JPS6121195B2 - - Google Patents

Info

Publication number
JPS6121195B2
JPS6121195B2 JP55008576A JP857680A JPS6121195B2 JP S6121195 B2 JPS6121195 B2 JP S6121195B2 JP 55008576 A JP55008576 A JP 55008576A JP 857680 A JP857680 A JP 857680A JP S6121195 B2 JPS6121195 B2 JP S6121195B2
Authority
JP
Japan
Prior art keywords
container
crystal
magnetic field
crystal material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55008576A
Other languages
Japanese (ja)
Other versions
JPS56104795A (en
Inventor
Toshihiko Suzuki
Nobuyuki Izawa
Kinji Hoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP857680A priority Critical patent/JPS56104795A/en
Priority to GB8029356A priority patent/GB2059932B/en
Priority to FR8019942A priority patent/FR2465802B1/en
Priority to DE19803035267 priority patent/DE3035267A1/en
Priority to SU2992247A priority patent/SU1258329A3/en
Priority to CA000360638A priority patent/CA1177367A/en
Priority to NL8005228A priority patent/NL8005228A/en
Priority to IT24803/80A priority patent/IT1141064B/en
Priority to SE8006569A priority patent/SE8006569L/en
Priority to AT0473180A priority patent/AT398582B/en
Publication of JPS56104795A publication Critical patent/JPS56104795A/en
Priority to US06/339,065 priority patent/US4619730A/en
Priority to US06/562,015 priority patent/US4622211A/en
Publication of JPS6121195B2 publication Critical patent/JPS6121195B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、半導体、誘電体、磁性体等の各種材
料の単結晶体を得る場合に適用して好適な結晶引
上装置に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crystal pulling apparatus suitable for use in obtaining single crystals of various materials such as semiconductors, dielectrics, and magnetic materials.

半導体等の単結晶を育成させるに、チヨクラル
スキー法による場合、その結晶材料のの融液また
は溶液面の振動や熱対流等が成長される単結晶の
品質に大きな影響を与える。例えば、融液又は溶
液面の振動や熱対流が大きいと、一旦成長した結
晶が部分的に再溶解し、これが結晶欠陥発生やそ
の発生の原因となつたり、スワール(Swirl)状
の欠陥や、成長縞を発生させる。
When a single crystal such as a semiconductor is grown using the Czyochralski method, vibrations and thermal convection of the melt or solution surface of the crystal material have a large influence on the quality of the grown single crystal. For example, if the vibration or thermal convection of the melt or solution surface is large, the crystals that have grown will partially re-melt, which may cause crystal defects to occur or create swirl-like defects. Generates growth stripes.

このようなチヨクラルスキー法において、その
単結晶の育成を磁場中で行うことが提案され、こ
れによつてスワールや成長縞等の欠陥が軽減され
る。これは、電気伝導性の融液ないしは溶液が、
磁場がかけられることによつて実効的粘性が高め
られ、熱対流と液面の振動が抑制されることによ
ると思われる。すなわち、磁場中で電気伝導性を
有する流体、すなわち導体が運動すると、流体中
に電位差が発生し、電流が流れる。そして、この
磁場を流れる電流によつて、この電流を担う流体
が新しい力を受ける。この力は流体が動く方向と
反対の方向であるので、流体の動きは鈍くなり、
見掛上粘性が上つたことになる。これは磁気粘性
といわれる。そして、このように磁気粘性が生じ
たことによつて流体、すなわち結晶材料液の対流
が生じにくくなるものと思われる。
In the Czyochralski method, it has been proposed to grow the single crystal in a magnetic field, thereby reducing defects such as swirls and growth stripes. This means that the electrically conductive melt or solution
This is thought to be due to the fact that the effective viscosity is increased by applying a magnetic field, suppressing thermal convection and vibrations of the liquid surface. That is, when a fluid having electrical conductivity, ie, a conductor, moves in a magnetic field, a potential difference is generated in the fluid, and a current flows. The current flowing through this magnetic field applies a new force to the fluid that carries this current. This force is in the opposite direction of the fluid movement, so the fluid movement slows down.
This means that the apparent viscosity has increased. This is called magnetic viscosity. It is thought that due to the magnetic viscosity generated in this way, convection of the fluid, that is, the crystal material liquid, becomes difficult to occur.

尚、この単結晶の育成を磁場中で行うことにつ
いては、例えばJournal of Applied Physics、
Vol.37.No.5、P2021(1966)、及びJournal of
Materials Science 5(1970)P822等に記載され
ている。
Regarding growing this single crystal in a magnetic field, for example, see the Journal of Applied Physics,
Vol.37.No.5, P2021 (1966), and Journal of
It is described in Materials Science 5 (1970) P822.

一方、通常の引上装置においては、結晶材料板
が収容された容器、すなわちるつぼの中心軸上に
おいて、種結晶(シード)を結晶材料液面に接触
させ、結晶の引上げを行うが、この場合、るつぼ
の周囲に配置された加熱手段による熱中心のずれ
を補償するために、通常この結晶の引上はこれを
回転させながら行つて真円断面形状を有する単結
晶を得る方法がとられいる。ところが特に前述し
た磁場印加による引上法においては、磁場印加に
よつて結晶材料液を静止状態に保持してその安定
化をはかるものであるから、これに上述の回転引
上法を適用することは望ましくなく、この回転に
よつて温度の高低を経ることになつて引上げ育成
された結晶体に回転の成長縞が生じてしまう。し
たがつて、このような結晶引上法、特に磁場印加
による結晶引上法においては、結晶の回転引上げ
は回避されることが望まれる。ところが実際上、
この種、引上装置における加熱手段は、結晶材料
液が収容されるるつぼの周囲にヒーターか例えば
るつぼの軸心に沿うようにジグザグに且つ、るつ
ぼの全外周を繞るように連続して配置されて成
る。すなわち、加熱手段は、全円周に関して一体
に構成されるものであり、熱中心のずれが生じ易
く、且つこの熱中心にずれが生じた場合の補正が
できないので真円断面の結晶を育成するには、そ
の回転が不可欠のものとなつている。
On the other hand, in a normal pulling device, a seed crystal is brought into contact with the liquid surface of the crystal material on the central axis of a container containing a crystal material plate, that is, a crucible, to pull the crystal. In order to compensate for the deviation of the thermal center due to the heating means placed around the crucible, the crystal is usually pulled while rotating to obtain a single crystal with a perfect circular cross-sectional shape. . However, especially in the above-mentioned pulling method by applying a magnetic field, since the crystal material liquid is held in a stationary state and stabilized by applying a magnetic field, it is difficult to apply the above-mentioned rotational pulling method to this method. This rotation is undesirable, and as the temperature increases and decreases due to this rotation, rotational growth streaks are generated in the pulled and grown crystal. Therefore, in such a crystal pulling method, particularly in a crystal pulling method by applying a magnetic field, it is desirable to avoid rotational pulling of the crystal. However, in reality,
The heating means in this type of pulling device is such that heaters are arranged around the crucible in which the crystal material liquid is stored, for example, in a zigzag pattern along the axis of the crucible, and continuously so as to cover the entire outer periphery of the crucible. It consists of being done. That is, the heating means is integrally constructed around the entire circumference, and the thermal center is likely to shift, and since it is impossible to correct the thermal center if it shifts, it is necessary to grow a crystal with a perfect circular cross section. This rotation has become indispensable.

本発明はこのような欠点を回避して、真円断面
を有する結晶を回転による成長縞を生じさせるこ
となく育成することのできる結晶引上装置を提供
するものである。
The present invention avoids these drawbacks and provides a crystal pulling apparatus that can grow crystals having a perfectly circular cross section without producing growth stripes due to rotation.

第1図及び第2図を参照して本発明による結晶
引上装置の一例を説明する。図中1は本発明装置
を全体として示す。2は結晶材料の特に電気伝導
性を有する融液又は溶液3、例えばシリコン融液
が収容された容器、例えば石英るつぼを示す。こ
の容器2の外周には、加熱手段4が配置される。
An example of a crystal pulling apparatus according to the present invention will be explained with reference to FIGS. 1 and 2. 1 in the figure shows the apparatus of the present invention as a whole. 2 designates a container, for example a quartz crucible, in which a melt or solution 3 of a crystalline material, in particular electrically conductive, is accommodated, for example a silicon melt. A heating means 4 is arranged around the outer periphery of this container 2 .

