JPS621357B2 - - Google Patents
Info
- Publication number
- JPS621357B2 JPS621357B2 JP3245181A JP3245181A JPS621357B2 JP S621357 B2 JPS621357 B2 JP S621357B2 JP 3245181 A JP3245181 A JP 3245181A JP 3245181 A JP3245181 A JP 3245181A JP S621357 B2 JPS621357 B2 JP S621357B2
- Authority
- JP
- Japan
- Prior art keywords
- melt
- magnetic field
- crystal
- thermal convection
- rotation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013078 crystal Substances 0.000 claims description 67
- 239000000155 melt Substances 0.000 claims description 62
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 238000002109 crystal growth method Methods 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- 230000007423 decrease Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 239000012535 impurity Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 7
- 230000007547 defect Effects 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000012768 molten material Substances 0.000 description 4
- 238000013019 agitation Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は導電性を有する物質を加熱して溶融体
とし、その溶融体から結晶を引上げる結晶の成長
方法に関する。更に詳しくは、溶融液に生ずる熱
対流を磁界を印加して抑制する技術に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a crystal growth method in which a conductive substance is heated to form a melt and a crystal is pulled from the melt. More specifically, the present invention relates to a technique for suppressing thermal convection occurring in a molten liquid by applying a magnetic field.
溶融体から結晶を引上げる方法の代表的なもの
はチヨクラルスキー法である。チヨクラルスキー
法においては、第3図に示すように、円形の横断
面をもつるつぼ1の外側に、円筒形の加熱体2を
るつぼ1と同心に配置し、たとえば加熱体2に電
流を流すことによつて発生するジユール熱により
るつぼ1内に所定の物質の溶融体3をつくり、結
晶方位がそろつた単結晶からなる種結晶5を溶融
体3の回転中心線4上に位置させるとともに、溶
融体3の表面に接触させ、種結晶5に接続した支
持体6を徐々に引上げることにより、種結晶5と
同様な結晶方位をもつた単結晶7を成長させる。
この場合、溶融体3は加熱体2により主として側
面から加熱されているから、溶融体3の中心部の
温度は外周部の温度より低い、このため、溶融体
3の内部に矢印20で大まかに示されるような熱
対流が生ずる。このような熱対流の様子をより立
体的に説明したのが第5図である。この熱対流は
単結晶7が成長する界面9に温度のゆらぎをもた
らし、その結果成長した単結晶7の内部に特性の
不均一性および結晶欠陥を生じさせるなどの悪影
響を及ぼす。
A typical method for pulling crystals from a melt is the Czyochralski method. In the Czyochralski method, as shown in Fig. 3, a cylindrical heating element 2 is placed concentrically with the crucible 1 on the outside of the crucible 1 with a circular cross section, and, for example, an electric current is passed through the heating element 2. A melt 3 of a predetermined substance is created in the crucible 1 by Juur heat generated thereby, and a seed crystal 5 made of a single crystal with an aligned crystal orientation is positioned on the rotation center line 4 of the melt 3. By gradually pulling up the support 6 which is brought into contact with the surface of the melt 3 and connected to the seed crystal 5, a single crystal 7 having the same crystal orientation as the seed crystal 5 is grown.
In this case, since the molten body 3 is heated mainly from the sides by the heating element 2, the temperature at the center of the molten body 3 is lower than the temperature at the outer periphery. Heat convection occurs as shown. FIG. 5 shows a more three-dimensional explanation of such thermal convection. This thermal convection brings about temperature fluctuations at the interface 9 where the single crystal 7 grows, and as a result, it has an adverse effect such as causing non-uniformity of characteristics and crystal defects inside the grown single crystal 7.
そこで、溶融体3が半導体工業において重要な
結晶材料であるシリコンのような導電性を有する
物質である場合には、溶融体3に対して1000エル
ステツド以上の強い直流磁界を印加することによ
り、上述のような熱対流を抑制する技術が開発さ
れた。すなわち、第4図に示すように、加熱体2
を挾むように巨大な2個の磁石38を配置し、こ
れらの磁石38から発生する横方向の直流磁界5
8を溶融体3に印加している。 Therefore, when the melt 3 is a conductive substance such as silicon, which is an important crystalline material in the semiconductor industry, by applying a strong DC magnetic field of 1000 oersted or more to the melt 3, the above-mentioned A technology to suppress heat convection has been developed. That is, as shown in FIG.
Two huge magnets 38 are arranged to sandwich the
8 is applied to the melt 3.
