JPS59213177A - Thin film solar battery - Google Patents

Thin film solar battery

Info

Publication number
JPS59213177A
JPS59213177A JP58087195A JP8719583A JPS59213177A JP S59213177 A JPS59213177 A JP S59213177A JP 58087195 A JP58087195 A JP 58087195A JP 8719583 A JP8719583 A JP 8719583A JP S59213177 A JPS59213177 A JP S59213177A
Authority
JP
Japan
Prior art keywords
power generating
light
thin film
generating region
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58087195A
Other languages
Japanese (ja)
Inventor
Masakazu Ueno
正和 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP58087195A priority Critical patent/JPS59213177A/en
Publication of JPS59213177A publication Critical patent/JPS59213177A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable to increase the electromotive current and to improve the conversion efficiency by a method wherein an inclined plane is formed on the surface of light incidence to the region for connection generated necessarily, and the light is made incident to a power generating region by scattering it in the case of series connection by forming a plurality of photo power generating regions on a common substrate. CONSTITUTION:Clear electrode patterns 21-25, amorphous semiconductor layers 31-35, and metallic electrode patterns 41-45 are formed in this order on the glass substrate 1. However, grooves 50-55 of e.g. triangular section are cut at the part of non power generating region on the lower surface of the glass substrate 1. By this manner, in the presence of the incident light 6 shown by the arrow mark in the groove 52 for example, a part 61 of said light becomes refracted at the interface at the groove part and then reaches the power generating region. On the other hand, the reflected light 62 likewise reaches another power generating region.

Description

【発明の詳細な説明】 本発明は透明絶縁基板上に形成された薄膜太陽電池の改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in thin film solar cells formed on transparent insulating substrates.

〔従来技術とその問題点〕[Prior art and its problems]

第1図に直列接続された従来型のこの穐の薄膜太陽電池
の断面構造図を示す0ガラス等の透明絶縁基板1の上に
透明電極パターン21〜25が通常ITO(インジウム
錫の酸化物)等で形成される。その上に積層される非晶
質半導体層31〜35は、例えば透明電極側からp形弁
晶質シリコン(以下a−Siと記す)要約1 0 0X
,ノンドープミー8t層5000X, n形a−St層
500Aから成っているoP形、ノンドープおよびn形
の各a−81層はそれぞれジボランとシラン、シラン、
フォスフインとシランよりなるガスのグロー放電分解で
形成される。この方法は当業者にとって周知の事実であ
る0次に金属電極ノくター741〜45および40を蒸
着法等で形成する。金属電極ノ(ターン41〜45は各
々透明電極ノくターン21〜25と電気的に接続される
ように形成する。ところで、この様な構造において、半
導体層が透明電極と金属電極にはさまれた部分、例えば
第1図の領域Aに入射した太陽光は電気に変換され、い
わゆる発電領域(有効領域)となるが、接続部分B.T
hるいは端部C,Dは非発電領域(無効領域)となる。
FIG. 1 shows a cross-sectional structural diagram of a conventional thin-film solar cell of this type connected in series. Transparent electrode patterns 21 to 25 are usually made of ITO (indium tin oxide) on a transparent insulating substrate 1 made of glass or the like. etc. is formed. The amorphous semiconductor layers 31 to 35 stacked thereon are, for example, p-type crystalline silicon (hereinafter referred to as a-Si) from the transparent electrode side.
, a non-doped Me8T layer 5000X, and an n-type A-St layer 500A, each oP type, non-doped, and n-type a-81 layer is made of diborane, silane, silane,
Formed by glow discharge decomposition of gases consisting of phosphine and silane. In this method, the zero-order metal electrode nozzles 741 to 45 and 40 are formed by vapor deposition or the like, which is well known to those skilled in the art. The metal electrode turns 41 to 45 are formed to be electrically connected to the transparent electrode turns 21 to 25, respectively.In such a structure, the semiconductor layer is sandwiched between the transparent electrode and the metal electrode. For example, sunlight incident on the area A in Figure 1 is converted into electricity and becomes a so-called power generation area (effective area), but the connection area B.T.
In other words, the ends C and D become non-power generation regions (ineffective regions).

