐酸化
性膜)、4……レジスト膜、5……イオン注入層、
6……フイールド酸化膜、7……P+層、9……
シリコン酸化膜、12……シリコン酸化膜(第2
の酸化膜)、13……ゲート電極、14……ソー
ス、15……ドレイン、16……CVD酸化膜、
17……PSG膜、18,19……取出し電極。
Figures 1a to 1g relate to one embodiment of the present invention.
FIGS. 2A and 2B are cross-sectional views showing the manufacturing process of a MOS transistor. FIGS. 2A and 2B are characteristic diagrams showing the breakdown voltage distribution of a gate oxide film, where A is a result obtained by the conventional method and FIG. 2B is a result obtained by the method of the above embodiment. DESCRIPTION OF SYMBOLS 1...Silicon substrate, 2...Silicon oxide film (first oxide film), 3...Silicon nitride film (oxidation-resistant film), 4...Resist film, 5...Ion implantation layer,
6...Field oxide film, 7...P + layer, 9...
Silicon oxide film, 12...Silicon oxide film (second
oxide film), 13...gate electrode, 14...source, 15...drain, 16...CVD oxide film,
17...PSG film, 18, 19... Extraction electrode.

Claims (1)

【特許請求の範囲】 1 半導体基板表面に第1の酸化膜を形成しその
上に耐酸化膜を形成する工程と、上記耐酸化性膜
を選択エツチングして耐酸化性マスクを形成し高
温熱酸化によりフイールド酸化膜を形成する工程
と、前記耐酸化性マスクおよび第1の酸化膜を除
去し露出した基板表面に第2の酸化膜または窒化
膜を形成する工程とを有する半導体装置の製造方
法において、前記耐酸化性膜として気相成長法に
より形成したシリコン窒化膜を用い、該膜形成直
後もしくはフイールド酸化直前に1000〔℃〕以上
の不活性ガス中で熱処理を施すことを特徴とする
半導体装置の製造方法。
[Claims] 1. A step of forming a first oxide film on the surface of a semiconductor substrate and forming an oxidation-resistant film thereon, selectively etching the oxidation-resistant film to form an oxidation-resistant mask, and etching the oxidation-resistant film at high temperature. A method for manufacturing a semiconductor device, comprising: forming a field oxide film by oxidation; and removing the oxidation-resistant mask and first oxide film and forming a second oxide film or nitride film on the exposed substrate surface. A semiconductor characterized in that a silicon nitride film formed by a vapor phase growth method is used as the oxidation-resistant film, and heat treatment is performed in an inert gas at a temperature of 1000 [°C] or more immediately after the film is formed or immediately before field oxidation. Method of manufacturing the device.
JP13242482A 1982-07-29 1982-07-29 Manufacture of semiconductor device Granted JPS5922343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13242482A JPS5922343A (en) 1982-07-29 1982-07-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13242482A JPS5922343A (en) 1982-07-29 1982-07-29 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5922343A JPS5922343A (en) 1984-02-04
JPH0352221B2 true JPH0352221B2 (en) 1991-08-09

Family

ID=15081048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13242482A Granted JPS5922343A (en) 1982-07-29 1982-07-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5922343A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887161A (en) * 2014-03-20 2014-06-25 上海华力微电子有限公司 Method for restraining doping atoms from diffusing in gate dielectric

Also Published As

Publication number Publication date
JPS5922343A (en) 1984-02-04

Similar Documents

Publication Publication Date Title
JPH06163532A (en) Method for isolation of semiconductor element
JPH0312785B2 (en)
JPH0473296B2 (en)
JPS6252950B2 (en)
JPS5922342A (en) Manufacture of semiconductor device
JP3328600B2 (en) Fabrication process for bipolar and BICMOS devices
JPH0352221B2 (en)
JPH0231468A (en) Manufacture of floating gate type semiconductor memory device
JP2730650B2 (en) Method for manufacturing semiconductor device
JPS5933271B2 (en) Manufacturing method of semiconductor device
JPH0239091B2 (en)
JPH023306B2 (en)
JPH0155585B2 (en)
JPS628028B2 (en)
JP2722829B2 (en) Method for manufacturing semiconductor device
JP2774407B2 (en) Method for manufacturing semiconductor device
JPS6154661A (en) Manufacture of semiconductor device
JPH06188259A (en) Manufacture of semiconductor device
JPS628029B2 (en)
JPS63170922A (en) Wiring method
JPS62131538A (en) Manufacture of semiconductor device
JPS59105367A (en) Manufacture of metal oxide semiconductor type transistor
JPH0555204A (en) Manufacture of semiconductor device
JPH053210A (en) Manufacture of semiconductor device
JPS628023B2 (en)