JPS63170922A - Wiring method - Google Patents

Wiring method

Info

Publication number
JPS63170922A
JPS63170922A JP285387A JP285387A JPS63170922A JP S63170922 A JPS63170922 A JP S63170922A JP 285387 A JP285387 A JP 285387A JP 285387 A JP285387 A JP 285387A JP S63170922 A JPS63170922 A JP S63170922A
Authority
JP
Japan
Prior art keywords
layer
oxide film
polycrystalline
substrate
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP285387A
Other languages
Japanese (ja)
Inventor
Yutaka Okamoto
裕 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP285387A priority Critical patent/JPS63170922A/en
Publication of JPS63170922A publication Critical patent/JPS63170922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To provide a contact hole of predetermined diameter with good controlability by selectively forming an opening to a polycrystal silicon formed on a gate insulation film of substrate, etching a gate insulation film with such polycrystal silicon layer used as the mask and forming wirings covering the exposed region of etched semiconductor substrate and the upper part of gate insulation film. CONSTITUTION:A polycrystalline silicon layer 5 is provided between a photoresist layer 3 and an oxide film 2, the polycrystalline Si layer 5 is patterned by the dry etching and an oxide film 2 of the buried contact part is removed by the wet etching using such opening. In this case, damage by ion bombardment at the time of dry etching remains only on the oxide film 2 and is never generated at the surface of Si substrate 1 under such oxide film. Moreover, there is no chance of generating over-etching due to invasion of HF solution to the interface of such elements. Thereby, the buried contact can be formed between the polycrystal Si layer 4 and the Si substrate 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の電極配線方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode wiring method for a semiconductor device.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板上のゲート酸化膜に窓を開けて配
線層を設けて配線層と半導体基板とのコンタクトをとる
方法に於いて、半導体基板上に形成されたゲート絶縁膜
上に多結晶St層を形成し、その多結晶Siに選択的に
開口部を形成し、その多結晶St層をマスクにしてゲー
ト絶縁膜をエツチングし、このエツチングされた半導体
基板露出部とこのゲート絶縁膜の上部を覆って配線を形
成することによって、所望の径のコンタクトホールを制
御性良く開けることを可能としたものである。
The present invention provides a method for making contact between the wiring layer and the semiconductor substrate by opening a window in the gate oxide film on the semiconductor substrate and providing a wiring layer. A St layer is formed, an opening is selectively formed in the polycrystalline Si, and the gate insulating film is etched using the polycrystalline St layer as a mask, and the exposed portion of the etched semiconductor substrate and the gate insulating film are etched. By forming wiring over the top, it is possible to open a contact hole of a desired diameter with good controllability.

〔従来の技術〕[Conventional technology]

埋込みコンタクトは拡散コンタクトとも呼ばれ、ソース
およびドレイン領域等の半導体装置の能動領域と外部と
を接続する手段であり、多結晶半導体材料により形成さ
れる。このような多結晶半導体材料で接続リードおよび
埋込みコンタクトを形成することは、従来から使用され
ている金属コンタクトの形成に比較して、マスク工程数
を減少できるなどの点で集積化に有利である(特公昭5
日−47852号)。
A buried contact, also called a diffusion contact, is a means for connecting an active region of a semiconductor device, such as a source and drain region, to the outside, and is formed of a polycrystalline semiconductor material. Forming connection leads and buried contacts using such polycrystalline semiconductor materials is advantageous for integration in that the number of mask steps can be reduced compared to forming conventionally used metal contacts. (Tokuko Showa 5
(No. 47852).

従来の埋込みコンタクトの形成方法を、第2図に基づい
て説明する。まず、P型Si基板l上に島状に素子領域
を分離する厚いフィールド酸化膜2を形成し、次いで熱
酸化を行って、素子領域の基板露出面にゲート絶縁膜と
なる薄い酸化膜2′を成長させる(第2図A)。
A conventional method for forming buried contacts will be explained based on FIG. First, a thick field oxide film 2 is formed on a P-type Si substrate l to separate device regions into islands, and then thermal oxidation is performed to form a thin oxide film 2' that will become a gate insulating film on the exposed surface of the substrate in the device region. (Figure 2A).

