JPS62122179A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPS62122179A
JPS62122179A JP60262116A JP26211685A JPS62122179A JP S62122179 A JPS62122179 A JP S62122179A JP 60262116 A JP60262116 A JP 60262116A JP 26211685 A JP26211685 A JP 26211685A JP S62122179 A JPS62122179 A JP S62122179A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
protrusions
conductive electrode
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60262116A
Other languages
Japanese (ja)
Inventor
Toshio Takemoto
竹本 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60262116A priority Critical patent/JPS62122179A/en
Publication of JPS62122179A publication Critical patent/JPS62122179A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To increase the shortcircuit current and release voltage while promoting the curve factors secondarily thereby improving the photoelectric conversion efficiency by forming multiple protrusions on a substrate and on the protrusions a conductive electrode is formed, the surface opposite to the substrate being provided with fine irregularities. CONSTITUTION:Multiple protrusions are formed on the surface of a metallic substrate 11 while an insulating layer 9 with even film thickness is formed on the protrusions to reduce the reflecting power of light on the surface of a transparent conductive layer 16. Furthermore, a conductive electrode 12 with even film thickness is formed on the insulating layer 9 while the surface of conductive electrode 12 reverse to the surface facing the metallic substrate 11 is made rugged i.e. formed into a surface with fine irregularities. Resultantly, the surface of conductive electrode 12 is provided with two kinds of irregularities comprising the protrusions 18 of metallic substrate 11 and the fine irregularities 19 of said electrode 12 itself. Through these procedures, the shortcircuit current can be increased while promoting the curve factors thereby improving the photoelectric conversion efficiency.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アモルファスシリコンを用いた太陽電池など
に有利に用いられる光電変換素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a photoelectric conversion element that is advantageously used in solar cells using amorphous silicon.

背景技術 典型的な先行技術は、第7図に示されている。Background technology A typical prior art is shown in FIG.

この光電変換素子1は、ステンレス銅などから成る金属
基板2上に、P型アモル7アスンリフン層3と、■型ア
モル7Tスンリフン層4と、N型アモルファスシリコン
層5とがこの順序で接合されてvt成される。N型アモ
ルファスンリフンWJ5」二には、インノウム、スズ酸
化膜などから成る透明導電JvI6と、上部電極8とが
真空蒸着などによってそれぞれ形成される。透明導電層
6側から入射される光は、I型アモルファスシリコン層
4内で光電変換され、発生した電流は、金属基板2と上
部電極8とに接続される図示しない外部の負荷に供給さ
れ、こうして太陽電池としての機能が実現される。
This photoelectric conversion element 1 has a P-type amorphous 7T amorphous layer 3, a ■-type amorphous 7T amorphous silicon layer 4, and an N-type amorphous silicon layer 5 bonded in this order onto a metal substrate 2 made of stainless copper or the like. vt will be completed. A transparent conductive layer JvI6 made of innoum, tin oxide, etc., and an upper electrode 8 are formed on the N-type amorphous silicon layer WJ5''2 by vacuum evaporation or the like. The light incident from the transparent conductive layer 6 side is photoelectrically converted within the I-type amorphous silicon layer 4, and the generated current is supplied to an external load (not shown) connected to the metal substrate 2 and the upper electrode 8. In this way, the function as a solar cell is realized.

このような先行技術では、透明導?11層6の表面が平
坦であるために光の反射率が大きく、したがって入射光
量を増加することができない。このrこめI型アモルフ
ァスシリコン層・tにおける尤の吸収量の増加を図るこ
とができず、短絡電流および曲線因子を改善することが
できない。
With such prior art, transparent conductor? Since the surface of the 11 layer 6 is flat, the reflectance of light is high, and therefore the amount of incident light cannot be increased. It is not possible to increase the amount of absorption in this type I amorphous silicon layer, and it is not possible to improve the short circuit current and fill factor.