この非発電領域は、製造プロセスを改良することにより
、その面積を減少させることが出来るが、金属電極々透
明電極の接触部分は接触抵抗による電力損失があるため
に、無視出来る小さくすることが本質的に不可能である
。従って第1図の構造の太陽箱、池は、有効面積率(全
面積に対する有効面積の割合)は高々85%位であるこ
とが経験的に分かった。
The area of this non-power generation area can be reduced by improving the manufacturing process, but since there is power loss due to contact resistance at the contact area between metal electrodes and transparent electrodes, it is essential to make it negligibly small. It is technically impossible. Therefore, it has been empirically found that the effective area ratio (ratio of effective area to total area) of a solar box or pond having the structure shown in FIG. 1 is approximately 85% at most.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような構造の薄膜太陽電池への入射光の
無効部分を減少させ、発電効率を向上することを目的と
する。
An object of the present invention is to reduce the ineffective portion of incident light to the thin-film solar cell having the structure described above, and to improve power generation efficiency.

〔発明の要点〕[Key points of the invention]

本発明は、一つの透明絶縁基板の一面側に、基板面に垂
直方向にそれぞれ透明電極、半導体薄膜、金属電極が積
層されてなる複数の光発電領域が形成され、各領域が直
列接続されるものにおいて、各領域の間に存在する区域
に面する基板の他面側に傾斜面を備えることにより、基
板の他面側に入射した光を散乱させ、その散乱光を光発
電領域に導き、実効的な効率を向上するものである。
In the present invention, a plurality of photovoltaic regions each having a transparent electrode, a semiconductor thin film, and a metal electrode laminated in a direction perpendicular to the substrate surface are formed on one side of a single transparent insulating substrate, and each region is connected in series. In the present invention, light incident on the other surface of the substrate is scattered by providing an inclined surface on the other surface of the substrate facing the area existing between the regions, and the scattered light is guided to the photovoltaic region, It improves effective efficiency.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明による第一の実施例の断面図を示してい
る。第1図に示した従来型の直列接続型太陽電池と基本
的な構成は同じであυ、ガラス基板1上に透明電極パタ
ーン21〜25.非晶質半導体層31〜35.金属電極
パターン41〜45をこの順に形成したものである。た
だし、ガラス基板下面の非発電領域の部分に、図の様に
断面三角形の溝50〜55を切っである。こうすること
によって、例えば溝52に矢線で示した入射光6がある
と、入射光の一部61は溝の部分の界面で屈折し発電領
域に達する。一方反射した光62も同様に別の発電領域
に達する。発電領域Aの幅が7.7 ygm 、無効領
域Bの幅が20朋、ガラス板1の厚さが1.1顛の太陽
電池に、ダイヤモンドのグラインダで溝を付けて実験し
たところ、電流が従来型に比較して、6qb増加した。
FIG. 2 shows a sectional view of a first embodiment according to the invention. The basic structure is the same as the conventional series-connected solar cell shown in FIG. 1, and transparent electrode patterns 21 to 25. Amorphous semiconductor layers 31 to 35. Metal electrode patterns 41 to 45 are formed in this order. However, as shown in the figure, grooves 50 to 55 having a triangular cross section are cut in the non-power generation area on the lower surface of the glass substrate. By doing this, for example, when there is incident light 6 shown by the arrow in the groove 52, a part of the incident light 61 is refracted at the interface of the groove portion and reaches the power generation region. On the other hand, the reflected light 62 similarly reaches another power generation area. In an experiment, a groove was made using a diamond grinder on a solar cell in which the width of the power generating area A was 7.7 ygm, the width of the ineffective area B was 20 ygm, and the thickness of the glass plate 1 was 1.1 ygm. Compared to the conventional type, it has increased by 6qb.

単純計算するとこれは無効領域に入射した光の約1/4
が生きたことになる。
According to simple calculations, this is approximately 1/4 of the light incident on the ineffective area.
is now alive.