次に、フォトレジスト層3を形成して、Si基板1と多
結晶St層又はシリサイド層により埋込みコンタクト(
直接コンタクト)を形成する部分のフォトレジスト層3
を除去する。この後、ウェーハを緩衝HF溶液に浸け、
埋込みコンタクト部のゲート酸化膜2′を除去する(第
2図B)。
Next, a photoresist layer 3 is formed and buried contacts (
Photoresist layer 3 in the area where direct contact is to be formed
remove. After this, the wafer is immersed in a buffered HF solution,
The gate oxide film 2' at the buried contact portion is removed (FIG. 2B).

最後に、CVD法により多結晶St層4又はシリサイド
層を全面に成長させた後、Pをドープさせ、それをSi
基板中に拡散させてN″領域6を形成する。これにより
Si基板lと多結晶St層4 (又はシリサイド層)と
の間の埋込みコンタクトが形成される(第2図C)。(
特開昭61−112372号)〔発明が解決しようとす
る問題点〕 半導体装置の集積化が進むにつれて、フォトレジストに
開けるべき窓の大きさが小さくなって来て、フォトレジ
ストの厚さく通常1〜1.57151)とそれ程変わら
なくなっている。第2図Bで示すフォトレジスト層の開
口部の径aが11m程度になって来ると、フォトレジス
ト層の厚さbとのアスペクト比a/’bが1以下となる
。この様な状態になると、エツチング溶液がコンタクト
形成部に確実にまわりこまなくなり、1素子に存在する
数100万のコンタクトのうちいくつかのコンタクトは
完全にエツチングされなくなる。その結果、高集積化し
た半導体装置を歩留り良く製造する事が出来なくなると
言う問題を生じていた。
Finally, after growing a polycrystalline St layer 4 or a silicide layer over the entire surface by CVD, P is doped and the Si
It is diffused into the substrate to form an N″ region 6. This forms a buried contact between the Si substrate 1 and the polycrystalline St layer 4 (or silicide layer) (FIG. 2C).
(Unexamined Japanese Patent Publication No. 112372/1982) [Problems to be Solved by the Invention] As the integration of semiconductor devices progresses, the size of the window to be opened in photoresist has become smaller, and the thickness of photoresist has generally increased to 1. ~1.57151), which is not much different. When the diameter a of the opening in the photoresist layer shown in FIG. 2B becomes about 11 m, the aspect ratio a/'b with the thickness b of the photoresist layer becomes 1 or less. In such a state, the etching solution cannot be reliably circulated around the contact forming portion, and some of the several million contacts that exist in one device are not completely etched. As a result, a problem has arisen in that highly integrated semiconductor devices cannot be manufactured with good yield.

一方、一般にフォトレジストと酸化膜は密着性が良くな
いので、第2図Bに示す様に、フォトレジスト層3と酸
化膜2の隙間に緩衝HF溶液が浸み込んで、必要以上に
埋込みコンタクトを大きくしてしまうと言う問題もあっ
た。
On the other hand, since the adhesion between the photoresist and the oxide film is generally not good, as shown in Figure 2B, the buffered HF solution seeps into the gap between the photoresist layer 3 and the oxide film 2, causing the buried contact to become unnecessarily deep. There was also the problem of increasing the size.

