JP3172365B2 - Photovoltaic device and manufacturing method thereof - Google Patents

Photovoltaic device and manufacturing method thereof

Info

Publication number
JP3172365B2
JP3172365B2 JP12980094A JP12980094A JP3172365B2 JP 3172365 B2 JP3172365 B2 JP 3172365B2 JP 12980094 A JP12980094 A JP 12980094A JP 12980094 A JP12980094 A JP 12980094A JP 3172365 B2 JP3172365 B2 JP 3172365B2
Authority
JP
Japan
Prior art keywords
light
layer
conductive film
photovoltaic
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12980094A
Other languages
Japanese (ja)
Other versions
JPH07321359A (en
Inventor
康樹 原田
典裕 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15018546&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3172365(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP12980094A priority Critical patent/JP3172365B2/en
Priority to US08/280,453 priority patent/US5549763A/en
Publication of JPH07321359A publication Critical patent/JPH07321359A/en
Application granted granted Critical
Publication of JP3172365B2 publication Critical patent/JP3172365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、太陽光等の光エネル
ギーを電気エネルギーに変換させる光起電力装置及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic device for converting light energy such as sunlight into electric energy and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、太陽光等の光エネルギーを電気エ
ネルギーに変換させる光起電力装置としては、様々な構
造のものが知られており、このような光起電力装置の一
つとして、図1に示すように、透光性基板1上にTCO
等の透光性導電膜2を設け、この透光性導電膜2上に、
例えば、p型(又はn型)の半導体からなる一導電型半
導体層3a(又は3c)と、i型の半導体からなる光発
電層3bと、n型(又はp型)の半導体からなる他導電
型半導体層3c(又は3a)とが積層された光電変換層
3を設け、さらにこの光電変換層3上にAg等の高反射
金属で構成された裏面電極4を設けたものが知られてい
た。
2. Description of the Related Art Conventionally, various types of photovoltaic devices for converting light energy such as sunlight into electric energy have been known. One of such photovoltaic devices is shown in FIG. As shown in FIG.
And the like, and a light-transmitting conductive film 2 such as
For example, one conductivity type semiconductor layer 3a (or 3c) composed of a p-type (or n-type) semiconductor, a photovoltaic layer 3b composed of an i-type semiconductor, and another conductive layer composed of an n-type (or p-type) semiconductor It is known that a photoelectric conversion layer 3 on which a mold semiconductor layer 3c (or 3a) is laminated is provided, and a back electrode 4 made of a highly reflective metal such as Ag is provided on the photoelectric conversion layer 3. .

【0003】そして、このような光起電力装置において
は、光を上記の透光性基板1側から透光性導電膜2を通
して上記の光電変換層3に導き、上記の光発電層3bに
おいてキャリアを発生させて光電変換を行うようになっ
ていた。
In such a photovoltaic device, light is guided from the light-transmitting substrate 1 side to the photoelectric conversion layer 3 through the light-transmitting conductive film 2, and the carrier is generated in the photovoltaic layer 3b. Are generated to perform photoelectric conversion.

【0004】また、近年においては、上記のような光起
電力装置において、図2に示すように、透光性導電膜2
と光電変換層3とが接する界面をテクスチャー化させて
凹凸形状にし、光が上記の透光性導電膜2を通して光電
変換層3に導かれる際に、透光性導電膜2と光電変換層
3との界面で光が反射されるのを抑制すると共に、光電
変換層3に導かれる光を散乱させて、光電変換層3内を
通過する光の光路長が長くなるようにしたものが開発さ
れた。
In recent years, in a photovoltaic device as described above, as shown in FIG.
The interface between the light-transmitting conductive film 2 and the photoelectric conversion layer 3 is textured to form an uneven shape so that light is guided to the photoelectric conversion layer 3 through the light-transmitting conductive film 2. In addition to suppressing the reflection of light at the interface with, the light guided to the photoelectric conversion layer 3 is scattered so that the optical path length of light passing through the photoelectric conversion layer 3 is increased. Was.

【0005】ここで、図2に示す光起電力装置のように
透光性導電膜2と光電変換層3とが接する界面を凹凸形
状にした場合、透光性導電膜2と光電変換層3とが接す
る界面が平坦になった図1の光起電力装置に比べて、光
電変換層3の光発電層3b内を通過する光の光路長が長
くなるため、多くのキャリアが発生して短絡電流が増加
した。
Here, when the interface between the light-transmitting conductive film 2 and the photoelectric conversion layer 3 is made uneven as in the photovoltaic device shown in FIG. 2, the light-transmitting conductive film 2 and the photoelectric conversion layer 3 The optical path length of light passing through the photovoltaic layer 3b of the photoelectric conversion layer 3 is longer than that of the photovoltaic device of FIG. The current has increased.

【0006】しかし、このように透光性導電膜2と光電
変換層3とが接する界面を凹凸形状にした場合、その界
面が平坦なものに比べて曲線因子F.F.が低下し、変
換効率を十分に向上させることができないという問題が
生じた。
However, when the interface at which the light-transmitting conductive film 2 and the photoelectric conversion layer 3 come into contact with each other has an uneven shape, the fill factor F.F. F. And the conversion efficiency cannot be sufficiently improved.

【0007】[0007]

【発明が解決しようとする課題】この発明は、光起電力
装置における上記のような問題を解決することを課題と
するものであり、透光性導電膜と光電変換層とが接する
界面を凹凸形状にした場合においても、曲線因子が低下
するということがなく、変換効率のよい光起電力装置が
得られるようにすると共に、このような光起電力装置を
簡単かつ確実に製造できるようにすることを目的とする
ものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems in a photovoltaic device, and an uneven interface between a light transmitting conductive film and a photoelectric conversion layer is provided. Even when the photovoltaic device is formed, the fill factor is not reduced, and a photovoltaic device with good conversion efficiency can be obtained, and such a photovoltaic device can be easily and reliably manufactured. The purpose is to do so.