発明が解決しようとする問題点 本発明の目的は、」二連の技術的課題を解決し、短絡電
流、開放電圧の増加を図り、副次的に曲線因子の改善を
も図り、これによって光電変換効率を向上させるように
した光電変換素子を提供することである。
Problems to be Solved by the Invention The purpose of the present invention is to solve two technical problems, to increase the short-circuit current and open circuit voltage, and to improve the fill factor as a side effect. An object of the present invention is to provide a photoelectric conversion element with improved conversion efficiency.

問題点を解決するための手段 本発明は、多数の突起を有する基板と、基板の前記突起
上に形成され、基板とは反対側の表面が微細な凹凸に形
成されている導電性電極と、 前記導電性電極上に形成される光電変換半導体層と、 前記光電変換半導体層上に形成される透明導電層とを含
むことを特徴とする光電変換素子である。
Means for Solving the Problems The present invention provides a substrate having a large number of protrusions, a conductive electrode formed on the protrusions of the substrate, and having a surface opposite to the substrate having fine irregularities; A photoelectric conversion element comprising: a photoelectric conversion semiconductor layer formed on the conductive electrode; and a transparent conductive layer formed on the photoelectric conversion semiconductor layer.

作  用 本発明に従えば、基板に多数の突起を形成し、その突起
上に基板とは反対側の表面が徽細な凹凸に形成されてい
る導電性電極を形成することによって、表面反射率を下
げ、1層での吸収率を高めて光電変換効率の向上を図る
ことができる。
According to the present invention, a large number of protrusions are formed on a substrate, and a conductive electrode whose surface opposite to the substrate is formed with fine irregularities is formed on the protrusions, thereby increasing the surface reflectance. The photoelectric conversion efficiency can be improved by lowering the absorption rate in one layer and increasing the absorption rate in one layer.

実施例 第1図は、本発明に従う光電変換素子10の断面図であ
る。この光電変換素子10は、基本的には、従来の光電
変換素子1(第7図参照)に類似した構成を有する。す
なわちステンレス鋼などから成る金属基板11上には、
ガラスなどから成る絶縁層つと、アルミニウム(A))
などから成る導電性電極12とがこの順序で形成される
。導電性電極12上lこは、光電変換半導体層としての
P型アモルファスシリコン層13と、I型アモルファス
シリコン層14と、N型アモルファスシリコ7層15と
がこの順序で接合される。N型アモルファスシリコ2層
15上には、ITOなどから成る透明導電Jr!i16
と、図示しない上部電極とが真空蒸着などによってそれ
ぞれ形成される。
Embodiment FIG. 1 is a sectional view of a photoelectric conversion element 10 according to the present invention. This photoelectric conversion element 10 basically has a configuration similar to the conventional photoelectric conversion element 1 (see FIG. 7). That is, on the metal substrate 11 made of stainless steel or the like,
Insulating layer made of glass etc., aluminum (A))
A conductive electrode 12 consisting of the following is formed in this order. On the conductive electrode 12, a P-type amorphous silicon layer 13 as a photoelectric conversion semiconductor layer, an I-type amorphous silicon layer 14, and an N-type amorphous silicon 7 layer 15 are bonded in this order. On the N-type amorphous silicon 2 layer 15 is a transparent conductive layer made of ITO or the like. i16
and an upper electrode (not shown) are formed by vacuum evaporation or the like.