かかる直流磁界が溶融体の熱対流の抑制に効果
的であること、更には溶融体の対流抑制の原理が
電気伝導性を有する流体が磁力線を横切る際の抑
制力に基くものであること(換言すれば、磁界と
直交する溶融体の流れが抑制されること)は、例
えば電子材料19、〔10〕、1980、P107〜113に示
されている。なお、これらの従来技術において
は、加熱体2は上述のように熱を発生するための
手段であり、そこに流れる電流に基づいて直流磁
界が発生することがあつたとしても、その直流磁
界の強さは熱対流の抑制に関しては無視できる程
度に弱いものであり、あくまでも溶融体の対流制
御を目的とした磁界は、巨大な電磁石によつて発
生する横方向(水平方向)の磁界であつた。 Such a direct current magnetic field is effective in suppressing thermal convection in a molten material, and furthermore, the principle of suppressing convection in a molten material is based on the suppressing force when an electrically conductive fluid crosses lines of magnetic force (in other words, This suppresses the flow of the melt perpendicular to the magnetic field), as shown in, for example, Electronic Materials 19 , [10], 1980, P107-113. In addition, in these conventional technologies, the heating body 2 is a means for generating heat as described above, and even if a DC magnetic field is generated based on the current flowing there, the DC magnetic field is The strength of the magnetic field was negligible in terms of suppressing thermal convection, and the magnetic field intended to control the convection of the molten material was a lateral (horizontal) magnetic field generated by a huge electromagnet. .
しかしながら、かかる従来の結晶成長法におい
ては以下の問題点があつた。
However, such conventional crystal growth methods have the following problems.
従来技術においては、第4図中に図示するよう
に、巨大な電磁石を磁界発生手段として用いるこ
とを当然の前提としていたので、磁界は水平方
向、即ち、結晶引上げ軸(又は、溶融体の回転中
心線)とは直交する向きに印加されており、本発
明のごとく縦方向に磁界を印加したもの又は、そ
れを示唆する技術は無かつた。 In the prior art, as shown in FIG. 4, it was assumed that a huge electromagnet was used as the magnetic field generating means, so the magnetic field was directed horizontally, that is, along the crystal pulling axis (or the rotation of the melt). The magnetic field is applied in a direction perpendicular to the center line (center line), and there is no technique that applies a magnetic field in the vertical direction as in the present invention or a technique that suggests it.
なぜならば、チヨクラルスキー法に代表される
結晶引上げ技術においては、装置の幅と高さの比
率は5〜10倍もあり、溶融体に熱対流抑制用の磁
界を印加するには、装置の上下方向に電磁石を配
すれば、同一磁界強度を得るには水平配置に比べ
極めて大型の電磁石を上下方向に配置する必要が
あり、重量、寸法の観点からほとんど実現不可能
であつたため、従来技術においては磁界を縦方向
(垂直方向)に印加せんとする目的意識さえも無
かつたからである。 This is because in the crystal pulling technology represented by the Czyochralski method, the ratio of the width and height of the equipment is 5 to 10 times, and in order to apply a magnetic field to suppress thermal convection to the melt, it is necessary to If the electromagnets were arranged vertically, it would be necessary to arrange the electromagnets vertically, which would be much larger than if they were arranged horizontally, in order to obtain the same magnetic field strength. This is because there was no sense of purpose in applying a magnetic field in the vertical direction.
ところで、このような従来の横方向に磁界印加
方法は、種々の重大な欠点を生ずることが本願発
明者の検討から明らかとなつた。即ち、従来の横
方向の磁界印加方法では溶融体3の横断面内での
温度条件その他にも非対称性が生じ、単結晶7の
横断面内での特性の不均一性が生ずるなどの、結
晶成長に係わる重大な問題点が発生することが明
らかになつた。この点について、更に詳細に説明
する。溶融体が加熱体によつて外側から均一に加
熱されている場合に、溶融体に磁界を印加しない
ときには、第5図に模式的に示すように、溶融体
内にはa〜fで代表されるような回転中心線に対
して対称な熱対流が生ずる。 However, studies by the inventors of the present application have revealed that such conventional methods of applying a magnetic field in the horizontal direction have various serious drawbacks. That is, in the conventional method of applying a magnetic field in the horizontal direction, asymmetry occurs in temperature conditions and other factors within the cross section of the melt 3, resulting in non-uniformity of properties within the cross section of the single crystal 7, etc. It has become clear that serious problems related to growth will arise. This point will be explained in more detail. When the molten body is uniformly heated from the outside by a heating element and no magnetic field is applied to the molten body, as schematically shown in FIG. Heat convection occurs that is symmetrical about the center line of rotation.
そして、従来例のように横方向の磁界が印加さ
れる場合には、熱対流a〜fの個々の閉曲線のう
ち、縦方向の流れが抑制されるとともに、熱対流
a,dの横方向(水平面内)の流れは抑制されな
いが、熱対流b,c,e,fの横方向(水平面
内)の流れのうち磁力線と直角方向の成分が抑制
されるので、熱対流b,c,e,fの横方向の流
れは磁力線と平行となる。 When a horizontal magnetic field is applied as in the conventional example, the vertical flow of the individual closed curves of thermal convection a to f is suppressed, and the horizontal direction ( The flow in the horizontal direction (in the horizontal plane) is not suppressed, but the component of the flow in the horizontal direction (in the horizontal plane) of the thermal convection b, c, e, f in the direction perpendicular to the magnetic field lines is suppressed, so the thermal convection b, c, e, The lateral flow of f is parallel to the magnetic field lines.