【0008】ここで、本発明者等は、図2に示す光起電
力装置のように透光性導電膜2と光電変換層3とが接す
る界面を凹凸形状にした場合に曲線因子が低下する原因
について研究を行った。
Here, the present inventors have found that the fill factor is reduced when the interface where the translucent conductive film 2 and the photoelectric conversion layer 3 come into contact with each other is made uneven as in the photovoltaic device shown in FIG. The cause was studied.

【0009】この結果、上記のように透光性導電膜2と
光電変換層3とが接する界面を凹凸形状に形成すると、
これによって光電変換層3における内部電界がその層面
の面方向に不均一になり、特に、光の吸収が多く行われ
る部分である透光性導電膜2の凹部2aと接する部分に
おいて、光電変換層3の内部電界が弱くなり、この光起
電力装置における曲線因子が低下するということが分か
った。
As a result, when the interface where the translucent conductive film 2 and the photoelectric conversion layer 3 are in contact with each other is formed in an uneven shape as described above,
As a result, the internal electric field in the photoelectric conversion layer 3 becomes non-uniform in the surface direction of the layer surface. It was found that the internal electric field of the photovoltaic device 3 was weakened, and the fill factor in this photovoltaic device was reduced.

【0010】そして、本発明者等は上記の研究結果に基
づいて更に研究を行い、透光性導電膜2と光電変換層3
とが接する界面が凹凸形状になる等の原因で、光電変換
層3内における内部電界がその層面の面方向に不均一に
なる場合に、これを是正して曲線因子の低下を抑制し、
光起電力装置における変換効率を向上させる手段を開発
し、この発明を完成するに至ったのである。
The present inventors conducted further research on the basis of the above research results and found that the transparent conductive film 2 and the photoelectric conversion layer 3
When the internal electric field in the photoelectric conversion layer 3 becomes non-uniform in the plane direction of the layer surface, for example, due to an uneven interface at the interface with which the contact is made, this is corrected to suppress a decrease in the fill factor,
Means for improving the conversion efficiency of the photovoltaic device has been developed, and the present invention has been completed.

【0011】[0011]

【課題を解決するための手段】まず、この発明において
は、前記のような課題を解決するため、光電変換層内に
光発電層が設けられた光起電力装置において、光電変換
層における内部電界がその層面の面方向に不均一である
場合に、その内部電界の弱い部分における光発電層の膜
厚が他の部分より薄くなるようにしたのである。
First, in the present invention, in order to solve the above-mentioned problems, in a photovoltaic device in which a photovoltaic layer is provided in a photoelectric conversion layer, an internal electric field in the photoelectric conversion layer is provided. Is non-uniform in the plane direction of the layer surface, the thickness of the photovoltaic layer at the portion where the internal electric field is weak is made thinner than at other portions.

【0012】また、この発明においては、内部に光発電
層が設けられた光電変換層と、透光性導電膜とが接する
界面が凹凸形状になった光起電力装置において、透光性
導電膜の凹部と接する部分における光発電層の膜厚が他
の部分より薄くなるようにしたのである。
Further, according to the present invention, there is provided a photovoltaic device in which an interface between a photoelectric conversion layer having a photovoltaic layer provided therein and a light-transmitting conductive film has an uneven shape. The thickness of the photovoltaic layer at the portion in contact with the recess was made thinner than at the other portions.

【0013】また、上記のように内部に光発電層が設け
られた光電変換層と、透光性導電膜とが接する界面が凹
凸形状になった光起電力装置において、透光性導電膜の
凹部と接する部分における光発電層の膜厚を他の部分よ
り薄く形成するにあたり、この発明においては、光の干
渉縞による光の強弱により透光性導電膜に凹凸を形成す
ると共に、この透光性導電膜の場合と同様に光の干渉縞
による光の強弱により上記の光発電層に凹凸を形成する
ようにしたのである。
Further, in the photovoltaic device in which the interface between the photoelectric conversion layer having the photovoltaic layer provided therein and the light-transmitting conductive film has an uneven shape, the light-transmitting conductive film In forming the photovoltaic layer at a portion in contact with the concave portion to be thinner than the other portions, according to the present invention, unevenness is formed on the light transmitting conductive film by the intensity of light due to light interference fringes, and As in the case of the conductive film, unevenness is formed on the photovoltaic layer by the intensity of light due to light interference fringes.

【0014】[0014]

【作用】この発明においては、上記のように光電変換を
行う光電変換層内に光発電層が設けられた光起電力装置
において、光電変換層における内部電界がその層面の面
方向に不均一である場合に、その内部電界の弱い部分に
おける光発電層の厚みを他の部分より薄くしたため、こ
の部分における光電変換層の内部電界が実質的に増加し
て、光電変換層における内部電界がある程度均一化さ
れ、これにより光起電力装置における曲線因子の低下が
抑制されるようになる。
According to the present invention, in a photovoltaic device in which a photovoltaic layer is provided in a photoelectric conversion layer for performing photoelectric conversion as described above, the internal electric field in the photoelectric conversion layer is non-uniform in the plane direction of the layer surface. In some cases, the thickness of the photovoltaic layer in the portion where the internal electric field is weak is made thinner than in other portions, so that the internal electric field of the photoelectric conversion layer in this portion substantially increases and the internal electric field in the photoelectric conversion layer is uniform to some extent. Accordingly, a decrease in the fill factor in the photovoltaic device is suppressed.