本発明では、透明導1!WJ1Gの表面の光の反射率を
低下させるために、金属基板11の表面に多数の突起1
8を形成し、その突起18上に絶縁層9を均一な膜厚で
形成し、さらに絶縁N9上に導電性電極12を均一な膜
厚で形成して、その導電性電極12の金属基板11に臨
む面とは反対側の面を粗面化、すなわち微細な凹凸に形
成するものである。したがって導電性電極12の表面に
は、金属基板11の突起18と、導電性電極12自体の
微細な凹凸1つとを合成した二種類の凹凸20が現れる
こととなる。このように透明導電W116の表面に二種
類の凹凸20を形成しすることによって、透明導電M4
16の表面の光の反射率が低下し、■型アモルファスシ
リコン層14における光の吸収量を高めることができ、
これによって後述するように短絡電流の増加および曲線
因子を改善し、光電変換効率の向上を図ることができる
In the present invention, transparent conductor 1! In order to reduce the light reflectance on the surface of the WJ1G, a large number of protrusions 1 are provided on the surface of the metal substrate 11.
8, an insulating layer 9 is formed with a uniform thickness on the protrusion 18, a conductive electrode 12 is formed with a uniform thickness on the insulating layer 9, and a metal substrate 11 of the conductive electrode 12 is formed. The surface opposite to the surface facing the surface is roughened, that is, it is formed into fine irregularities. Therefore, two types of irregularities 20 appear on the surface of the conductive electrode 12, which are a combination of the projections 18 of the metal substrate 11 and one fine irregularity of the conductive electrode 12 itself. By forming two types of unevenness 20 on the surface of the transparent conductive W116 in this way, the transparent conductive M4
The light reflectance of the surface of the layer 16 is reduced, and the amount of light absorbed by the ■-type amorphous silicon layer 14 can be increased.
This makes it possible to increase the short-circuit current and improve the fill factor, as will be described later, and to improve the photoelectric conversion efficiency.

金属基板11上に形成される多数の突起18は、三角錐
形状にそれぞれ形成されており、各ピッチ幅−e 1は
、たとえば0.6μIffに選ばれ、また各高さノ2は
、たとえば0.2μmに選ばれる。このような突起18
を多数形成するには、圧延ローラ (図示せず)の表面
に多数の突起を予め形成しておき、この圧延ローラを金
属基板11の表面を圧接した状態で回転走行させる方法
がある。
A large number of protrusions 18 formed on the metal substrate 11 are each formed in the shape of a triangular pyramid, each pitch width -e1 is selected to be, for example, 0.6 μIff, and each height No.2 is selected to be, for example, 0. .2 μm is selected. Such a protrusion 18
In order to form a large number of protrusions, there is a method in which a large number of protrusions are formed in advance on the surface of a rolling roller (not shown), and the rolling roller is rotated while being pressed against the surface of the metal substrate 11.

こうして金属基板11上に多数の突起18を形成した後
、その突起形成面に全面に亘ってガラスを均一な膜厚で
形成して絶縁層9を形成する。その後、真空蒸着やスパ
ッタ法などにより、絶縁層9上にアルミニウム(A))
を均一な膜厚で形成する。さらlこ蒸着速度と、蒸着時
の基板温度を最適化し、導電性fi[12上に粒状のア
ルミニウムを多数形成する。このアルミニウムの多数の
粒は、導電性電極12の微細な凹凸19に相当するもの
である。
After a large number of protrusions 18 are thus formed on the metal substrate 11, an insulating layer 9 is formed by forming glass with a uniform thickness over the entire surface on which the protrusions are formed. After that, aluminum (A)) is applied onto the insulating layer 9 by vacuum evaporation or sputtering.
Form a uniform film thickness. A large number of granular aluminum particles are formed on the conductive fi[12] by optimizing the evaporation rate and substrate temperature during evaporation. This large number of aluminum grains corresponds to the fine irregularities 19 of the conductive electrode 12.