第3図は本発明による第2の実施例の断面図である。基
本的な構成は従来型と同じであるが、ガラス基板表面の
非発電領域の部分に図の様にすシガラス状の凹凸がある
粗面70〜75を設ける0この実施例においても無効部
分に入射した光が散乱され一部が発電領域に達する。実
際に発電領域の幅が7.7 mm 、無効領域の幅が2
. Omm 、ガラス板1の厚さが11朋の太陽電池に
、サンドブラストですりガラス面70〜75を形成し実
験したところ、電流が約4チ増加し′fC,0 以上の実施例では、ガラス板1の下面にグラインダで溝
を付けるかサンドブラストで粗面をつくるfllを示し
たが、それ以外の方法によって基板表面に大小を問わず
傾斜面を形成して入射光を散乱するように処理してもよ
い0 〔発明の効果〕 本発明は共通基板上に複数の光発電領域を形成し、直列
接続する場合に必然的に生ずる接続のための領域に入射
する光の全部を無効にしないために、光の入射面に溝、
あるいは粗面のような傾斜面を形成してその傾斜面に入
射した光を散乱さ−ぎ、発電領域に入射させて光発電に
寄与させるものでこれにより太陽電池の起電流が増加し
、変換効率の向上が得られるのでその効果は極めて大で
ある。
FIG. 3 is a sectional view of a second embodiment according to the invention. The basic configuration is the same as the conventional type, but rough surfaces 70 to 75 with glass-like unevenness are provided in the non-power generation area of the surface of the glass substrate as shown in the figure. The incident light is scattered and a portion reaches the power generation area. Actually, the width of the power generation area is 7.7 mm, and the width of the ineffective area is 2.
.. Omm, when an experiment was carried out by forming ground glass surfaces 70 to 75 by sandblasting on a solar cell in which the thickness of the glass plate 1 was 11 mm, the current increased by about 4 inches. Although we have shown that a rough surface is created by making grooves on the bottom surface of the substrate with a grinder or by sandblasting, it is also possible to form sloped surfaces of any size on the surface of the substrate using other methods to scatter incident light. Good 0 [Effect of the Invention] The present invention forms a plurality of photovoltaic regions on a common substrate, and in order not to invalidate all the light incident on the connection region that inevitably occurs when connecting them in series, Grooves on the light incident surface,
Alternatively, a sloped surface such as a rough surface is formed and the light incident on the slope is scattered and incident on the power generation area to contribute to photovoltaic power generation. This increases the electromotive current of the solar cell and converts it. The effect is extremely large because efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直列接続型薄膜太陽電池の断面図、第2
図は本発明の一実施例の断面図、第3図は別の実施例の
断面図である。 1 透明絶縁基板、21〜25 透明電極、31〜35
・・・非晶質半導体層、40〜45 金属電極、50〜
55・・溝、70〜75・・粗面。
Figure 1 is a cross-sectional view of a conventional series-connected thin film solar cell;
The figure is a cross-sectional view of one embodiment of the present invention, and FIG. 3 is a cross-sectional view of another embodiment. 1 Transparent insulating substrate, 21-25 Transparent electrode, 31-35
... Amorphous semiconductor layer, 40-45 Metal electrode, 50-
55...Groove, 70-75...Rough surface.

Claims (1)

【特許請求の範囲】 1)一つの透明絶縁基板の一面側に、基板面に垂直方向
にそれぞれ透明電極、半導体薄膜、金属電極が積層され
てなる複数の光発電領域が形成され、各領域が直列接続
されるものにおいて、各領域の間に存在する区域に面す
る基板の他面側に傾斜面が形成されたことを特徴とする
薄膜太陽電池02、特許請求の範囲第1項記載の電池に
おいて、傾斜面が基板表面の溝として形成されたことを
特徴とする薄膜太陽電池。 3)特許請求の範囲第1項記載の電池において、傾斜面
が粗面として形成されたことを特徴とする薄膜太陽電池
[Claims] 1) A plurality of photovoltaic regions each having a transparent electrode, a semiconductor thin film, and a metal electrode laminated in a direction perpendicular to the substrate surface are formed on one side of one transparent insulating substrate, and each region is Thin film solar cell 02, which is connected in series and is characterized in that an inclined surface is formed on the other surface of the substrate facing the area between the regions, the cell according to claim 1. A thin film solar cell characterized in that the inclined surface is formed as a groove on the surface of the substrate. 3) A thin film solar cell according to claim 1, characterized in that the inclined surface is formed as a rough surface.
JP58087195A 1983-05-18 1983-05-18 Thin film solar battery Pending JPS59213177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58087195A JPS59213177A (en) 1983-05-18 1983-05-18 Thin film solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58087195A JPS59213177A (en) 1983-05-18 1983-05-18 Thin film solar battery

Publications (1)

Publication Number Publication Date
JPS59213177A true JPS59213177A (en) 1984-12-03

Family

ID=13908197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58087195A Pending JPS59213177A (en) 1983-05-18 1983-05-18 Thin film solar battery

Country Status (1)

Country Link
JP (1) JPS59213177A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019176A (en) * 1990-03-20 1991-05-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thin solar cell and lightweight array
WO2008051275A3 (en) * 2006-03-18 2009-02-12 Solyndra Inc Monolithic integration nonplanar solar cells
JP2009231499A (en) * 2008-03-21 2009-10-08 Mitsubishi Electric Corp Photoelectric conversion device
JP2012532444A (en) * 2009-06-30 2012-12-13 エルジー イノテック カンパニー リミテッド Solar cell and manufacturing method thereof
JP2015057836A (en) * 2009-07-14 2015-03-26 エイ・ジィ・シィ・フラット・グラス・ノース・アメリカ・インコーポレイテッドAgc Flat Glass North America,Inc. Photovoltaic device with patterned glass concentrator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019176A (en) * 1990-03-20 1991-05-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thin solar cell and lightweight array
WO2008051275A3 (en) * 2006-03-18 2009-02-12 Solyndra Inc Monolithic integration nonplanar solar cells
JP2009231499A (en) * 2008-03-21 2009-10-08 Mitsubishi Electric Corp Photoelectric conversion device
JP2012532444A (en) * 2009-06-30 2012-12-13 エルジー イノテック カンパニー リミテッド Solar cell and manufacturing method thereof
US9799788B2 (en) 2009-06-30 2017-10-24 Lg Innotek Co., Ltd. Solar battery and method for manufacturing the same
JP2015057836A (en) * 2009-07-14 2015-03-26 エイ・ジィ・シィ・フラット・グラス・ノース・アメリカ・インコーポレイテッドAgc Flat Glass North America,Inc. Photovoltaic device with patterned glass concentrator

Similar Documents

Publication Publication Date Title
US8294021B2 (en) Photovoltaic device and method for manufacturing the same
JP2006332453A (en) Thin film solar battery and method for manufacturing the same
JPH0680837B2 (en) Photoelectric conversion element with extended optical path
US8507310B2 (en) Method for manufacturing thin-film photoelectric conversion device
KR20090098244A (en) Method of manufacturing photoelectric device
JPH04127580A (en) Multi-junction type amorphous silicon solar cell
US9711669B2 (en) Thin-film photoelectric converter
JPS59213177A (en) Thin film solar battery
US9087953B2 (en) Solar cell module and method for manufacturing the same
JPS61278171A (en) Thin film photoelectric conversion device
JP5266375B2 (en) Thin film solar cell and manufacturing method thereof
JP2010287715A (en) Thin film solar cell and method of manufacturing the same
KR20130115463A (en) Thin film solar cell module
JPH0766435A (en) Photovoltaic device
JPS6143869B2 (en)
JPS62142368A (en) Manufacture of thin film semiconductor device
JP2004260013A (en) Photoelectric converter and its manufacturing method
JPH05343715A (en) Thin film solar cell
JPS6152992B2 (en)
JP2009231499A (en) Photoelectric conversion device
US20230197864A1 (en) Photovoltaic cell with passivated contacts and with non-reflective coating
JP2003101047A (en) Laminated solar battery device
KR20110124939A (en) Thin film type solar cell and method for manufacturing the same
JPH0883922A (en) Solar cell and manufacture thereof
JP2746074B2 (en) Manufacturing method of amorphous silicon solar cell