【0015】また、内部に光発電層が設けられた光電変
換層と、透光性導電膜とが接する界面が凹凸形状になっ
た光起電力装置においては、前記の従来技術において述
べたように、透光性導電膜の凹部と接する部分における
光電変換層の内部電界が低くなるが、この発明において
は、上記のように透光性導電膜の凹部と接する部分にお
ける光発電層の膜厚を他の部分より薄くしたため、上記
の場合と同様に、この部分における光電変換層の内部電
界が実質的に増加して、光電変換層における内部電界が
ある程度均一化され、これにより光起電力装置における
曲線因子の低下が抑制されるようになる。
Further, in a photovoltaic device in which an interface between a photoelectric conversion layer having a photovoltaic layer provided therein and a light-transmitting conductive film has an uneven shape, as described in the above-mentioned prior art, Although the internal electric field of the photoelectric conversion layer in a portion in contact with the concave portion of the light-transmitting conductive film is reduced, in the present invention, the thickness of the photovoltaic layer in the portion in contact with the concave portion of the light-transmitting conductive film is reduced as described above. Since it is thinner than the other parts, the internal electric field of the photoelectric conversion layer in this part is substantially increased, and the internal electric field in the photoelectric conversion layer is made uniform to some extent. A decrease in the fill factor is suppressed.

【0016】そして、このように光起電力装置における
曲線因子の低下が抑制される結果、上記の各光起電力装
置における変換効率が向上されるようになる。
As a result, the reduction of the fill factor in the photovoltaic device is suppressed, so that the conversion efficiency in each photovoltaic device is improved.

【0017】また、上記のように内部に光発電層が設け
られた光電変換層と、透光性導電膜とが接する界面が凹
凸形状になった光起電力装置において、透光性導電膜の
凹部と接する部分における光発電層の膜厚を他の部分よ
り薄く形成するにあたり、この発明のように、光の干渉
縞による光の強弱により透光性導電膜に凹凸を形成する
と共に、この透光性導電膜の場合と同様に光の干渉縞に
よる光の強弱により光電変換層における光発電層に凹凸
を形成すると、透光性導電膜の凹凸に対応させて光発電
層に凹凸を設けることができ、透光性導電膜の凹部と接
する部分における光発電層の膜厚を簡単かつ確実に薄く
することができ、光電変換層と透光性導電膜との界面を
凹凸形状にした場合であっても曲線因子の低下がなく、
変換効率のよい光起電力装置が簡単に得られるようにな
る。
Further, in the photovoltaic device in which the interface between the photoelectric conversion layer having the photovoltaic layer provided therein and the light-transmitting conductive film has an uneven shape, the light-transmitting conductive film In forming the photovoltaic layer at a portion in contact with the concave portion to be thinner than other portions, as in the present invention, unevenness is formed in the translucent conductive film depending on the intensity of light due to light interference fringes, and the transparent conductive film is formed. When unevenness is formed in the photovoltaic layer in the photoelectric conversion layer by the intensity of light due to light interference fringes as in the case of the light-transmitting conductive film, the unevenness is provided in the photovoltaic layer corresponding to the unevenness of the light-transmitting conductive film. The thickness of the photovoltaic layer at the portion in contact with the concave portion of the light-transmitting conductive film can be easily and reliably reduced, and the interface between the photoelectric conversion layer and the light-transmitting conductive film is made uneven. Even if there is no decrease in fill factor,
A photovoltaic device with good conversion efficiency can be easily obtained.

【0018】[0018]

【実施例】以下、この発明の実施例に係る光起電力装置
を添付図面に基づいて具体的に説明すると共に、この実
施例の光起電力装置が従来の光起電力装置に比べて優れ
ていることを明らかにする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a photovoltaic device according to an embodiment of the present invention will be specifically described with reference to the accompanying drawings, and the photovoltaic device of this embodiment will be superior to a conventional photovoltaic device. Make it clear.

【0019】この実施例における光起電力装置において
は、図3に示すように、ガラス等の絶縁性の透光性基板
1上に、テクスチャー化されて凹凸形状になったSnO
2 からなる透光性導電膜2を形成し、この透光性導電膜
2上に光電変換を行う光電変換層3として、p型の非晶
質シリコンで構成されたp型半導体層3aとi型の非晶
質シリコンで構成された光発電層3bとn型の非晶質シ
リコンで構成されたn型半導体層3cとを順々に積層さ
せ、さらにこの光電変換層3上にAg等の高反射金属で
構成された裏面電極4を設けるようにした。
In the photovoltaic device according to this embodiment, as shown in FIG. 3, a textured SnO having an irregular shape is formed on an insulating translucent substrate 1 such as glass.
2 is formed, and p-type semiconductor layers 3a and i made of p-type amorphous silicon are formed on the light-transmitting conductive film 2 as photoelectric conversion layers 3 for performing photoelectric conversion. A photovoltaic layer 3b made of amorphous silicon of the type and an n-type semiconductor layer 3c made of amorphous silicon of the n-type are sequentially stacked, and furthermore, Ag or the like is formed on the photoelectric conversion layer 3. The back electrode 4 made of a highly reflective metal was provided.