このように微細な凹凸1つを有する導電性電極12を形
成した後、導電性電極12上にグロー放電によるプラズ
マCV D  (CI+cmical V al)ou
r Depos i L i on )法によって、P
型アモルファスシリコン層13と、I型アモルファスシ
リコン層14と、N型アモルファスシリコ7層15とを
この順序でそれぞれ均一な膜厚で形成する。さらにN型
アモルファスシリコ2層15上に、真空蒸着などによっ
てITOなどから成る透明導電層16を均一な膜厚で形
成する。この透明導電層16の表面には、金属基板11
の多数の突起18と導電性電極12の微細な凹凸19と
を合成した二i類の凹凸20の形状がそのまま現れるこ
ととなる。したがって結果的には透明導電層16の表面
に二種類の凹凸20を形成したと同様な効果を得ること
ができる。
After forming the conductive electrode 12 having one fine unevenness in this way, plasma CVD (CI+cmical V al)ou by glow discharge is applied on the conductive electrode 12.
rDepos iLion) method, P
A type amorphous silicon layer 13, an I type amorphous silicon layer 14, and an N type amorphous silicon 7 layer 15 are formed in this order to each have a uniform thickness. Furthermore, a transparent conductive layer 16 made of ITO or the like is formed to have a uniform thickness on the N-type amorphous silicon two layer 15 by vacuum evaporation or the like. A metal substrate 11 is provided on the surface of this transparent conductive layer 16.
The shape of the unevenness 20 of type 2i, which is a combination of the large number of protrusions 18 and the fine unevenness 19 of the conductive electrode 12, appears as it is. Therefore, as a result, the same effect as when two types of unevenness 20 are formed on the surface of the transparent conductive layer 16 can be obtained.

このように二種類の凹凸20が現れる透明導電層16に
、第1図に示される矢符A−Dからの光が照射した場合
を想定すると、透明導電性16の陵部23を通る矢符A
、Dからの光は、そのまま各アモルファスシリコン層1
4〜16内を直進する。また透明導電性16の傾斜面2
4.25に照射する矢符B、Cからの光の一部分は、屈
折して各アモルファスシリコン層14〜16内に進入す
るとともに、残余の光は隣接する傾斜部24,25にそ
れぞれ乱反射してがなりの光が各アモルファスシリコン
層14〜16内に進入する。この上う1こ矢符A−Dか
らの光は、6L反射、屈折および直進によって、後述す
るようにかなりの光が各アモルファスシリコンM14〜
16内に吸収されることができる。
Assuming that the transparent conductive layer 16 in which two types of unevenness 20 appear in this way is irradiated with light from the arrows A-D shown in FIG. A
, D directly passes through each amorphous silicon layer 1.
Go straight between 4 and 16. Also, the inclined surface 2 of the transparent conductive material 16
4. A portion of the light from arrows B and C irradiated to 25 is refracted and enters each of the amorphous silicon layers 14 to 16, and the remaining light is diffusely reflected by the adjacent inclined portions 24 and 25, respectively. A narrow beam of light enters each amorphous silicon layer 14-16. The light from the upper arrows A-D is reflected by 6L, refracted, and goes straight, and as described later, a considerable amount of light is transmitted to each amorphous silicon M14 to M14.
16.

第2図を参照して、光が透明導電層16の傾斜部24に
入射角度θ1で入射した場合を想定する。
Referring to FIG. 2, assume that light is incident on the inclined portion 24 of the transparent conductive layer 16 at an incident angle θ1.

このときの尤の全反射率R(^、θ)は、第1式で示さ
れるとおりである。
The expected total reflectance R(^, θ) at this time is as shown by the first equation.

R(λ、θ)= R1(λ、θ1 )X R2(λ、θ
2)×R3(人、θ3)     ・・・(1)ここで
λは入射光の波長を表わし、θ1.θ2゜θ3は入射角
度を表わす。
R(λ, θ) = R1(λ, θ1)X R2(λ, θ
2)×R3 (person, θ3) (1) Here, λ represents the wavelength of the incident light, and θ1. θ2° θ3 represents the incident angle.

!@3図を参照して、反射率のR(λ、θ)は、第2式
で求めることができる。
! Referring to Figure @3, the reflectance R (λ, θ) can be determined using the second equation.

・・・(2) ここでrj+ra+δは、第3式〜第5式で示されると
おりである。
...(2) Here, rj+ra+δ is as shown in the third to fifth equations.