この結果を第6図aに示す。ここで、58は水
平磁界である。又、点線の矢印は印加された磁界
によつて、対流のうちこの部分が抑制されたこと
を概念的に図示したものである。(b,c,e,
fの水平面内の抑制成分は省略)このため、熱対
流a〜fによる熱の流れは第6図bで示すように
なるので、溶融体の等温線は第6図cで示すよう
に楕円形となるから、回転を伴わずに引き上げる
場合には、結晶の横断面形状が楕円形となつてし
まう。そして、結晶の横断面形状が楕円形となる
のを防止するため、結晶を回転したときには、結
晶の一つの成長点がたとえば第6図cに示すA〜
D点を通ることになるから、結晶が成長する界面
に温度のゆらぎが生じて、結晶の成長速度に変化
が生ずるので、結晶の横断面における不純物濃度
が不均一となり、また結晶欠陥が生ずるという欠
点があつた。 The results are shown in Figure 6a. Here, 58 is a horizontal magnetic field. Furthermore, the dotted arrow conceptually illustrates that this portion of the convection is suppressed by the applied magnetic field. (b, c, e,
(The suppression component in the horizontal plane of f is omitted) Therefore, the heat flow due to thermal convection a to f is as shown in Figure 6b, and the isothermal line of the melt is elliptical as shown in Figure 6c. Therefore, if the crystal is pulled without rotation, the cross-sectional shape of the crystal will be elliptical. In order to prevent the cross-sectional shape of the crystal from becoming elliptical, when the crystal is rotated, one growth point of the crystal is, for example, A to A shown in FIG. 6c.
Because it passes through point D, temperature fluctuations occur at the interface where the crystal grows, causing changes in the crystal growth rate, resulting in uneven impurity concentration in the cross section of the crystal, and crystal defects. There were flaws.
更に、従来の結晶成長方法においては、溶融体
に横磁界を印加しているので、先にも述べたよう
に溶融体内の熱対流閉曲線のうち、縦方向の流れ
が抑制されることになる。 Furthermore, in the conventional crystal growth method, since a transverse magnetic field is applied to the melt, the flow in the longitudinal direction of the closed thermal convection curve in the melt is suppressed, as described above.
この様子を側断面で図示したのが第8図であ
る。aは、結晶引上げ開始直後の溶融液が多く残
つている場合を示し、bは結晶引上げ完了直前の
溶融液が少ししか残つていない場合を示す。この
両者を比較すれば明らかなように、従来例におい
ては結晶の成長に伴つて、残存溶融体の量が減少
すると、熱対流の縦方向の流れが短くなるから、
溶融体の量の減少とともに横磁界による熱対流の
抑制効果が減少し、溶融体の撹拌が増大してく
る。この結果不純物の濃度を結晶の長さ方向にお
いて一定とすることはできないという欠点があつ
た。 FIG. 8 shows this state in side cross section. A shows a case where a large amount of the molten liquid remains immediately after the crystal pulling is started, and b shows a case where only a small amount of the molten liquid remains immediately after the crystal pulling is completed. As is clear from comparing the two, in the conventional example, as the amount of residual melt decreases as the crystal grows, the vertical flow of thermal convection becomes shorter.
As the amount of the melt decreases, the effect of suppressing thermal convection by the transverse magnetic field decreases, and the agitation of the melt increases. As a result, there was a drawback that the concentration of impurities could not be made constant in the length direction of the crystal.
上記問題点を解決するため本発明においては、
導電性を有する物質を加熱して溶融体とし、その
溶融体から結晶を引上げる結晶の成長方法におい
て、溶融体の回転中心線に対して対称で、かつ、
結晶の引上げ方向に沿つた直流磁界(いわゆる縦
方向磁界)、又は縦方向磁界と回転中心線上の位
置から、半径方向に放射状に向う成分とを有する
直流磁界を溶融体に印加し、溶融体の熱対流を抑
制しながら結晶の引上げを行うようにしたもので
ある。
In order to solve the above problems, in the present invention,
In a crystal growth method in which a conductive substance is heated to form a molten substance and a crystal is pulled from the molten substance, the crystal is symmetrical with respect to the center line of rotation of the molten substance, and
A DC magnetic field along the crystal pulling direction (so-called longitudinal magnetic field), or a DC magnetic field having a longitudinal magnetic field and a component radially radially from a position on the center line of rotation, is applied to the melt. It is designed to pull the crystal while suppressing thermal convection.
以下、実施例を示して本発明の作用、効果を説
明する。 Hereinafter, the functions and effects of the present invention will be explained with reference to Examples.