【0020】そして、上記の光起電力装置を製造するに
あたり、この実施例においては、上記のように透光性基
板1上に凹凸形状を有する透光性導電膜2を設けるにあ
たって、図4に示すように、レーザ光をハーフミラー1
1に導き、このハーフミラー11を通してレーザ光の約
半分をそのまま透光性導電膜2を形成する透光性基板1
に導くようにする一方、このハーフミラー11でレーザ
光の約半分を反射させ、このように反射された約半分の
レーザ光をさらにミラー12で反射させて上記の透光性
基板1に導くようにし、ハーフミラー11を通過して透
光性基板1に導かれるレーザ光とミラー12で反射され
て透光性基板1に導かれるレーザ光との間の角度θを調
整して、透光性基板1に適当な間隔dの干渉縞を発生さ
せるようにした。
In manufacturing the photovoltaic device, in this embodiment, when the light-transmitting conductive film 2 having the uneven shape is provided on the light-transmitting substrate 1 as described above, FIG. As shown in FIG.
1, and about half of the laser light is directly passed through the half mirror 11 to form the light-transmitting conductive film 2.
On the other hand, about half of the laser light is reflected by the half mirror 11, and about half of the laser light thus reflected is further reflected by the mirror 12 to guide the laser light to the transparent substrate 1. The angle θ between the laser light passing through the half mirror 11 and guided to the transparent substrate 1 and the laser light reflected by the mirror 12 and guided to the transparent substrate 1 is adjusted, and Interference fringes at an appropriate distance d were generated on the substrate 1.

【0021】なお、透光性基板1上に発生する干渉縞の
間隔dは、上記のレーザ光の波長をλ、レーザ光が通る
媒体の屈折率をnとした場合、下記の式で表される。 d=λ/(n・sinθ)
The interval d of the interference fringes generated on the translucent substrate 1 is expressed by the following equation, where λ is the wavelength of the laser light and n is the refractive index of the medium through which the laser light passes. You. d = λ / (n · sin θ)

【0022】そして、この実施例においては、上記のレ
ーザ光として波長λが193nmのArFエキシマレー
ザ光を用い、上記の角度θを11度にし、屈折率nが1
の条件下で、上記の透光性基板1上に間隔dが約1μm
になった干渉縞を発生させ、このように干渉縞を発生さ
せた状況下で、原料ガスとしてSnCl4 を7scc
m,O2 を350sccmのガス流量で供給すると共
に、基板温度を400℃,圧力を20Torrにして、
熱CVD法により透光性基板1上に凹凸形状になった透
光性導電膜2を形成するようにした。
In this embodiment, ArF excimer laser light having a wavelength λ of 193 nm is used as the laser light, the angle θ is set to 11 degrees, and the refractive index n is set to 1
Under the conditions described above, the distance d is about 1 μm on the light-transmitting substrate 1.
In this situation where the interference fringes are generated, SnCl 4 is supplied as a source gas at a rate of 7 scc.
m, O 2 were supplied at a gas flow rate of 350 sccm, the substrate temperature was set to 400 ° C., and the pressure was set to 20 Torr.
The light-transmitting conductive film 2 having an uneven shape was formed on the light-transmitting substrate 1 by the thermal CVD method.

【0023】ここで、上記のようにして透光性基板1上
に透光性導電膜2を形成するようにした場合、SnO2
からなる透光性導電膜2の堆積速度が、光の照射されて
いる部分では約200Å/分、光の照射されていない部
分では約100Å/分であった。そして、この実施例に
おいては、上記のようにして約30分間かけて透光性基
板1上に透光性導電膜2を設けるようにし、透光性基板
1上に凸部2bの膜厚X1 が約6000Å,凹部2aの
膜厚X2 が約3000Åになった透光性導電膜2を形成
した。
Here, when the light-transmitting conductive film 2 is formed on the light-transmitting substrate 1 as described above, SnO 2
The deposition rate of the light-transmitting conductive film 2 was about 200 ° / min in the part irradiated with light and about 100 ° / min in the part not irradiated with light. In this embodiment, the light-transmitting conductive film 2 is provided on the light-transmitting substrate 1 for about 30 minutes as described above, and the film thickness X of the projection 2b is formed on the light-transmitting substrate 1. 1 is about 6000 Å, to form a translucent conductive film 2 having a thickness X 2 of the recess 2a was about 3000 Å.

【0024】このようにして透光性基板1上に凹凸形状
になった透光性導電膜2を形成した後は、この透光性導
電膜2の上に公知の方法で膜厚が約100Åになったp
型半導体層3aを形成し、その後、上記の透光性導電膜
2の場合と同様にして、間隔dが約1μmになった干渉
縞を発生させながら、原料ガスとして、Si26 を5
0sccm,N2 を300sccmのガス流量で供給す
ると共に、基板温度を200℃,圧力を0.5Tor
r,RFパワーを10mW/cm2 にして、プラズマC
VD法により、上記のp型半導体層3aの上に上記の透
光性導電膜2と対応した凹凸形状になったi型の非晶質
シリコンからなる光発電層3bを形成するようにした。
After the light-transmitting conductive film 2 having an uneven shape is formed on the light-transmitting substrate 1 in this manner, a film thickness of about 100 ° is formed on the light-transmitting conductive film 2 by a known method. Became p
After forming the mold semiconductor layer 3a, in the same manner as in the case of the light-transmitting conductive film 2 described above, while generating interference fringes having a distance d of about 1 μm, 5% Si 2 H 6 is used as a source gas.
0 sccm, N 2 is supplied at a gas flow rate of 300 sccm, the substrate temperature is 200 ° C., and the pressure is 0.5 Torr.
r, RF power was set to 10 mW / cm 2 and plasma C
By the VD method, a photovoltaic layer 3b made of i-type amorphous silicon having an uneven shape corresponding to the light-transmitting conductive film 2 was formed on the p-type semiconductor layer 3a.