また光電変換素子10の短絡電流Iは、入射光量に比例
することから次の第6式が成立する。
Further, since the short circuit current I of the photoelectric conversion element 10 is proportional to the amount of incident light, the following formula 6 holds true.

■(θ)=ΣS(λ)x L (θ)X(1−R(λ、
θ)〕・・・(6) ここでS(λ)は、光電変換素子10の収集効率を表わ
し、L(λ)は、たとえば白色蛍光灯などの光のスペク
トルを表わす。光電変換素子10の収集効率S(λ)は
、tpJ4図のライン11で示されるとおりであり、光
のスペクトルL(λ)は、ラインノ2で示されるとおり
である。
■(θ)=ΣS(λ)x L(θ)X(1-R(λ,
θ)]...(6) Here, S(λ) represents the collection efficiency of the photoelectric conversion element 10, and L(λ) represents the spectrum of light from, for example, a white fluorescent lamp. The collection efficiency S(λ) of the photoelectric conversion element 10 is as shown by line 11 in the tpJ4 diagram, and the light spectrum L(λ) is as shown by line 2.

以上のことがらITOから成る透明導電11Gの厚みが
700人、屈折率n=1.6  の場合、光電変換素子
10の短絡電流Iは、第5図の参照符!3で示されると
おりである。第5図から明らかなように透明導電層16
の入射角度θを小さくすると、透明導電層16の表面の
光反射率が小さくなり、これによってP型、I型および
N型アモルファスシリコン層14〜16内への入射光量
が増加することとなり、短絡電流Iを約13%程度向上
することが期待される。
Based on the above, when the thickness of the transparent conductor 11G made of ITO is 700 mm and the refractive index n=1.6, the short circuit current I of the photoelectric conversion element 10 is calculated as shown in FIG. As shown in 3. As is clear from FIG. 5, the transparent conductive layer 16
When the incident angle θ of It is expected that the current I will be improved by about 13%.

本発明者の実験によれば、金属基板11の多数の突起1
8および導電性電極12の微細な凹凸19とを合成した
凹凸20上に膜厚100人のP型アモル77スシリコン
層13と、nrx厚6400人のI型アモルファスシリ
コン層14と、膜1780人のN型アモルファス293
2層16と、膜7700人の透明導電層16とを形成し
た場合において、I型アモルファスシリコン層15内に
吸収される光量は、従来のように金属基板が平坦状であ
る場合と比較して、本件光電変換素子10ではその吸収
光量が約3%程度向上することが確認された。これは導
電性電極12における二種類の凹凸20により、入射光
に対して■型アモルファスシリコン層15内の光路長が
長くなったことに起因する。またP型アモルファスシリ
コン層14と、N型アモルファスシリコンHA 16と
の中間がI ’Fアモルファスシリコン層15であるこ
とから電気的には必ずしもその厚みは6400人ではな
く、第1図の参照符D1で示されるように最小値が約5
400人となり、約】5タロ膜厚が薄くなっていること
が3!!!解される。これによって光電変換素子−10
の曲線因子を改善することができる。このように短絡電
流が増加し、さらに曲線因子が改−gさrしることによ
って、光電変換素子10の光電変換効率を向上すること
ができる。
According to the inventor's experiments, a large number of protrusions 1 on the metal substrate 11
8 and the fine irregularities 19 of the conductive electrode 12, a P-type amorphous silicon layer 13 with a thickness of 100 layers, an I-type amorphous silicon layer 14 with a nrx thickness of 6400 layers, and a film of 1780 layers. N-type amorphous 293
When two layers 16 and a transparent conductive layer 16 of 7,700 layers are formed, the amount of light absorbed in the I-type amorphous silicon layer 15 is smaller than when the metal substrate is flat as in the conventional case. It was confirmed that the amount of absorbed light was improved by about 3% in the photoelectric conversion element 10 of the present invention. This is because the two types of irregularities 20 on the conductive electrode 12 lengthen the optical path length in the ■-type amorphous silicon layer 15 for the incident light. Furthermore, since the I'F amorphous silicon layer 15 is located between the P-type amorphous silicon layer 14 and the N-type amorphous silicon HA 16, its thickness is not necessarily 6400 mm electrically, and the reference mark D1 in FIG. The minimum value is about 5 as shown in
There are 400 people, and the thickness of the taro film has become thinner! ! ! be understood. As a result, photoelectric conversion element-10
can improve the fill factor of By increasing the short circuit current and further improving the fill factor in this manner, the photoelectric conversion efficiency of the photoelectric conversion element 10 can be improved.

本発明の池の実施例として、第6図に示されるように、
金属基板11の表面に直接、導電性?11極]2を形成
し、ガラスから成る絶縁層9を省略するような構成とし
てらよい。
As an embodiment of the pond of the present invention, as shown in FIG.
Conductive directly on the surface of the metal substrate 11? It is preferable to form a structure in which 11 poles] 2 are formed and the insulating layer 9 made of glass is omitted.

曲記実施例では、圧延ローラを用いて金属基板11の表
面に突起18を形成し、また蒸着速度や蒸着1.7の基
板温度の最適化によって導電性電極12に多数の凹凸1
9を形成するようにしたけれども、これらの方法に限定
されず、他の方法を用いて突起18および凹凸19を形
成するようにしてもよい。
In this embodiment, protrusions 18 are formed on the surface of the metal substrate 11 using a rolling roller, and a large number of irregularities 1 are formed on the conductive electrode 12 by optimizing the deposition rate and the substrate temperature during deposition 1.7.
Although the projections 18 and the projections 19 are formed in this embodiment, the projections 18 and the unevenness 19 are not limited to these methods and may be formed using other methods.

本発明に従う光電変換素子は、太陽電池に限定されず、
そのI11センサなと広範囲の技術分野:こ亘って実施
されることができる。
The photoelectric conversion element according to the present invention is not limited to solar cells,
The I11 sensor can be implemented in a wide range of technical fields:

ゴ111ノ果 以上のように本発明によれば、基板に多数の突起を形成
し、その突起上に基板とは反対側の表面が微1慣な凹凸
に形成されている導電性電極を形成することによって、
丸の吸収率を高めることができ、これによって短絡電流
の増加および曲線因子の改善を図って光電変換効率を向
上させることができる。
As described above, according to the present invention, a large number of protrusions are formed on a substrate, and a conductive electrode whose surface opposite to the substrate has minute irregularities is formed on the protrusions. By,
It is possible to increase the absorption rate of the circle, thereby increasing the short circuit current and improving the fill factor, thereby improving the photoelectric conversion efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、t52図および第
3図は透明導電層16の光反射率を説明するための図、
Pt54図は波長と収集効率との関係を示すグラフ、第
5図は入射角度と短絡電流とのI’AI係を示すグラフ
、第6図は本発明の他の実施例の断面図、第7図は先行
技術を説明するための図である。 1.10・・・光電変換素子、2,11・・・金属基板
、3〜5.13−15・・・アモルファスシリコン層、
12・・・導電性電極、18・・・突起、19.20・
・・凹凸代理人  弁理士 西教 土一部 第1図 第2図 第4図 第7図
FIG. 1 is a cross-sectional view of one embodiment of the present invention, FIG. t52 and FIG. 3 are diagrams for explaining the light reflectance of the transparent conductive layer 16,
Pt54 is a graph showing the relationship between wavelength and collection efficiency, FIG. 5 is a graph showing the I'AI relationship between incident angle and short-circuit current, FIG. 6 is a cross-sectional view of another embodiment of the present invention, and FIG. The figure is a diagram for explaining the prior art. 1.10... Photoelectric conversion element, 2,11... Metal substrate, 3-5.13-15... Amorphous silicon layer,
12... Conductive electrode, 18... Protrusion, 19.20.
...Uneven Agent Patent Attorney Saikyo Do Department Figure 1 Figure 2 Figure 4 Figure 7

Claims (1)

【特許請求の範囲】 多数の突起を有する基板と、 基板の前記突起上に形成され、基板とは反対側の表面が
微細な凹凸に形成されている導電性電極と、 前記導電性電極上に形成される光電変換半導体層と、 前記光電変換半導体層上に形成される透明導電層とを含
むことを特徴とする光電変換素子。
[Scope of Claims] A substrate having a large number of protrusions; a conductive electrode formed on the protrusion of the substrate and having a surface opposite to the substrate having fine irregularities; and a conductive electrode formed on the conductive electrode. A photoelectric conversion element comprising: a photoelectric conversion semiconductor layer formed; and a transparent conductive layer formed on the photoelectric conversion semiconductor layer.
JP60262116A 1985-11-20 1985-11-20 Photoelectric conversion element Pending JPS62122179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262116A JPS62122179A (en) 1985-11-20 1985-11-20 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262116A JPS62122179A (en) 1985-11-20 1985-11-20 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPS62122179A true JPS62122179A (en) 1987-06-03

Family

ID=17371265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262116A Pending JPS62122179A (en) 1985-11-20 1985-11-20 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS62122179A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244509A (en) * 1990-08-09 1993-09-14 Canon Kabushiki Kaisha Substrate having an uneven surface for solar cell and a solar cell provided with said substrate
WO2011114541A1 (en) * 2010-03-15 2011-09-22 シャープ株式会社 Substrate for photoelectric conversion device, photoelectric conversion device using same, method for producing the substrate for photoelectric conversion device, and method for manufacturing the photoelectric conversion device
KR20150142128A (en) * 2014-06-10 2015-12-22 주식회사 지엘테크 Improved absorption of solar light by using a silicon wafer and the silicon wafer solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5244509A (en) * 1990-08-09 1993-09-14 Canon Kabushiki Kaisha Substrate having an uneven surface for solar cell and a solar cell provided with said substrate
WO2011114541A1 (en) * 2010-03-15 2011-09-22 シャープ株式会社 Substrate for photoelectric conversion device, photoelectric conversion device using same, method for producing the substrate for photoelectric conversion device, and method for manufacturing the photoelectric conversion device
KR20150142128A (en) * 2014-06-10 2015-12-22 주식회사 지엘테크 Improved absorption of solar light by using a silicon wafer and the silicon wafer solar cell

Similar Documents

Publication Publication Date Title
US4644091A (en) Photoelectric transducer
KR940010161B1 (en) Solar cell
EP0911884A2 (en) Photoelectric converter and method of manufacturing the same
US20050011549A1 (en) Substrate for solar battery, and solar battery using same
US4931412A (en) Method of producing a thin film solar cell having a n-i-p structure
JPH04127580A (en) Multi-junction type amorphous silicon solar cell
JPH08287969A (en) Photocell
JPS62122179A (en) Photoelectric conversion element
JPH0793447B2 (en) Photoelectric conversion element
JPS61288473A (en) Photovoltaic device
JPS61278171A (en) Thin film photoelectric conversion device
JPS61241983A (en) Photovoltaic device
JPH0583199B2 (en)
JPS6193678A (en) Photoelectric conversion device
JPS59125669A (en) Solar battery
JPH01154570A (en) Photovoltaic element
JPS59213177A (en) Thin film solar battery
JP3172365B2 (en) Photovoltaic device and manufacturing method thereof
JP3172368B2 (en) Photovoltaic device
JPS6288927A (en) Color sensor
JPS62123781A (en) Photoelectric conversion element
JPS6035554A (en) Thin film solar cell
JPH05343715A (en) Thin film solar cell
JP2975751B2 (en) Photovoltaic device
JPS62137873A (en) Manufacture of photoelectric conversion device