第1図は、本発明の第1の実施例を説明するた
めの図である。即ち、第1図においては磁界18
が回転中心線に対して対称な縦方向磁界であるこ
とが本質である。bは結晶7、溶融液3及び印加
磁界18を平面的に見た図である。(なお、磁界
18は代表的な磁力線を8本用いて全方向に等方
的である概念を図示してある。)
なお、a図において、2は溶融体を作る為の加
熱体、1はるつぼ、3は溶融体、4は回転中心
線、5は種子結晶、6は支持体、7は引上げた単
結晶、8は縦方向(垂直方向)の磁界印加手段、
例えばソレノイドである。18は磁界、30は気
密容器、9は固液界面である。
FIG. 1 is a diagram for explaining a first embodiment of the present invention. That is, in FIG. 1, the magnetic field 18
is essentially a longitudinal magnetic field symmetrical about the center line of rotation. b is a plan view of the crystal 7, the melt 3, and the applied magnetic field 18. (The concept that the magnetic field 18 is isotropic in all directions is illustrated using eight typical lines of magnetic force.) In figure a, 2 is a heating element for making a molten body, and 1 is a heating element for making a molten body. A crucible, 3 is a melt, 4 is a center line of rotation, 5 is a seed crystal, 6 is a support, 7 is a pulled single crystal, 8 is a means for applying a magnetic field in the longitudinal direction (vertical direction),
For example, a solenoid. 18 is a magnetic field, 30 is an airtight container, and 9 is a solid-liquid interface.
本発明においては従来例と同様に溶融体に磁界
を印加しているので、その直流磁界の大きさが、
例えば1300エルステツド程度であれば、従来例と
同様に熱対流の制御機能が有るという点では共通
するが、対流の抑制の態様が本質的に異なる。 In the present invention, a magnetic field is applied to the melt as in the conventional example, so the magnitude of the DC magnetic field is
For example, if it is about 1300 oersted, it has the same thermal convection control function as the conventional example, but the manner in which convection is suppressed is essentially different.
本発明においては、溶融体の回転中心線に対し
てどの放射方向に対しても対称な直流磁界を溶融
体に印加しているので、第6図a〜cで説明した
ような横(水平)方向の磁界を印加していること
によつて生ずる熱の流れが非対称になつたり、固
液界面の等温線が楕円化する欠点が生じない。即
ち、第6図に対比して、本発明の特徴を図示すれ
ば第7図のようになる。同図に示すように溶融体
に対称な縦磁界を印加したときには、磁力線と直
角な流れは抑制され磁力線と平行な流れは抑制さ
れないので、熱対流a〜fの縦方向の流れは抑制
されないが(実線矢印)、熱対流a〜fの横方向
(水平面内のあらゆる方向の成分)の流れが抑制
され(破線矢印)、しかも熱対流a〜fは閉じた
流れであるため、熱対流a〜fは全体的に弱めら
れるとともに、熱対流a〜fは溶融体の回転中心
線に対して対称に抑制されるので、熱対流a〜f
は溶融体の回転中心線に対して対称となり、熱対
流a〜fによる熱の流れは第7図bで示すように
なるから、結晶育成上最も重要な溶融体の上部主
面内(固液界面9)の等温線は第7図cで示すよ
うに円形となる。(なお、第7図aで示すよう
に、熱対流の閉ループのうち、外部磁界により本
質的に弱められる部分を破線で示し、弱められな
い部分を実線で示す。)このため、回転を伴つて
も、または伴わずに引き上げる場合においても、
結晶の横断面形状が円形となる。半導体集積回路
母材のウエハが、楕円よりも円形である必要性は
改めて言うまでもない。また、回転を伴つて引き
上げる場合でも、結晶の外周部の特定の点は常に
同一温度の溶融体と接しながら回転することにな
るので、結晶の成長速度も変化せず、結晶の横断
面における不純物濃度が均一となり、また結晶欠
陥が生ずることをないという利点がある。 In the present invention, since a DC magnetic field that is symmetrical in any radial direction with respect to the center line of rotation of the melt is applied to the melt, the lateral (horizontal) magnetic field as explained in FIGS. There are no disadvantages such as asymmetrical heat flow or elliptical isothermal lines at the solid-liquid interface due to the application of a directional magnetic field. That is, in contrast to FIG. 6, the features of the present invention are illustrated in FIG. 7. As shown in the figure, when a symmetrical longitudinal magnetic field is applied to the melt, the flow perpendicular to the lines of magnetic force is suppressed, but the flow parallel to the lines of magnetic force is not suppressed, so the longitudinal flow of thermal convection a to f is not suppressed. (solid line arrow), the flow in the lateral direction (components in all directions in the horizontal plane) of thermal convection a to f is suppressed (dashed line arrow), and since thermal convection a to f are closed flows, thermal convection a to Since f is weakened overall and thermal convection a to f is suppressed symmetrically with respect to the center line of rotation of the melt, thermal convection a to f
is symmetrical with respect to the center line of rotation of the melt, and the heat flow due to thermal convection a to f becomes as shown in Figure 7b. The isothermal line of the interface 9) is circular as shown in FIG. 7c. (As shown in Figure 7a, the part of the closed loop of thermal convection that is essentially weakened by the external magnetic field is shown by a broken line, and the part that is not weakened is shown by a solid line.) Even if the withdrawal is made with or without
The cross-sectional shape of the crystal is circular. It goes without saying that the wafer, which is the semiconductor integrated circuit base material, needs to be circular rather than elliptical. In addition, even when pulling with rotation, a specific point on the outer periphery of the crystal always rotates while in contact with the melt at the same temperature, so the growth rate of the crystal does not change, and impurities in the cross section of the crystal do not change. It has the advantage that the concentration is uniform and no crystal defects occur.
さらに、本発明のように、溶融体に縦磁界を印
加したときには、熱対流の横方向の流れが抑制さ
れ、かつ第9図a,bに示すように、溶融体の量
が減少したとしても、熱対流の横方向の流れの長
さは変化しないから、溶融体の量が減少したとし
ても、縦磁界による熱対流の抑制効果は常に一定
である。ここで溶融体が強く撹拌されている場合
には、不純物の濃度が結晶の長さ方向において大
きく変化するのに対して、溶融体が全く撹拌され
ていない場合には不純物の濃度が結晶の長さ方向
において一定となることが知られている。したが
つて、本発明のように、溶融体の量の減少にかか
わらず、熱対流の抑制効果が常に一定であれば、
溶融体を常に一定の撹拌状態、著しくは適当な条
件のもとでは撹拌がほとんど無い状態に保持する
ことができるので、不純物の濃度を結晶の長さ方
向において一定とすることができるという利点が
ある。 Furthermore, when a vertical magnetic field is applied to the melt as in the present invention, the lateral flow of thermal convection is suppressed, and as shown in FIGS. 9a and b, even if the amount of the melt decreases. Since the length of the lateral flow of thermal convection does not change, even if the amount of melt decreases, the effect of suppressing thermal convection by the longitudinal magnetic field is always constant. When the melt is strongly stirred, the concentration of impurities varies greatly along the length of the crystal, whereas when the melt is not stirred at all, the concentration of impurities changes along the length of the crystal. It is known that it is constant in the horizontal direction. Therefore, as in the present invention, if the effect of suppressing thermal convection is always constant regardless of the decrease in the amount of melt,
Since the melt can be kept in a constant state of agitation, or even with almost no agitation under appropriate conditions, it has the advantage that the concentration of impurities can be kept constant in the length direction of the crystal. be.
以上の実施例は縦方向の直流磁界を溶融体に印
加する方法を示したものであつたが、本発明は、
これに限定されるものではない。 The above embodiments showed a method of applying a vertical DC magnetic field to a melt, but the present invention
It is not limited to this.
第2図は本発明の第2の実施例を示すものであ
り、aは側断面、bは主要部の平面図を示す。第
1の実施例(第1図)とのちがいは、印加される
磁界が縦方向成分のみならず、横方向成分も含み
1本の磁力線が全体として湾曲している点であ
る。ただし、横方向の磁界成分を含むと言つて
も、第2図a,bを対比すれば明らかなように、
本発明においては回転中心線上の位置から半径方
向に、等方的に放射している成分のみである。従
つて、第6図をもつて説明したように、横磁界と
水平面内の対流成分が直交し、本来水平面内で回
転中心線から放射状に分布していたものが、影響
を受けて偏るということはない。従つて、溶融液
の熱対流に対し回転中心線から全方位に等方的に
対流抑制効果が働くという本発明第1の実施例と
同様の効果が得られる。即ち第7図と同様に、同
心円状の温度分布が実現でき結晶を回転させなが
ら引上げても、各点の成長温度が変化せず結晶の
横断面における不純物濃度が均一となり、結晶欠
陥が生じないという利点がある。 FIG. 2 shows a second embodiment of the present invention, in which a shows a side cross section and b shows a plan view of the main part. The difference from the first embodiment (FIG. 1) is that the applied magnetic field includes not only a longitudinal component but also a lateral component, and one line of magnetic force is curved as a whole. However, even though it includes a horizontal magnetic field component, as is clear from comparing Figure 2 a and b,
In the present invention, only the components radiate isotropically in the radial direction from the position on the rotation center line. Therefore, as explained using Figure 6, the transverse magnetic field and the convection components in the horizontal plane are orthogonal, and what was originally distributed radially from the rotation center line in the horizontal plane becomes biased due to the influence. There isn't. Therefore, the same effect as the first embodiment of the present invention can be obtained in that the convection suppressing effect acts isotropically in all directions from the rotation center line with respect to the thermal convection of the melt. In other words, as shown in Figure 7, a concentric temperature distribution can be achieved, and even if the crystal is pulled while rotating, the growth temperature at each point does not change, the impurity concentration in the cross section of the crystal is uniform, and no crystal defects occur. There is an advantage.
又、横方向の磁界成分を含むといつてもそれは
縦方向の成分に比べて小さいものであるし、かつ
等方向に放射しているものであるから、第9図と
同様に大部分の対流抑制成分が溶融体の多少にか
かわらず、ほぼ一定であるという効果は本質的に
変わるものではなく、従つて第1の実施例と同様
に溶融体の量の減少にかかわらず、溶融体をほぼ
一定の撹拌状態、著しくは適当な条件のもとで撹
拌をほとんど無い状態に保持でき、もつて、不純
物の濃度を結晶の長さ方向において一定にできる
という効果が得られる点も第1の実施例と同じで
ある。 Furthermore, even if there is a horizontal magnetic field component, it is smaller than the vertical component and radiates in the same direction, so as shown in Figure 9, most of the convection The effect that the suppressing component remains almost constant regardless of the amount of melt is essentially unchanged, and therefore, as in the first embodiment, regardless of the decrease in the amount of melt, the suppressing component remains almost constant regardless of the amount of melt. The first implementation also has the advantage that it is possible to maintain a constant stirring state, or in particular, to maintain almost no stirring under appropriate conditions, thereby making the concentration of impurities constant in the length direction of the crystal. Same as example.
なお、上記実施例において、縦方向の磁界を発
生し、溶融体に所定の磁界を印加する手段として
はソレノイドが好ましい。 In the above embodiments, a solenoid is preferable as the means for generating a longitudinal magnetic field and applying a predetermined magnetic field to the melt.
ソレノイドが好ましい理由は以下のとおりであ
る。即ち、本発明のように溶融体から結晶を引上
げる結晶成長方法に用いる装置においては、一般
に直径に比べ高さが5〜10倍である縦長構造をし
ているし、又、るつぼ等の構成要件も円筒形に近
い形をしているものが多い。換言すれば、装置全
体が縦長の円筒状にみなせるので、その外側に同
じく縦長のソレノイドを、中心軸を上記回転中心
軸と一致させて設ければ、磁界印加手段(ソレノ
イド)を含めた全体の寸法が、磁界印加手段を持
たぬ第3図の基本構造に比べて、わずかに増加す
るだけで良いという実用上の優れた効果が得られ
る。即ち、装置の小型化、軽量化の点でソレノイ
ドが好ましい。又ソレノイドは、磁界分布の外乱
が小さく、発熱体の震動、破損が生じない。更
に、ソレノイドは中央を通る磁界が最も弱く、周
辺部ほど強くなる特性であるので、溶融体の回転
中心部にはほとんど対流抑制力が作用せず、回転
中心線上の位置から半径方向に放射状に向う対流
の成分に対して有効に対流抑制力が作用する本発
明の特徴と合致する。従つて、少ない電力でも効
率よく熱対流抑制効果が発揮できるという点から
も、本発明を実施するための装置に用いることは
好ましい。 The reason why solenoids are preferable is as follows. That is, the apparatus used in the crystal growth method of pulling crystals from a melt as in the present invention generally has a vertical structure with a height 5 to 10 times larger than the diameter, and also has a structure such as a crucible. Many of the requirements are similar to a cylindrical shape. In other words, since the entire device can be regarded as a vertically elongated cylinder, if a similarly elongated solenoid is provided on the outside with its central axis aligned with the rotation center axis, the entire device including the magnetic field applying means (solenoid) can be An excellent practical effect can be obtained in that the size only needs to be slightly increased compared to the basic structure shown in FIG. 3 which does not have a magnetic field applying means. That is, a solenoid is preferable from the viewpoint of making the device smaller and lighter. In addition, the solenoid has small disturbance in the magnetic field distribution, and the heating element does not vibrate or break. Furthermore, the solenoid has the characteristic that the magnetic field passing through the center is weakest and becomes stronger toward the periphery, so there is almost no convection suppressing force acting on the center of rotation of the molten material, and the magnetic field is radial from the position on the rotation center line. This is consistent with the feature of the present invention that the convection suppressing force effectively acts on the components of the convection flowing toward the opposite direction. Therefore, it is preferable to use it in an apparatus for carrying out the present invention, also from the viewpoint that the thermal convection suppressing effect can be efficiently exerted even with a small amount of electric power.
但し、本発明の主旨は、あくまでも回転中心線
に対して対称で、かつ結晶の引上げ方向に沿つた
縦方向磁界又は、このような縦方向磁界を主成分
とする放射状の磁界を溶融液に印加する点にあ
り、これを実現する手段はソレノイドに限定され
るものではない。他の磁界印加手段であつても、
上記の目的とする磁界が得られれば何を用いて
も、本発明の主たる目的は達成できることは言う
までもない。 However, the gist of the present invention is to apply to the melt a longitudinal magnetic field that is symmetrical about the center line of rotation and along the crystal pulling direction, or a radial magnetic field that has such a longitudinal magnetic field as its main component. The means for realizing this is not limited to solenoids. Even if other magnetic field application means are used,
It goes without saying that the main objective of the present invention can be achieved by using any magnetic field as long as the desired magnetic field described above can be obtained.
以上説明したように、本発明においては導電性
を有する物質を加熱して溶融体とし、その溶融体
から結晶を引上げる結晶の成長方法において、溶
融体の回転中心線に対して対称で、かつ結晶の引
上げ方向に沿つた直流磁界(縦磁界)又は、溶融
体の回転中心線に対して対称で、かつ結晶の引上
げ方向に沿つた成分と回転中心線上の位置から半
径方向に放射状に向う成分とを有する直流磁界
を、溶融体に印加して溶融体の熱対流を抑制しな
がら結晶を引上げる方法を採用したので、熱の流
れが回転中心線に対して等方性を確保したまま抑
制されるので、結晶引上げで最も重要な固液界面
の温度分布も同心円状の等温特性となる。
As explained above, in the present invention, in a crystal growth method in which a conductive substance is heated to form a melt and a crystal is pulled from the melt, the crystal is symmetrical with respect to the rotation center line of the melt and A direct current magnetic field (longitudinal magnetic field) along the direction of pulling the crystal, or a component that is symmetrical about the center line of rotation of the melt and along the direction of pulling the crystal, and a component that radiates in the radial direction from the position on the center line of rotation. We adopted a method of applying a DC magnetic field to the melt to pull up the crystal while suppressing thermal convection in the melt, thereby suppressing heat flow while maintaining isotropy with respect to the center line of rotation. Therefore, the temperature distribution at the solid-liquid interface, which is most important in crystal pulling, also has concentric isothermal characteristics.
このため、回転して結晶を引上げても結晶の成
長点は、同一温度の地点を回転するので、温度ゆ
らぎを受けず不純物濃度の均一性を確保できると
ともに、欠陥の発生を抑制できる。更に、溶融体
の量の減少にかかわらず熱対流の抑制効果が常に
一定であるので、不純物の濃度を結晶の長さ方向
において一定にできる。 Therefore, even if the crystal is pulled up by rotation, the growth point of the crystal rotates at the same temperature point, so that it is not subject to temperature fluctuations, ensuring uniformity of impurity concentration, and suppressing the occurrence of defects. Furthermore, since the effect of suppressing thermal convection is always constant regardless of the decrease in the amount of melt, the concentration of impurities can be kept constant in the length direction of the crystal.
このように、従来の方法(横磁界印加)では実
現できない格段の効果を奏することができる。 In this way, it is possible to achieve remarkable effects that cannot be achieved with the conventional method (applying a transverse magnetic field).
第1図は本発明の第1の実施例を説明する図、
第2図は本発明の第2の実施例を説明する図、第
3図は従来の磁界印加をしない基本技術の説明
図、第4図は従来の横方向磁界を印加した技術の
説明図、第5図は溶融体の熱対流を説明する図、
第6図は従来の横方向磁界を溶融液に印加した場
合に生ずる現象を説明する図、第7図は本発明の
縦方向磁界を溶融液に印加した場合に生ずる現象
を説明する図、第8図は従来の横方向磁界を溶融
液に印加した場合、溶融液の減少に伴い対流の被
抑制成分が減少することを説明する図、第9図は
本発明の縦方向磁界を溶融液に印加した場合、溶
融液の減少にかかわらず対流の被抑制成分が不変
であることを説明する図。
1……るつぼ、2……加熱体、3……溶融体、
4……回転中心線、5……種子結晶、6……支持
体、7……単結晶、8……磁界印加手段、9……
固液界面、18……本発明の磁界、20……加熱
体により生ずる溶融体中の対流、30……気密容
器、38……電磁石、58……電磁石の作る横方
向磁界。
FIG. 1 is a diagram illustrating a first embodiment of the present invention,
FIG. 2 is a diagram illustrating a second embodiment of the present invention, FIG. 3 is an explanatory diagram of a conventional basic technique in which no magnetic field is applied, and FIG. 4 is an explanatory diagram of a conventional technique in which a transverse magnetic field is applied. Figure 5 is a diagram explaining the thermal convection of the melt;
FIG. 6 is a diagram explaining the phenomenon that occurs when a conventional transverse magnetic field is applied to the melt, FIG. 7 is a diagram explaining the phenomenon that occurs when the longitudinal magnetic field of the present invention is applied to the melt, Figure 8 is a diagram explaining that when a conventional transverse magnetic field is applied to a melt, the suppressed component of convection decreases as the melt decreases, and Figure 9 is a diagram showing how the suppressed component of convection decreases as the melt decreases when a conventional transverse magnetic field is applied to the melt. FIG. 6 is a diagram illustrating that when the voltage is applied, the suppressed component of convection remains unchanged regardless of the decrease in the melt. 1... Crucible, 2... Heating body, 3... Molten body,
4...Rotation center line, 5...Seed crystal, 6...Support, 7...Single crystal, 8...Magnetic field application means, 9...
Solid-liquid interface, 18... Magnetic field of the present invention, 20... Convection in the melt produced by the heating body, 30... Airtight container, 38... Electromagnet, 58... Transverse magnetic field created by the electromagnet.
Claims (1)
その溶融体から結晶を引上げる結晶の成長方法に
おいて、上記溶融体の回転中心線に対して対称で
かつ上記結晶の引上げ方向に沿つた直流磁界を上
記溶融体に印加して、上記溶融体の熱対流を抑制
しながら結晶を引上げることを特徴とする結晶の
成長方法。 2 上記直流磁界は中心部の強さが1000エルステ
ツド以上であることを特徴とする特許請求の範囲
第1項記載の結晶の成長方法。 3 導電性を有する物質を加熱して溶融体とし、
その溶融体から結晶を引上げる結晶の成長方法に
おいて、上記溶融体の回転中心線に対して対称で
かつ上記結晶の引上げ方向に沿つた成分と上記回
転中心線上の位置から半径方向に放射状に向う成
分とを有する直流磁界を上記溶融体に印加して、
上記溶融体の熱対流を抑制しながら結晶を引上げ
ることを特徴とする結晶の成長方法。[Claims] 1. Heating a conductive substance to make it into a melt,
In a crystal growth method for pulling a crystal from the melt, a direct current magnetic field is applied to the melt, which is symmetrical about the center line of rotation of the melt and along the direction in which the crystal is pulled. A crystal growth method characterized by pulling the crystal while suppressing thermal convection. 2. The crystal growth method according to claim 1, wherein the DC magnetic field has a strength of 1000 oersted or more at the center. 3 Heating a conductive substance to make it into a melt,
In a crystal growth method of pulling a crystal from the melt, a component that is symmetrical with respect to the center line of rotation of the melt and along the direction of pulling the crystal, and a component radially radially from a position on the center line of rotation. applying a direct current magnetic field having a component to the melt,
A method for growing a crystal, comprising pulling the crystal while suppressing thermal convection in the melt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3245181A JPS57149894A (en) | 1981-03-09 | 1981-03-09 | Method and apparatus for growing grystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3245181A JPS57149894A (en) | 1981-03-09 | 1981-03-09 | Method and apparatus for growing grystal |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13800186A Division JPS623093A (en) | 1986-06-13 | 1986-06-13 | Crystal growth apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57149894A JPS57149894A (en) | 1982-09-16 |
JPS621357B2 true JPS621357B2 (en) | 1987-01-13 |
Family
ID=12359327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3245181A Granted JPS57149894A (en) | 1981-03-09 | 1981-03-09 | Method and apparatus for growing grystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57149894A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01236559A (en) * | 1988-03-16 | 1989-09-21 | Matsushita Electric Ind Co Ltd | Image display device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6016891A (en) * | 1983-07-04 | 1985-01-28 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of crystal by application of magnetic field and its device |
JPS6033294A (en) * | 1983-07-29 | 1985-02-20 | Toshiba Ceramics Co Ltd | Pulling device for single crystal semiconductor |
JPS6036392A (en) * | 1983-08-05 | 1985-02-25 | Toshiba Corp | Apparatus for pulling single crystal |
US4565671A (en) * | 1983-08-05 | 1986-01-21 | Kabushiki Kaisha Toshiba | Single crystal manufacturing apparatus |
JPS60221392A (en) * | 1984-04-16 | 1985-11-06 | Toshiba Corp | Device for forming single crystal |
-
1981
- 1981-03-09 JP JP3245181A patent/JPS57149894A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01236559A (en) * | 1988-03-16 | 1989-09-21 | Matsushita Electric Ind Co Ltd | Image display device |
Also Published As
Publication number | Publication date |
---|---|
JPS57149894A (en) | 1982-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5344822B2 (en) | Control of melt-solid interface shape of growing silicon crystal using variable magnetic field | |
JP2017057127A (en) | Single crystal pulling-up device and single crystal pulling-up method | |
JPS621357B2 (en) | ||
JPH0212920B2 (en) | ||
JPH08268792A (en) | High-frequency induction heater | |
JP2827833B2 (en) | Single crystal growth method | |
KR20170088120A (en) | Single crystal ingot growth apparatus and the growing method of it | |
JP7160006B2 (en) | Single crystal pulling apparatus and single crystal pulling method | |
JP3132412B2 (en) | Single crystal pulling method | |
US2890940A (en) | Electromagnetic stirring method | |
JPS62256788A (en) | Device for growing single crystal | |
JPS59121183A (en) | Method for crystal growth | |
JPS6081086A (en) | Process and apparatus for growing single crystal | |
JPS6243958B2 (en) | ||
JP2021080112A (en) | Apparatus and method for pulling single crystal | |
KR20110087035A (en) | Single crystal grower, manufacturing method for single crystal, and single crystal ingot and wafer manufacturied by the same | |
JPH10120485A (en) | Single crystal production apparatus | |
JPS6270286A (en) | Apparatus for producting single crystal | |
WO2022163091A1 (en) | Single crystal pulling device and single crystal pulling method | |
JPS63215587A (en) | Production of single crystal | |
JPS6360189A (en) | Production of semiconductor single crystal | |
JPH10167875A (en) | Device for producing single crystal | |
JPS6011295A (en) | Crystal growing device | |
JP2000327476A (en) | Device and method for producing semiconductor single crystal | |
JPS59102893A (en) | Crystal growth method |