【0025】ここで、上記のようにして光発電層3bを
形成するようにした場合、この発電層3bの堆積速度
が、光の照射されている部分では約60Å/分、光の照
射されていない部分では約40Å/分であった。そし
て、この実施例においては、上記のようにして約50分
間かけてp型半導体層3a上に光発電層3bを設け、上
記の透光性導電膜2における凸部2bと対応する部分に
おける膜厚Y1 が約3000Åであるのに対して、凹部
2bと対応する部分における膜厚Y2 が約2000Åと
膜厚が薄くなった光発電層3bを上記のp型半導体層3
a上に形成した。
Here, when the photovoltaic layer 3b is formed as described above, the deposition rate of the photovoltaic layer 3b is about 60 ° / min in the portion where light is irradiated. It was about 40 ° / min in the missing part. In this embodiment, the photovoltaic layer 3b is provided on the p-type semiconductor layer 3a for about 50 minutes as described above, and the film in the portion corresponding to the convex portion 2b in the translucent conductive film 2 is formed. whereas thickness Y 1 is about 3000 Å, the photovoltaic layer 3b having a thickness Y 2 is thinned about 2000Å and film thickness at a portion corresponding to the recess 2b of the p-type semiconductor layer 3
a.

【0026】このようにして透光性導電膜2に対応した
凹凸形状になった光発電層3bをp型半導体層3a上に
形成した後は、この光発電層3b上に公知の方法で膜厚
が約300Åになったn型半導体層3cと、膜厚が約2
000Åになった裏面電極4とを形成して、この実施例
の光起電力装置を得た。
After the photovoltaic layer 3b having the irregular shape corresponding to the translucent conductive film 2 is formed on the p-type semiconductor layer 3a, the film is formed on the photovoltaic layer 3b by a known method. An n-type semiconductor layer 3c having a thickness of about 300 °;
By forming the back electrode 4 having a thickness of 000 °, the photovoltaic device of this example was obtained.

【0027】次に、この実施例の光起電力装置と比較す
る比較例においては、上記の実施例において光発電層3
bを形成する方法だけを変更させ、その他は上記実施例
と全く同様にして光起電力装置を得るようにした。ここ
で、この比較例の光起電力装置においては、光発電層3
bを従来より一般に行われている公知の方法を用いて形
成し、図2に示すように、上記のp型半導体層3a上に
膜厚が約3000Åになったほぼ均一な膜厚の光発電層
3bを形成した。
Next, in a comparative example which is compared with the photovoltaic device of this embodiment, the photovoltaic layer 3
The photovoltaic device was obtained in exactly the same way as in the above embodiment except for the method of forming b. Here, in the photovoltaic device of this comparative example, the photovoltaic layer 3
b is formed by using a conventionally known method which has been conventionally performed, and as shown in FIG. 2, a photovoltaic power generation having a substantially uniform film thickness of about 3000 ° on the p-type semiconductor layer 3a. The layer 3b was formed.

【0028】そして、上記の実施例及び比較例の各光起
電力装置に対して、それぞれ同じ光照射条件で光を照射
し、各光起電力装置における開放電圧(Voc),短絡
電流(Isc),曲線因子(F.F.)及び変換効率を
求め、その結果を下記の表1に示した。
Then, each of the photovoltaic devices of the above Examples and Comparative Examples was irradiated with light under the same light irradiation conditions, and the open-circuit voltage (Voc) and short-circuit current (Isc) of each photovoltaic device were measured. , Fill factor (FF) and conversion efficiency were determined, and the results are shown in Table 1 below.

【0029】[0029]

【表1】 [Table 1]

【0030】この結果から明らかなように、光発電層3
bを透光性導電膜2に対応した凹凸形状に形成し、透光
性導電膜2の凹部2aと対応する部分における光発電層
3bの膜厚を薄くしたこの実施例の光起電力装置は、光
発電層3bを透光性導電膜2に沿ってほぼ均一な膜厚で
形成した比較例の光起電力装置に比べて、透光性導電膜
2の凹部2aと対応する部分における光発電層3bの膜
厚が2/3になっているにも拘らず、短絡電流の低下は
殆どなく、曲線因子が大幅に改善されて、変換効率が約
0.8%向上していた。
As is apparent from the results, the photovoltaic layer 3
b is formed in an uneven shape corresponding to the light-transmitting conductive film 2, and the thickness of the photovoltaic layer 3b in the portion corresponding to the concave portion 2a of the light-transmitting conductive film 2 is reduced. As compared with the photovoltaic device of the comparative example in which the photovoltaic layer 3b is formed with a substantially uniform film thickness along the translucent conductive film 2, the photovoltaic power generation at the portion corresponding to the concave portion 2a of the translucent conductive film 2 is performed. Despite the fact that the film thickness of the layer 3b was 2/3, there was almost no decrease in the short-circuit current, the fill factor was greatly improved, and the conversion efficiency was improved by about 0.8%.

【0031】ここで、この実施例の光起電力装置と比較
例の光起電力装置とを比べた場合において、上記のよう
に光発電層3bに膜厚の薄い部分が存在しても短絡電流
が殆ど低下しないのは、この光発電層3bにおける光の
吸収が、透光性導電膜2の凹部2aと対応した光発電層
3bの光入射側に近い部分で最も多く行われ、この光発
電層3bの膜厚が薄くなってもキャリアの発生量が低下
するということが少なく、またこの部分における光電変
換層3の内部電界の低下が抑制された結果、この部分に
おいて発生したキャリアが効率よく取り出されるように
なり、また裏面電極4の凹凸が比較例の光起電力装置に
比べて大きくなり、光の閉じ込め効果がよくなることに
よると考えられる。
Here, when comparing the photovoltaic device of this embodiment with the photovoltaic device of the comparative example, even if the photovoltaic layer 3b has a thin portion as described above, the short-circuit current Is hardly decreased because light is absorbed most in the photovoltaic layer 3b in a portion near the light incident side of the photovoltaic layer 3b corresponding to the concave portion 2a of the translucent conductive film 2, and this photovoltaic layer 3b Even if the thickness of the layer 3b is reduced, the amount of generated carriers is rarely reduced, and the decrease in the internal electric field of the photoelectric conversion layer 3 in this portion is suppressed. This is considered to be due to the fact that the photovoltaic device of the comparative example becomes larger than the photovoltaic device of the comparative example, and the effect of confining light is improved.