なお、第2図Bの工程での緩衝HF溶液によるウェット
エツチングの代わりに、RIB等のドライエツチングに
よって酸化膜2を除去する事も考えられるが、この方法
によるとSi表面にイオン衝撃によるダメッジが残りこ
れがコンタクト抵抗の増大をもたらすと言う問題を発生
する。このSi表面に形成されたダメッジはアンモニア
化水によってエツチング除去されるが、この際酸化膜も
除去されてしまう。この様な理由から、従来埋込みコン
タクトをドライエツチングで形成する事は行われていな
かった。
Note that instead of wet etching using a buffered HF solution in the step shown in FIG. The remaining problem is that this leads to an increase in contact resistance. This damage formed on the Si surface is removed by etching with ammoniated water, but at this time the oxide film is also removed. For these reasons, conventionally, buried contacts have not been formed by dry etching.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、半導体基板上のゲート酸化膜に窓を開けて配
線層を設けて配線層と半導体基板とのコンタクトをとる
方法に於いて、半導体基板上に形成されたゲート絶縁膜
上に多結晶Si層を形成し、その多結晶Siに選択的に
開口部を形成し、その多結晶St層をマスクにしてゲー
ト絶縁膜をエツチングし、このエツチングされた半導体
基板露出部とこのゲート絶縁膜の上部を覆って配線を形
成することによって、上記問題点を解決した。
The present invention provides a method for making contact between the wiring layer and the semiconductor substrate by opening a window in the gate oxide film on the semiconductor substrate and providing a wiring layer. A Si layer is formed, an opening is selectively formed in the polycrystalline Si, and the gate insulating film is etched using the polycrystalline St layer as a mask. The above problem was solved by forming wiring over the top.

〔作 用〕[For production]

本発明のコンタクト形成方法では、第1図Cで示す様に
、1000Å以下の多結晶Si層5をフォトレジスト層
3と酸化膜2の間に介在させ、ドライエツチングによっ
て多結晶Si層5をパターンニングし、その開口を用い
てウェットエツチングによって、埋込みコンタクト部分
の酸化膜2を除去している。第1図Cに於けるドライエ
ツチングの際のイオン衝撃によるダメッジは、酸化膜2
に残るのみで、その下のSi基板1の表面にダメッジが
発生する事はない。
In the contact forming method of the present invention, as shown in FIG. The oxide film 2 at the buried contact portion is removed by wet etching using the opening. The damage caused by ion bombardment during dry etching in Figure 1C is due to the damage to the oxide film 2.
There is no damage to the surface of the Si substrate 1 underneath.

また第1図りのウェットエツチング工程に於いては、フ
ォトレジスト層と酸化膜の界面が存在しないので、従来
のコンタクト形成方法の様に、HF溶液がそれらの界面
に侵入してオーバーエッチを発生させる心配はない。
In addition, in the wet etching process shown in Figure 1, since there is no interface between the photoresist layer and the oxide film, the HF solution enters the interface and causes overetching, unlike in conventional contact formation methods. No worries.

〔実施例〕〔Example〕

第1図A−Eに基づいて、本発明のコンタクト形成方法
を説明する。
The contact forming method of the present invention will be explained based on FIGS. 1A to 1E.

A 通常の方法で厚いフィールド酸化膜2を形成した後
、500人のゲート酸化膜2′を熱酸化により成長させ
る。
A. After forming a thick field oxide film 2 by a conventional method, a 500-layer gate oxide film 2' is grown by thermal oxidation.

B 全面に500人の多結晶Si層5をCVD法により
形成する。
B. A polycrystalline Si layer 5 of 500 layers is formed over the entire surface by CVD.

Cフォトレジスト膜3を形成し、埋込みコンタクトに対
応する部分を開口する。このバターニングされたフォト
レジスト膜3をマスクにして、多結晶Si層5をRIE
法等によりドライエツチングする。
A C photoresist film 3 is formed, and openings are made in portions corresponding to buried contacts. Using this patterned photoresist film 3 as a mask, the polycrystalline Si layer 5 is subjected to RIE.
Dry etching by method etc.

D フォトレジスト膜3を除去した後、緩衝11F溶液
中にウェーハを浸し、ゲート酸化膜2′を除去しSi基
板1の表面を露出させる。
D After removing the photoresist film 3, the wafer is immersed in a buffer 11F solution to remove the gate oxide film 2' and expose the surface of the Si substrate 1.

E 多結晶Si層4をCVD法により成長させた後、P
をこれにドープし、そのPをSi基板Iに拡散させてN
 ” 85域6を形成する。これにより、多結晶Si層
4とSi基板1との間に埋込みコンタクトが形成される
。なお、多結晶5ilJO代わりにゲート電極に使用さ
れるシリサイド等の材料を使用する事も可能である。
E After growing the polycrystalline Si layer 4 by CVD method, P
is doped into this, and the P is diffused into the Si substrate I to form N.
” 85 region 6 is formed. This forms a buried contact between the polycrystalline Si layer 4 and the Si substrate 1. Note that a material such as silicide used for the gate electrode may be used instead of polycrystalline 5ilJO. It is also possible to do so.

多結晶Si層5にドーパントはドープされていないが、
この多結晶Si層5は薄いので、多結晶Si層−4中に
ドープされたPの拡散により充分低抵抗化されるので、
この多結晶Si層4.5が配線電極として問題を生じる
ことはない。
Although the polycrystalline Si layer 5 is not doped with a dopant,
Since this polycrystalline Si layer 5 is thin, the resistance can be sufficiently reduced by the diffusion of P doped into the polycrystalline Si layer-4.
This polycrystalline Si layer 4.5 does not cause any problem as a wiring electrode.

また、多結晶Si層5の厚みが1000Å以上になると
、第1図Eの多結晶Si層4.5からなる配線層をパタ
ーニングする際、多結晶Si層4の存在しないコンタク
ト部分の配線層が極端に薄くなってしまうと言う問題が
あるので、多結晶Si層5の厚さは1000Å以下が望
ましい。
Furthermore, when the thickness of the polycrystalline Si layer 5 is 1000 Å or more, when patterning the wiring layer made of the polycrystalline Si layer 4.5 shown in FIG. Since there is a problem that the polycrystalline Si layer 5 becomes extremely thin, it is desirable that the thickness of the polycrystalline Si layer 5 is 1000 Å or less.

本発明は、ゲート電極形成後にソース、ドレイン領域上
に熱酸化で形成されるイオン注入マスク形成用の酸化膜
にも適用可能である。
The present invention can also be applied to an oxide film for forming an ion implantation mask that is formed by thermal oxidation on the source and drain regions after forming the gate electrode.

〔発明の効果〕〔Effect of the invention〕

本発明の方法に於いては、コンタクト部のゲート酸化膜
を旺溶液によってエツチング除去する際、そのマスクは
従来の様にフォトレジストではなく薄い多結晶Si層で
あるので次の様な効果が得られる。
In the method of the present invention, when the gate oxide film in the contact area is removed by etching with a strong solution, the mask is not a photoresist as in the conventional method but a thin polycrystalline Si layer, so the following effects can be obtained. It will be done.

(i)埋込みコンタクトの径とマスク材である薄い多結
晶Si層の厚さとの比が1よりはるかに小となるので、
HF溶液の埋込みコンタクトへの浸透性は極めて良好と
なり、生産歩留りは格段に向上する。
(i) Since the ratio between the diameter of the buried contact and the thickness of the thin polycrystalline Si layer that is the mask material is much smaller than 1,
The permeability of the HF solution into the buried contacts is extremely good, and the production yield is significantly improved.

(ii)マスク材がフォトレジストではなく多結晶St
であるので、従来の製造方法に比較してマスクと酸化膜
の密着性が格段に向上する。
(ii) The mask material is not photoresist but polycrystalline St.
Therefore, the adhesion between the mask and the oxide film is significantly improved compared to conventional manufacturing methods.

そのため、HF溶液がマスクと酸化膜の間に染み込んで
埋込みコンタクトを大きくする事がなく、所望の径のコ
ンタクトホールを制御性良くあけることができる。
Therefore, the HF solution does not penetrate between the mask and the oxide film and enlarge the buried contact, and a contact hole of a desired diameter can be formed with good controllability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A−Eは、本発明の配線方法を示す。 第2図A−Cは、従来のコンタクト形成方法を示す。 1A to 1E illustrate the wiring method of the present invention. 2A-2C illustrate a conventional contact formation method.

Claims (1)

【特許請求の範囲】 半導体基板上に形成されたゲート絶縁膜上に多結晶シリ
コン層を形成する工程と、 該多結晶シリコン層に選択的に開口部を形成する工程と
、 該多結晶シリコン層をマスクにしてゲート絶縁膜をエッ
チングする工程と、 上記のエッチングされた半導体基板露出部と上記ゲート
絶縁膜の上部を覆って配線層を形成する工程 とからなる配線方法。
[Claims] A step of forming a polycrystalline silicon layer on a gate insulating film formed on a semiconductor substrate; a step of selectively forming an opening in the polycrystalline silicon layer; and a step of forming an opening in the polycrystalline silicon layer. A wiring method comprising: etching a gate insulating film using as a mask; and forming a wiring layer covering the exposed portion of the etched semiconductor substrate and the upper part of the gate insulating film.
JP285387A 1987-01-09 1987-01-09 Wiring method Pending JPS63170922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP285387A JPS63170922A (en) 1987-01-09 1987-01-09 Wiring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP285387A JPS63170922A (en) 1987-01-09 1987-01-09 Wiring method

Publications (1)

Publication Number Publication Date
JPS63170922A true JPS63170922A (en) 1988-07-14

Family

ID=11540949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP285387A Pending JPS63170922A (en) 1987-01-09 1987-01-09 Wiring method

Country Status (1)

Country Link
JP (1) JPS63170922A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023226A (en) * 1988-06-20 1990-01-08 Fujitsu Ltd Manufacture of semiconductor device
US5563098A (en) * 1995-04-10 1996-10-08 Taiwan Semiconductor Manufacturing Company Buried contact oxide etch with poly mask procedure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493970A (en) * 1978-01-07 1979-07-25 Toshiba Corp Patttern forming method of multi-layer metallic thin film
JPS55153373A (en) * 1979-05-18 1980-11-29 Matsushita Electric Ind Co Ltd Production of complementry type semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493970A (en) * 1978-01-07 1979-07-25 Toshiba Corp Patttern forming method of multi-layer metallic thin film
JPS55153373A (en) * 1979-05-18 1980-11-29 Matsushita Electric Ind Co Ltd Production of complementry type semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023226A (en) * 1988-06-20 1990-01-08 Fujitsu Ltd Manufacture of semiconductor device
US5563098A (en) * 1995-04-10 1996-10-08 Taiwan Semiconductor Manufacturing Company Buried contact oxide etch with poly mask procedure

Similar Documents

Publication Publication Date Title
JPH0878519A (en) Semiconductor device and fabrication thereof
US5681778A (en) Semiconductor processing method of forming a buried contact and conductive line
JPH08293465A (en) Manufacture of semiconductor device
US6057198A (en) Semiconductor processing method of forming a buried contact
JPH05166835A (en) Self-aligning polysilicon contact
JPS6054450A (en) Manufacture of semiconductor device
JPS63170922A (en) Wiring method
US5763316A (en) Substrate isolation process to minimize junction leakage
JPS6242522A (en) Manufacture of semiconductor device
JP3110054B2 (en) Semiconductor device and manufacturing method thereof
JP3468920B2 (en) Element isolation method for semiconductor device
JPH0338742B2 (en)
JPH0448644A (en) Manufacture of semiconductor device
JPS58200553A (en) Semiconductor device
JP2907248B2 (en) Semiconductor device and manufacturing method thereof
JPH0212942A (en) Manufacture of semiconductor device
JPH0669066B2 (en) Method for manufacturing semiconductor device
JPH03175676A (en) Semiconductor device
JPS58180061A (en) Manufacture of semiconductor device
JPS5838936B2 (en) hand dryer
KR20020030338A (en) Manufacturing method for semiconductor device
JPS58102558A (en) Semiconductor device and manufacture thereof
JPS5943832B2 (en) Manufacturing method of semiconductor device
JPH0286135A (en) Manufacture of semiconductor device
JPS5882537A (en) Semiconductor device