加熱手段4の外側には必要に応じて例えば円筒
状の熱遮蔽体、或いは水冷等によつて冷却される
ジヤケツト6が配置され、その外側に永久磁石、
或には電磁石より成る例えば直流磁場発生手段7
が配置される。8は単結晶シードで、9はその引
上げチヤツクである。
Outside the heating means 4, for example, a cylindrical heat shield or a jacket 6 cooled by water cooling is arranged as required, and a permanent magnet,
Alternatively, for example, a DC magnetic field generating means 7 consisting of an electromagnet
is placed. 8 is a single crystal seed, and 9 is its pulling chuck.

本発明においては、加熱手段4を、容器2の軸
心、したがつてシード8の引上軸を中心にその円
周方向に関して等角間隔に等分割され、夫々独立
に制御される発熱体51,52,53………によ
つて構成される。図示の例では、等ピツチをもつ
て配置された8個の発熱体すなわちヒーター5
1,52………58によつて加熱手段4を構成す
るようにした場合で、各発熱体51,52……5
8は、夫々例えば容器2の周面に沿つてその軸心
に沿う方向にジグザグにパターンをもつて配置さ
れた構成となし得る。
In the present invention, the heating means 4 is divided into equal angular intervals in the circumferential direction around the axis of the container 2 and therefore the pulling axis of the seeds 8, and heating elements 51 are each independently controlled. , 52, 53...... In the illustrated example, eight heating elements or heaters 5 are arranged at equal pitches.
1, 52...58 constitute the heating means 4, and each heating element 51, 52...5
8 may be arranged, for example, in a zigzag pattern along the circumferential surface of the container 2 in a direction along its axis.

一方、容器2内では、加熱手段4の各発熱体5
1,52,53………58に対応して、夫々温度
を検出する素子、例えば熱電対11,12,13
………18を、容器2の軸心に対して同一円周上
において、各発熱体51,52,53……58に
対向して各発熱体51,52,53………58の
配置角間隔と等しい角間隔をもつて配置する。
On the other hand, inside the container 2, each heating element 5 of the heating means 4
Elements for detecting temperature, such as thermocouples 11, 12, 13, correspond to 1, 52, 53...58, respectively.
...... 18 on the same circumference with respect to the axis of the container 2, the arrangement angle of each heating element 51, 52, 53... 58, facing each heating element 51, 52, 53... 58 Arrange with angular spacing equal to spacing.

そして、これら各温度検出素子11,12,1
3………18によつて検出された温度に基いて
夫々対応する発熱体51,52,53………58
への通電電流を制御して、これら発熱体51,5
2,53………58より成る加熱手段4の熱中心
が単結晶引上育成に際して常時、容器2の中心軸
上に存するように制御する。
And each of these temperature detection elements 11, 12, 1
3. Based on the temperature detected by 18, the corresponding heating elements 51, 52, 53...58, respectively.
These heating elements 51, 5
2, 53, . . . 58 so that the thermal center of the heating means 4 always lies on the central axis of the container 2 during single crystal pulling and growth.

加熱手段4の通電ヒーター5への通電はリツプ
ル分が4%以下に抑えられたほぼ直流の電流、或
いは1kHz以上の交流又は脈流とする。このよう
な通電電流とするときは、加熱手段4が磁場との
作用で生ずる不要の振動を回避できることを確め
た。
Electricity is supplied to the energizing heater 5 of the heating means 4 using a substantially direct current with a ripple component suppressed to 4% or less, or an alternating current or pulsating current of 1 kHz or more. It has been confirmed that when such a current is applied, unnecessary vibrations caused by the interaction of the heating means 4 with the magnetic field can be avoided.

上述の本発明装置において、結晶の引上げ育成
を行うには、磁場発生手段7によつて、結晶材料
液3に、例えば4000G(ガウス)の磁場を与え、
この状態で、シード8を、容器2の軸心、すなわ
ち加熱手段4の熱中心軸上において、容器2内の
結晶材料液3の液面に接触させ、これより回転さ
れることなく、その結晶引上育成を行う。この本
発明装置によつて育成された結晶は、その引上げ
を回転しない状態で行うにもかかわらず、真円断
面円を有し、更に引上げに際しての回転を回避し
たことと、磁場印加によつて結晶材料液3の粘性
を高めて対流や振動の発生を効果的に抑制したこ
とが相俟つて、温度変動や機械振動、更に、不純
物混入による結晶縞などの結晶欠陥が少ない良質
の結晶育成ををすることができた。すなわち、本
発明においては、加熱手段4を、その軸心を中心
とする円周方向に関して複数部分の独立して制御
が可能とされた発熱体51,52,53……58
によつて構成してその熱中心が所定の位置にある
ようにしたことと、その結晶引上げを回転しない
で行うようにしたことによつて、いわばマクロ的
(巨視的)な温度変動を回避できる、磁場の印加
によつていわばミクロ的(微視的)な温度変動を
回避できるのである。
In the apparatus of the present invention described above, in order to pull and grow a crystal, a magnetic field of, for example, 4000 G (Gauss) is applied to the crystal material liquid 3 by the magnetic field generating means 7,
In this state, the seed 8 is brought into contact with the surface of the crystal material liquid 3 in the container 2 on the axis of the container 2, that is, on the thermal center axis of the heating means 4, and the crystal material is grown without being rotated. Perform upbringing and training. The crystal grown by the apparatus of the present invention has a perfect circular cross section even though the crystal is pulled without rotation. This combined effect of increasing the viscosity of the crystal material liquid 3 and effectively suppressing the occurrence of convection and vibrations allows for high-quality crystal growth with fewer crystal defects such as temperature fluctuations, mechanical vibrations, and crystal stripes caused by impurity contamination. I was able to do that. That is, in the present invention, the heating means 4 includes heating elements 51, 52, 53, .
By structuring the crystal so that its thermal center is in a predetermined position, and by pulling the crystal without rotating it, it is possible to avoid macroscopic temperature fluctuations. By applying a magnetic field, so to speak, microscopic temperature fluctuations can be avoided.

第3図は、容器2内における結晶材料3の一定
点における磁場を印加した場合、しない場合の温
度変動を装定した結果を示すもので、同図におい
て時間領域A及びDは、磁場を印加しない状態、
時間領域B及びCは夫々4100G、及び1800Gの磁
場を印加した状態で、これより明らかなように磁
場を与えた場合は、与えない場合に比し、温度変
動が激減することがわかる。
Figure 3 shows the results assuming temperature fluctuations when a magnetic field is applied and when a magnetic field is not applied at a certain point of the crystal material 3 in the container 2. In the figure, time domains A and D indicate when the magnetic field is applied. state of not doing,
In time domains B and C, magnetic fields of 4100 G and 1800 G are applied, respectively, and as is clear from this, when a magnetic field is applied, the temperature fluctuation is drastically reduced compared to when no magnetic field is applied.

また、磁場印加によつて、育成された結晶は、
容器2の構成成分の混入による純度の低下と、こ
れによる結晶欠陥の発生を減ずることができる
が、これは、次の理由によるものと思われる。す
なわち、例えば容器2が石英るつぼである場合、
これの構成成分の酸素が、溶液3に溶解し、これ
が育成された結晶の純度低下を招来するが、この
不純物の混入は、容器2内における結晶材料溶液
3の移動、特に対流による移動に大きく依存する
ものであることを究明した。更に述べるなら、容
器2内に結晶材料溶液を収容する場合、容器2の
構成成分は、この容器2に接する結晶材料溶液へ
と溶解するが、この場合、容器2内における熱対
流が比較的激しく生じていると、容器と接触する
部分に容解された容器成分が、熱対流によつて速
やかに他部へと運び去られ、これによつて、結晶
材料液の容器成分の溶解濃度は速やかに一様化さ
れ、これに伴つて、結晶材料液の容器との接触部
における容器成分の溶解濃度が低められるので、
容器成分の結晶材料液への溶解が生じ易くなり、
その溶解は、飽和溶解度ないしはこれに近い状態
まで高くなる。このように、溶液3の対流が比較
的激しい場合は、容器成分の、この容器と接する
液中への溶解が著しく生じ、また、この成分の液
中における他部への移動速度が大となるので、こ
れに伴つてこれより成長される結晶中の容器成分
による不純物が高められる。ところが、本発明方
法においては、上述したように、結晶材料液に磁
場を与え、これによつて結晶材料液の対流を抑制
させることがでるので、上述した溶液1への容器
成分の混入を減ずることができ、これに伴つて成
長結晶の純度を高めることができるものである。
In addition, crystals grown by applying a magnetic field are
The decrease in purity due to contamination of the constituent components of the container 2 and the occurrence of crystal defects due to this can be reduced, and this is believed to be due to the following reasons. That is, for example, when the container 2 is a quartz crucible,
Oxygen, which is a component of this, dissolves in the solution 3, which causes a decrease in the purity of the grown crystal, but the contamination of this impurity has a large effect on the movement of the crystal material solution 3 in the container 2, especially the movement due to convection. I found out that it depends. More specifically, when the crystal material solution is stored in the container 2, the constituent components of the container 2 dissolve into the crystal material solution in contact with the container 2, but in this case, the thermal convection within the container 2 is relatively intense. When this happens, the container components dissolved in the part that comes into contact with the container are quickly carried away to other parts by thermal convection, and as a result, the dissolved concentration of the container components in the crystal material liquid quickly decreases. As a result, the dissolved concentration of the container components at the contact area of the crystal material liquid with the container is reduced.
Container components are more likely to dissolve into the crystal material liquid,
Its dissolution increases to or near saturation solubility. In this way, when the convection of the solution 3 is relatively strong, the components of the container are significantly dissolved into the liquid that is in contact with this container, and the speed at which these components move to other parts of the liquid becomes large. Therefore, impurities due to the container components in the crystal grown from this increase. However, in the method of the present invention, as described above, a magnetic field is applied to the crystal material liquid, thereby suppressing the convection of the crystal material liquid, thereby reducing the mixing of container components into the solution 1 described above. This makes it possible to increase the purity of the grown crystal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々本発明による結晶引上
装置の一例の上面図及び断面図、第3図は結晶材
料液の温度変動の測定曲線図である。 1は本発明による結晶引上装置、3は結晶材料
の融液又は溶液、2はその容器、4は加熱手段、
51,52………58はその発熱体、7は磁場発
生手段である。
1 and 2 are a top view and a sectional view, respectively, of an example of a crystal pulling apparatus according to the present invention, and FIG. 3 is a measurement curve diagram of temperature fluctuations of a crystal material liquid. 1 is a crystal pulling device according to the present invention, 3 is a melt or solution of a crystal material, 2 is a container thereof, 4 is a heating means,
51, 52...58 are heating elements thereof, and 7 is a magnetic field generating means.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶材料の融液又は溶液が収容される容器
と、該容器の外周側部に該容器の垂直方向に沿つ
て互いに分割され独立に制御されて上記融液又は
溶液の水平方向の温度分布を均一にする発熱体
と、磁場を印加する手段とを具備する結晶引上装
置。
1. A container in which a melt or solution of a crystalline material is stored, and a container on the outer peripheral side of the container that is divided from each other along the vertical direction of the container and independently controlled to control the horizontal temperature distribution of the melt or solution. A crystal pulling device comprising a heating element for uniformity and means for applying a magnetic field.
JP857680A 1979-09-20 1980-01-28 Device for pulling up crystal Granted JPS56104795A (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP857680A JPS56104795A (en) 1980-01-28 1980-01-28 Device for pulling up crystal
GB8029356A GB2059932B (en) 1979-09-20 1980-09-11 Solidification processes
FR8019942A FR2465802B1 (en) 1979-09-20 1980-09-16 PROCESS FOR SOLIDIFYING A FLUID SUCH AS A SILICON BATH AND PROCESS OBTAINED
DE19803035267 DE3035267A1 (en) 1979-09-20 1980-09-18 METHOD FOR STRENGTHENING LIQUID MATERIALS
IT24803/80A IT1141064B (en) 1979-09-20 1980-09-19 SOLIDIFICATION PROCESS
CA000360638A CA1177367A (en) 1979-09-20 1980-09-19 Process for solidification
NL8005228A NL8005228A (en) 1979-09-20 1980-09-19 METHOD FOR PROCESSING THE TRANSITION IN FIXED STATE.
SU2992247A SU1258329A3 (en) 1979-09-20 1980-09-19 Method of growing silicon crystals
SE8006569A SE8006569L (en) 1979-09-20 1980-09-19 STELNINGSFORFARANDE
AT0473180A AT398582B (en) 1979-09-20 1980-09-22 CRYSTAL GROWING METHOD
US06/339,065 US4619730A (en) 1979-09-20 1982-01-13 Process for solidification in a magnetic field with a D.C. heater
US06/562,015 US4622211A (en) 1979-09-20 1983-12-16 Apparatus for solidification with resistance heater and magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP857680A JPS56104795A (en) 1980-01-28 1980-01-28 Device for pulling up crystal

Publications (2)

Publication Number Publication Date
JPS56104795A JPS56104795A (en) 1981-08-20
JPS6121195B2 true JPS6121195B2 (en) 1986-05-26

Family

ID=11696852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP857680A Granted JPS56104795A (en) 1979-09-20 1980-01-28 Device for pulling up crystal

Country Status (1)

Country Link
JP (1) JPS56104795A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983977U (en) * 1982-11-26 1984-06-06 日本電信電話株式会社 crystal manufacturing equipment
JPH07105157B2 (en) * 1987-09-10 1995-11-13 日本電気株式会社 Redundant memory cell use decision circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113339A (en) * 1977-03-14 1978-10-03 Kokusai Electric Co Ltd Heater for fusing semiconductor or metal
JPS5480284A (en) * 1977-12-01 1979-06-26 Wacker Chemitronic Method of manufacturing high purity semiconductor material and high purity metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113339A (en) * 1977-03-14 1978-10-03 Kokusai Electric Co Ltd Heater for fusing semiconductor or metal
JPS5480284A (en) * 1977-12-01 1979-06-26 Wacker Chemitronic Method of manufacturing high purity semiconductor material and high purity metal

Also Published As

Publication number Publication date
JPS56104795A (en) 1981-08-20

Similar Documents

Publication Publication Date Title
US3335084A (en) Method for producing homogeneous crystals of mixed semiconductive materials
JPH01153589A (en) Pulling of single crystal and apparatus therefor
US4622211A (en) Apparatus for solidification with resistance heater and magnets
JPH0244799B2 (en) KETSUSHOSEICHOHOHO
JP3086850B2 (en) Method and apparatus for growing single crystal
JPS62256787A (en) Method and device for growing single crystal
JPS5850953B2 (en) crystal growth method
JPS6121195B2 (en)
US3232745A (en) Producing rod-shaped semiconductor crystals
JPS6027684A (en) Apparatus for producing single crystal
JPH10120485A (en) Single crystal production apparatus
JPS621357B2 (en)
JPH10287488A (en) Pulling up of single crystal
US3268301A (en) Method of pulling a semiconductor crystal from a melt
JPS5850951B2 (en) Crystal growth method and crystal growth equipment used for this method
JP2584461B2 (en) Single crystal pulling method and apparatus
JPS6153188A (en) Method of growing crystal
JPS6270286A (en) Apparatus for producting single crystal
JPS6033297A (en) Pulling device for single crystal semiconductor
JP2623465B2 (en) Single crystal pulling device
JPS63215587A (en) Production of single crystal
JPS62256791A (en) Device for growing single crystal
JPS61222985A (en) Production unit for single crystal
JPS63144189A (en) Apparatus for liquid epitaxy
JPH0633220B2 (en) Single crystal manufacturing equipment