【0032】なお、この実施例における光起電力装置に
おいては、透光性導電膜2を構成する材料にSnO2
用いるようにしたが、ZnOやITO等のその他の公知
の透光性導電材料を用いることも可能である。また、光
電変換層3を構成する材料についても、この実施例の光
起電力装置においては、非晶質シリコンを用いるように
したが、その他の非晶質半導体や、CuInSe2 (銅
・インジウム・セレン)等の薄膜の化合物半導体を用い
るようにしてもよい。
In the photovoltaic device of this embodiment, SnO 2 is used as the material of the light-transmitting conductive film 2, but other known light-transmitting conductive materials such as ZnO and ITO are used. Can also be used. Further, as for the material constituting the photoelectric conversion layer 3, in the photovoltaic device of this embodiment, amorphous silicon is used, but other amorphous semiconductors and CuInSe 2 (copper, indium, A thin film compound semiconductor such as selenium) may be used.

【0033】また、この実施例においては、透光性導電
膜2の凹部2aと接する部分の光電変換層3における光
発電層3bの膜厚を他の部分より薄く形成するにあた
り、光の干渉縞による光の強弱により透光性導電膜2に
凹凸を形成すると共に、この透光性導電膜2の場合と同
様に光の干渉縞による光の強弱により光電変換層3にお
ける光発電層3bに凹凸を形成するようにしたが、透光
性導電膜2や光発電層3bに凹凸を設ける方法も、特に
このような方法に限られるものではない。但し、上記の
ようにして透光性導電膜2や光発電層3bに凹凸を設け
ると、透光性導電膜2の凹部2aに対応させて簡単かつ
確実に光発電層3bの膜厚を薄くすることができた。
In this embodiment, when the thickness of the photovoltaic layer 3b in the photoelectric conversion layer 3 at the portion in contact with the concave portion 2a of the translucent conductive film 2 is made thinner than other portions, light interference fringes are formed. Unevenness is formed in the light-transmitting conductive film 2 by the intensity of light caused by the light, and the unevenness is formed on the photovoltaic layer 3b in the photoelectric conversion layer 3 by the intensity of the light due to the interference fringes of light as in the case of the light-transmitting conductive film 2. However, the method of providing irregularities on the translucent conductive film 2 and the photovoltaic layer 3b is not particularly limited to such a method. However, if the light-transmitting conductive film 2 and the photovoltaic layer 3b are provided with irregularities as described above, the thickness of the photovoltaic layer 3b can be easily and reliably reduced in correspondence with the concave portion 2a of the light-transmitting conductive film 2. We were able to.

【0034】また、上記のように光の干渉縞による光の
強弱によって透光性導電膜2や光発電層3bに凹凸を設
けるにあたり、この実施例においては、光の干渉縞の間
隔dを約1μmにし、透光性導電膜2や光発電層3bに
ピッチが約1μmの凹凸を設けるようにしたが、透光性
導電膜2や光発電層3bに設ける凹凸のピッチは入射さ
れた光の散乱が効果的に行われる範囲であればよく、一
般には0.1〜10μm程度の範囲になるようにし、好
ましくは、0.3〜1.5μmの範囲になるようにす
る。
In this embodiment, when the irregularities are formed on the translucent conductive film 2 and the photovoltaic layer 3b by the intensity of light due to the light interference fringes as described above, the distance d between the light interference fringes is set to about 1 μm, and the irregularities with a pitch of about 1 μm are provided on the translucent conductive film 2 and the photovoltaic layer 3b. However, the pitch of the irregularities provided on the translucent conductive film 2 and the photovoltaic layer 3b depends on the incident light. Any range is possible as long as scattering is performed effectively, and is generally in the range of about 0.1 to 10 μm, preferably in the range of 0.3 to 1.5 μm.

【0035】また、この実施例の光起電力装置において
は、光電変換層3と透光性導電膜2とが接合する界面を
凹凸形状に形成するにあたり、透光性導電膜2自体に凹
凸を設けるようにしたが、この透光性導電膜2を形成す
る透光性基板1に凹凸を設けておき、このような凹凸形
状になった透光性基板1上に透光性導電膜2を形成し
て、光電変換層3と接合する界面を凹凸形状にすること
も可能である。
In the photovoltaic device of this embodiment, when the interface between the photoelectric conversion layer 3 and the light-transmitting conductive film 2 is formed in an uneven shape, the light-transmitting conductive film 2 itself has unevenness. However, the light-transmitting substrate 1 on which the light-transmitting conductive film 2 is formed is provided with unevenness, and the light-transmitting conductive film 2 is formed on the light-transmitting substrate 1 having such an uneven shape. It is also possible to form and make the interface to be bonded to the photoelectric conversion layer 3 an uneven shape.

【0036】さらに、この実施例の光起電力装置におい
ては、光電変換層3と透光性導電膜2とが接合する界面
が凹凸形状に形成されて、光電変換層3における内部電
界がその層面の面方向に不均一になった場合の例を示し
ただけであるが、他の要因で光電変換層3における内部
電界がその層面の面方向に不均一になった場合であって
も、上記のように内部電界の弱い部分における光発電層
3bの厚みを他の部分より薄くすることにより、光電変
換層3における内部電界をある程度均一化させて、光起
電力装置における曲線因子を改善させることができる。
Further, in the photovoltaic device of this embodiment, the interface at which the photoelectric conversion layer 3 and the translucent conductive film 2 are joined is formed in an uneven shape, and the internal electric field in the photoelectric conversion layer 3 is reduced by the surface of the layer. Although only an example in which the non-uniformity is obtained in the plane direction of the photoelectric conversion layer 3 is shown, even if the internal electric field in the photoelectric conversion layer 3 becomes non-uniform in the plane direction of the layer surface due to other factors, By making the thickness of the photovoltaic layer 3b at a portion where the internal electric field is weak as compared with the other portions, the internal electric field of the photoelectric conversion layer 3 is made uniform to some extent and the fill factor in the photovoltaic device is improved. Can be.

【0037】[0037]

【発明の効果】以上詳述したように、この発明において
は、光電変換層内に光発電層が設けられた光起電力装置
において、光電変換層における内部電界が層面の面方向
に不均一である場合に、その内部電界の弱い部分におけ
る光発電層の厚みを他の部分より薄くしたため、この部
分における光電変換層の内部電界が実質的に増加して、
光電変換層における内部電界をある程度均一化され、こ
れにより、この光起電力装置における曲線因子が改善さ
れて、変換効率が向上した。
As described above in detail, according to the present invention, in a photovoltaic device in which a photovoltaic layer is provided in a photoelectric conversion layer, the internal electric field in the photoelectric conversion layer is non-uniform in the layer direction. In some cases, the thickness of the photovoltaic layer in a portion where the internal electric field is weak is made thinner than in other portions, so that the internal electric field of the photoelectric conversion layer in this portion substantially increases,
The internal electric field in the photoelectric conversion layer was made uniform to some extent, whereby the fill factor in the photovoltaic device was improved, and the conversion efficiency was improved.

【0038】また、この発明においては、内部に光発電
層が設けられた光電変換層と、透光性導電膜とが接する
界面を凹凸形状に形成して、入射された光をこの界面で
散乱させるようにした光起電力装置に対して、透光性導
電膜の凹部と接合する部分における光発電層の膜厚を他
の部分より薄くしたため、上記の場合と同様に、この部
分における光電変換層の内部電界が実質的に増加して、
光電変換層における内部電界をある程度均一化されるよ
うになり、光電変換層と透光性導電膜とが接する界面を
凹凸形状に形成した従来の光起電力装置のようにその曲
線因子が低下するということがなく、変換効率のよい光
起電力装置が得られるようになった。
In the present invention, the interface between the photoelectric conversion layer having the photovoltaic layer provided therein and the light-transmitting conductive film is formed in an uneven shape, and the incident light is scattered at this interface. As compared with the photovoltaic device, the thickness of the photovoltaic layer at the portion joined to the concave portion of the light-transmitting conductive film is made thinner than the other portions. The internal electric field of the layer increases substantially,
The internal electric field in the photoelectric conversion layer becomes uniform to some extent, and the fill factor is reduced as in a conventional photovoltaic device in which the interface between the photoelectric conversion layer and the light-transmitting conductive film is formed in an uneven shape. Therefore, a photovoltaic device with high conversion efficiency can be obtained.

【0039】また、この発明においては、上記のように
透光性導電膜の凹部と接する部分における光発電層の膜
厚を他の部分より薄く形成するにあたって、光の干渉縞
による光の強弱により透光性導電膜に凹凸を形成すると
共に、この透光性導電膜の場合と同様に光の干渉縞によ
る光の強弱により光電変換層における光発電層に凹凸を
形成するようにしたため、透光性導電膜の凹部に対応さ
せて簡単かつ確実に光発電層の膜厚を薄くすることがで
き、上記のように光電変換層と透光性導電膜との界面を
凹凸形状にした場合であっても曲線因子の低下がなく、
変換効率のよい光起電力装置が簡単に製造できるように
なった。
According to the present invention, when the thickness of the photovoltaic layer at the portion in contact with the concave portion of the light-transmitting conductive film is made thinner than at other portions as described above, the intensity of light due to light interference fringes is increased. Since the unevenness is formed in the light-transmitting conductive film and the unevenness is formed in the photovoltaic layer in the photoelectric conversion layer by the intensity of the light due to the interference fringes of the light as in the case of the light-transmitting conductive film, In this case, the thickness of the photovoltaic layer can be easily and reliably reduced in accordance with the concave portions of the conductive film, and the interface between the photoelectric conversion layer and the light-transmitting conductive film is made uneven as described above. No decrease in fill factor
A photovoltaic device with good conversion efficiency can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の光起電力装置における構造の一例を示し
た概略断面図である。
FIG. 1 is a schematic sectional view showing an example of a structure of a conventional photovoltaic device.

【図2】従来の光起電力装置において、透光性導電膜と
光電変換層とが接する界面を凹凸形状にした構造の例を
示した概略断面図である。
FIG. 2 is a schematic cross-sectional view showing an example of a structure of a conventional photovoltaic device in which an interface at which a light-transmitting conductive film and a photoelectric conversion layer are in contact has an uneven shape.

【図3】この発明の一実施例に係る光起電力装置の構造
を示した概略断面図である。
FIG. 3 is a schematic sectional view showing a structure of a photovoltaic device according to one embodiment of the present invention.

【図4】同実施例の光起電力装置において、光の干渉縞
による光の強弱により透光性導電膜や光発電層に凹凸を
形成する状態を示した概略説明図である。
FIG. 4 is a schematic explanatory view showing a state in which unevenness is formed on a light-transmitting conductive film or a photovoltaic layer by the intensity of light due to light interference fringes in the photovoltaic device of the embodiment.

【符号の説明】[Explanation of symbols]

2 透光性導電膜 2a 透光性導電膜の凹部 3 光電変換層 3b 光発電層 Reference Signs List 2 translucent conductive film 2a concave portion of translucent conductive film 3 photoelectric conversion layer 3b photovoltaic layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 31/04-31/078

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光電変換層内に光発電層が設けられた光
起電力装置において、光電変換層における内部電界がそ
の層面の面方向に不均一である場合に、その内部電界の
弱い部分における光発電層の膜厚を他の部分より薄くし
たことを特徴とする光起電力装置。
In a photovoltaic device in which a photovoltaic layer is provided in a photoelectric conversion layer, when an internal electric field in the photoelectric conversion layer is non-uniform in a plane direction of the layer surface, the photovoltaic device in a portion where the internal electric field is weak A photovoltaic device characterized in that the photovoltaic layer has a smaller thickness than other portions.
【請求項2】 内部に光発電層が設けられた光電変換層
と、透光性導電膜とが接する界面が凹凸形状になった光
起電力装置において、透光性導電膜の凹部と接する部分
における光発電層の膜厚を他の部分より薄くしたことを
特徴とする光起電力装置。
2. A portion of a photovoltaic device in which an interface between a photoelectric conversion layer having a photovoltaic layer provided therein and a light-transmitting conductive film has an uneven shape, the portion being in contact with a concave portion of the light-transmitting conductive film. 3. The photovoltaic device according to claim 1, wherein the thickness of the photovoltaic layer is smaller than other portions.
【請求項3】 内部に光発電層が設けられた光電変換層
と、透光性導電膜とが接する界面が凹凸形状になった光
起電力装置において、透光性導電膜の凹部と接する部分
における光発電層の膜厚を他の部分より薄く形成するに
あたり、光の干渉縞による光の強弱によって透光性導電
膜に凹凸を形成すると共に、この透光性導電膜の場合と
同様に光の干渉縞による光の強弱によって上記の光発電
層に凹凸を形成することを特徴とする光起電力装置の製
造方法。
3. A portion of a photovoltaic device in which an interface between a photoelectric conversion layer having a photovoltaic layer provided therein and a light-transmitting conductive film has an uneven shape, the portion being in contact with a concave portion of the light-transmitting conductive film. In forming the photovoltaic layer at a thickness smaller than that of the other portions, unevenness is formed in the light-transmitting conductive film by the intensity of light due to light interference fringes, and light is emitted similarly to the light-transmitting conductive film. Forming unevenness in the photovoltaic layer according to the intensity of light caused by the interference fringes.
JP12980094A 1993-07-26 1994-05-19 Photovoltaic device and manufacturing method thereof Expired - Fee Related JP3172365B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12980094A JP3172365B2 (en) 1994-05-19 1994-05-19 Photovoltaic device and manufacturing method thereof
US08/280,453 US5549763A (en) 1993-07-26 1994-07-26 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12980094A JP3172365B2 (en) 1994-05-19 1994-05-19 Photovoltaic device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH07321359A JPH07321359A (en) 1995-12-08
JP3172365B2 true JP3172365B2 (en) 2001-06-04

Family

ID=15018546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12980094A Expired - Fee Related JP3172365B2 (en) 1993-07-26 1994-05-19 Photovoltaic device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3172365B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063600A1 (en) * 1998-06-01 1999-12-09 Kaneka Corporation Silicon-base thin-film photoelectric device
JP2009135537A (en) * 2009-03-16 2009-06-18 Mitsubishi Heavy Ind Ltd Solar power generator
WO2014064929A1 (en) * 2012-10-23 2014-05-01 三洋電機株式会社 Solar cell

Also Published As

Publication number Publication date
JPH07321359A (en) 1995-12-08

Similar Documents

Publication Publication Date Title
US20070000536A1 (en) Light trapping in thin film solar cells using textured photonic crystal
US4644091A (en) Photoelectric transducer
EP2469605A2 (en) Substrate for photoelectric conversion device, photoelectric conversion device, and stacked photoelectric conversion device
JPS59104185A (en) Photovoltaic semiconductor device spaced with reflector
JP2002057359A (en) Laminated solar battery
JPS6155268B2 (en)
US5549763A (en) Photovoltaic device
JP2010205804A (en) Photoelectric converter
JPS62209872A (en) Photoelectric conversion element
JP3172365B2 (en) Photovoltaic device and manufacturing method thereof
JPH07321362A (en) Photovoltaic device
JPS61278171A (en) Thin film photoelectric conversion device
JP2652087B2 (en) Photovoltaic device and manufacturing method thereof
JP5538375B2 (en) Thin film solar cell and manufacturing method thereof
US20150179843A1 (en) Photovoltaic device
KR20120003732A (en) Solar cell
JPH04133360A (en) Photovoltaic device
JP4443274B2 (en) Photoelectric conversion device
JP4183394B2 (en) Photovoltaic device manufacturing method
JPH0766435A (en) Photovoltaic device
JPS62247574A (en) Photovoltaic device
JPS59125669A (en) Solar battery
JPH07131040A (en) Photovoltaic device
Stannowski et al. Nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with total current density> 39 mA/cm 2
JP3172368B2 (en) Photovoltaic device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees