JPH04127580A - Multi-junction type amorphous silicon solar cell - Google Patents

Multi-junction type amorphous silicon solar cell

Info

Publication number
JPH04127580A
JPH04127580A JP2247141A JP24714190A JPH04127580A JP H04127580 A JPH04127580 A JP H04127580A JP 2247141 A JP2247141 A JP 2247141A JP 24714190 A JP24714190 A JP 24714190A JP H04127580 A JPH04127580 A JP H04127580A
Authority
JP
Japan
Prior art keywords
junction
amorphous silicon
layer
cell
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2247141A
Other languages
Japanese (ja)
Other versions
JPH0793451B2 (en
Inventor
Haruo Ito
晴夫 伊藤
Sunao Matsubara
松原 直
Shinichi Muramatsu
信一 村松
Juichi Shimada
嶋田 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2247141A priority Critical patent/JPH0793451B2/en
Publication of JPH04127580A publication Critical patent/JPH04127580A/en
Publication of JPH0793451B2 publication Critical patent/JPH0793451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enhance a short-circuit current in density and curve factor by a method wherein an intermediate layer which reflects light whose wavelength is smaller than a prescribed value is provided between pin junction cells. CONSTITUTION:A transparent SnO2 electrode 2 with a 8000Angstrom thickness is provided onto a glass board 1, and a first junction cell is formed thereon through a plasma CVD method keeping the board 1 at a temperature of 250 deg.C. That is, a B doped hydrogenated amorphous silicon carbide P layer 3, a non-doped hydrogenated amorphous silicon I layer 4, and a P doped hydrogenated microcrystalline silicon N layer 5 are formed. An Sb doped SnO2 film 6 is formed on the whole surface as thick as 1000Angstrom . A stripe-like Ta2O5 film 7 is deposited thereon. Then, as a second junction cell, a B doped hydrogenated microcrystalline silicon P layer 8, a non-doped hydrogenated amorphous silicon I layer 4, and a P doped hydrogenated microcrystalline silicon N layer 5 are formed the same as the first junction cell.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、短絡電流密度と曲線因子の高い光電変換特性
に優れた多接合型アモルファスシリコン系太陽電池に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multijunction type amorphous silicon solar cell having excellent photoelectric conversion characteristics with high short circuit current density and fill factor.

〔従来の技術〕[Conventional technology]

従来の多接合型アモルファスシリコン系太陽電池は、特
開昭61−25117号公報に記載のように、複数個の
pin接合セルを単に積層した構造のものである。
A conventional multijunction type amorphous silicon solar cell has a structure in which a plurality of pin junction cells are simply stacked, as described in Japanese Patent Application Laid-Open No. 61-25117.

他方、pin接合セルとpin接合セルの間に透光性の
金属薄膜、酸化物、フッ化物、窒化物のいずれかを形成
し、np接合のオーミック特性を向上させた多接合型(
多層構造)のアモルファスシリコン系太陽電池が特開昭
60−140441号公報において提案されている。
On the other hand, there are multi-junction types (in which the ohmic characteristics of the np junction are improved by forming a transparent metal thin film, oxide, fluoride, or nitride between the pin junction cells).
An amorphous silicon solar cell with a multilayer structure has been proposed in Japanese Patent Laid-Open No. 140441/1983.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の多接合型のアモルファスシリコン系太陽
電池の光電流の分光感度特性を第4図に示す。図におい
て、光入射側から第1接合セル、第2接合セル、第3接
合セルと呼び、各接合セルの分光感度特性を示している
。第4図において。
FIG. 4 shows the spectral sensitivity characteristics of the photocurrent of the conventional multi-junction type amorphous silicon solar cell described above. In the figure, the cells are called a first junction cell, a second junction cell, and a third junction cell from the light incident side, and the spectral sensitivity characteristics of each junction cell are shown. In Fig. 4.

第1接合セルの分光感度が、長波長側でなだらかに減少
している理由は次のとおりであると考えられる。すなわ
ち、多接合型のアモルファスシリコン系太陽電池では各
接合セルの出力電流が同じになるように、第1接合セル
の1層膜厚は薄く(1000Å以下)設定されている。
The reason why the spectral sensitivity of the first junction cell gradually decreases on the longer wavelength side is considered to be as follows. That is, in a multijunction type amorphous silicon solar cell, the thickness of one layer of the first junction cell is set to be thin (1000 Å or less) so that the output current of each junction cell is the same.

したがって、第1接合セルでは入射光が充分吸収されな
いために、その分光感度は長波長領域において漸減する
Therefore, since the first junction cell does not absorb enough incident light, its spectral sensitivity gradually decreases in the long wavelength region.

この吸収しきれない光が第2接合セルで吸収され光電変
換される。上記の吸収しきれない光は、第1接合セルに
おいても第2接合セルにおいても中途半端に吸収される
ため、この波長領域光に対する光電変換効率は他の波長
領域の光に対する光電変換効率よりも悪くなっている。
This light that cannot be absorbed is absorbed by the second junction cell and photoelectrically converted. The above-mentioned light that cannot be absorbed is absorbed halfway in both the first junction cell and the second junction cell, so the photoelectric conversion efficiency for light in this wavelength range is higher than the photoelectric conversion efficiency for light in other wavelength ranges. It's getting worse.

なお、セル特性としては曲線因子が悪くなる。そして、
第2接合セルの長波長側分光感度も、第1接合セル程で
はないがなだらかに減少し、第2接合セルと第3接合セ
ルの間においても上記第1接合セル/第2接合セル間と
同様の現象が生じる。
Note that, as a cell characteristic, the fill factor becomes worse. and,
The long wavelength side spectral sensitivity of the second junction cell also decreases gradually, although not as much as the first junction cell, and between the second junction cell and the third junction cell, it also decreases between the first junction cell and the second junction cell. A similar phenomenon occurs.

また、上記従来技術における多接合型アモルファスシリ
コン系太陽電池に設けられている金属薄膜等は、np接
合のオーミック特性を良くするためのもので、単なる導
電性の光透過膜であり、この場合においても上記の分光
感度特性低下の問題は残る。
In addition, the metal thin film etc. provided in the multi-junction type amorphous silicon solar cell in the above-mentioned conventional technology are intended to improve the ohmic characteristics of the np junction, and are simply a conductive light-transmitting film. However, the above-mentioned problem of decreased spectral sensitivity characteristics remains.

本発明の目的は、上記従来技術における問題点を解決し
、短絡電流密度と曲線因子が高く、光電変換効率に優れ
た多接合型アモルファスシリコン系太陽電池を提供する
ことにある。
An object of the present invention is to solve the problems in the prior art described above, and to provide a multijunction amorphous silicon solar cell that has a high short-circuit current density and a high fill factor, and has excellent photoelectric conversion efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

上記本発明の目的を達成するために、多接合型アモルフ
ァスシリコン系太陽電池を構成する第1接合セルと第2
接合セルとの間に、第1接合セルの分光感度が漸減して
いる長波長側の波長領域内の特定波長より短波長の光の
みを反射する中間層を形成する。また、接合セルの数が
3個以上の時は、第2接合セルと第3接合セルとの間に
も、第2接合セルの分光感度が漸減している長波長側の
波長領域内の特定波長より短波長の光のみを反射する中
間層を形成する。この中間層は金属の酸化膜、窒化膜の
うちの少なくとも1種からなる中間層であることが好ま
しい、また、上記中間層はP、i、n各層よりも屈折率
の小さい金属の酸化物、窒化物、フッ化物のうちの少な
くとも1種からなる中間層であってもよい。さらに、上
記中間層は導電性光透過膜と絶縁性膜との積層膜であっ
てもよい。また、本発明の多接合型アモルファスシリコ
ン系太陽電池を構成する各pin接合セルは、アモルフ
ァスシリコンおよびアモルファスシリコンゲルマニウム
からなることが好ましい。
In order to achieve the above object of the present invention, a first junction cell and a second junction cell constituting a multijunction type amorphous silicon solar cell are used.
An intermediate layer is formed between the first junction cell and the intermediate layer that reflects only light having a wavelength shorter than a specific wavelength within a wavelength region on the long wavelength side in which the spectral sensitivity of the first junction cell gradually decreases. In addition, when the number of junction cells is three or more, a specific wavelength region on the long wavelength side where the spectral sensitivity of the second junction cell gradually decreases is also located between the second junction cell and the third junction cell. An intermediate layer is formed that reflects only light with a shorter wavelength. This intermediate layer is preferably an intermediate layer made of at least one of a metal oxide film and a nitride film, and the intermediate layer is made of a metal oxide having a refractive index lower than that of each of the P, i, and n layers. The intermediate layer may be made of at least one of nitrides and fluorides. Furthermore, the intermediate layer may be a laminated film of a conductive light-transmitting film and an insulating film. Furthermore, each pin junction cell constituting the multijunction amorphous silicon solar cell of the present invention is preferably made of amorphous silicon and amorphous silicon germanium.

〔作用〕[Effect]

本発明の多接合型アモルファスシリコン系太陽電池を構
成する各接合セルの間に設けた中間層により、特定波長
より短波長の光は、第1接合セルにおいて充分に吸収さ
れ、上記波長より長波長の光は第2接合セルで吸収され
て効率よく光電変換される。また、第2接合セルと第3
接合セルの間においても、上記と類似の膜からなる中間
層を形成することにより上記同様の作用が生じる。した
がって、第1接合セルと第2接合セルおよび第2接合セ
ルと第3接合セルの長波長側分光感度特性は、従来の多
接合型アモルファスシリコン系太陽電池の分光感度特性
よりも急峻となると同時に、分光感度がクロスする波長
領域光下のセル特性、特に曲線因子が向上し、光電変換
効率の高い多接合型アモルファスシリコン系太陽電池が
得られる。
Due to the intermediate layer provided between each junction cell constituting the multijunction type amorphous silicon solar cell of the present invention, light having a wavelength shorter than a specific wavelength is sufficiently absorbed in the first junction cell, and light having a wavelength longer than the above wavelength is sufficiently absorbed by the first junction cell. The light is absorbed by the second junction cell and efficiently converted into electricity. In addition, the second junction cell and the third
The same effect as described above occurs between the junction cells by forming an intermediate layer made of a film similar to that described above. Therefore, the long wavelength side spectral sensitivity characteristics of the first junction cell and the second junction cell and the second junction cell and the third junction cell are steeper than the spectral sensitivity characteristics of the conventional multijunction type amorphous silicon solar cell. , the cell characteristics under light in the wavelength range where the spectral sensitivities cross, especially the fill factor, are improved, and a multijunction amorphous silicon solar cell with high photoelectric conversion efficiency can be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を挙げ、図面を用いてさらに詳
細に説明する。
Hereinafter, one embodiment of the present invention will be described in more detail with reference to the drawings.

(実施例 1) 第1図に、本実施例において作製した多接合型アモルフ
ァスシリコン系太陽電池の構成を示す。
(Example 1) FIG. 1 shows the structure of a multijunction type amorphous silicon solar cell produced in this example.

図に示すごとく、まず、ガラス基板1上に、8000人
のSnO,透明電極2を形成し、この上にプラズマCV
D法を用い基板温度250℃で第1接合セルを形成する
。まずB2H,ガスとS i H,ガスとを混合したガ
スを用いて、Bドープ水素化アモルファスシリコンカー
バイドp層3、次に、SiH,ガスを用いてノンドープ
水素化アモルファスシリコ21層4、さらに、PH,ガ
スとSiH4ガスとを混合したガスを用いて、Pドープ
水素化微結晶シリコンn層5を形成する。各層の厚さは
、2層100人、1層600人、n層lOQ程度度とす
る。この全面に、基板温度150〜250℃の範囲内で
真空蒸着法にてsbドープSnO,膜6を100人の厚
さ形成する。
As shown in the figure, first, 8,000 SnO transparent electrodes 2 are formed on a glass substrate 1, and then a plasma CV
A first junction cell is formed using method D at a substrate temperature of 250°C. First, a B-doped hydrogenated amorphous silicon carbide p layer 3 is formed using a mixture of B2H gas and SiH gas, then a non-doped hydrogenated amorphous silicon 21 layer 4 is formed using SiH gas, and A P-doped hydrogenated microcrystalline silicon n layer 5 is formed using a mixture of PH gas and SiH4 gas. The thickness of each layer is approximately 100 people for 2 layers, 600 people for 1 layer, and 10Q for the n layer. On this entire surface, an sb-doped SnO film 6 is formed to a thickness of 100 nm by vacuum evaporation at a substrate temperature of 150 to 250°C.

この上に、50μm間隔のストライプ状のTa、O,膜
7を形成する8次に、第2接合セルとして、第1接合セ
ル同様に、Bドープ水素化微結晶シリコンp層8.ノン
ドープ水素化アモルファスシリコ21層4、Pドープ水
素化微結晶シリコンn層5を形成する。各層の厚さは、
2層100人、1層1800人、n層100程度度とす
る。
On top of this, a striped Ta, O, film 7 with a spacing of 50 μm is formed as a second junction cell, and a B-doped hydrogenated microcrystalline silicon p layer 8. A non-doped hydrogenated amorphous silicon 21 layer 4 and a P-doped hydrogenated microcrystalline silicon n layer 5 are formed. The thickness of each layer is
There will be 100 people in the second layer, 1,800 people in the first layer, and about 100 people in the n layer.

この全面に、sbドープSnO,膜6と膜厚50人のノ
ンドープ窒化シリコン膜12を形成する。
On this entire surface, an sb-doped SnO film 6 and a non-doped silicon nitride film 12 with a thickness of 50 mm are formed.

さらに、この上に第3接合セルとしてBドープ水素化微
結晶シリコンp層8、ノンドープ水素化アモルファスシ
リコンゲルマニウム(a−8iGe:H)1層14、P
ドープ水素化微結晶シリコンn層5を順次形成する。ノ
ンドープ水素化アモルファスシリコンゲルマニウムi層
14は、SiH4ガスとGeH,ガスを混合したガスを
用いて形成する。
Further, on top of this, as a third junction cell, a B-doped hydrogenated microcrystalline silicon p layer 8, a non-doped hydrogenated amorphous silicon germanium (a-8iGe:H) layer 14, a P
Doped hydrogenated microcrystalline silicon n-layers 5 are sequentially formed. The non-doped hydrogenated amorphous silicon germanium i-layer 14 is formed using a mixture of SiH4 gas and GeH gas.

各層の厚さは、2層100人、1層5000人、n層1
00λ程度とする。最後に、ITO(Indium T
in 0xide−I nとSnの酸化物)膜16とA
g膜17を形成する。本実施例において作製した多接合
型アモルファスシリコン系太陽電池の光電変換特性は、
擬似太陽光100mW/aJ照射下で、曲線因子0.6
8.変換効率12.7%が得られ、np接合間に中間層
を有しない従来の3層構造の太陽電池(曲線因子:0.
62、変換効率:11.2%)に比べて優れた特性を示
した。
The thickness of each layer is 2 layers 100 people, 1 layer 5000 people, n layer 1
It is assumed to be about 00λ. Finally, ITO (Indium T
in Oxide-I n and Sn oxide) film 16 and A
g film 17 is formed. The photoelectric conversion characteristics of the multijunction amorphous silicon solar cell fabricated in this example are as follows:
Fill factor 0.6 under simulated sunlight 100mW/aJ irradiation
8. A conversion efficiency of 12.7% was obtained, compared to a conventional three-layer solar cell without an intermediate layer between np junctions (fill factor: 0.
62, conversion efficiency: 11.2%).

(実施例 2) 第2図に、本実施例において作製した多接合型アモルフ
ァスシリコン系太陽電池の構成を示す。
(Example 2) FIG. 2 shows the configuration of a multijunction type amorphous silicon solar cell produced in this example.

図に示すごとく、まず、SUS基板21上に、まず、T
i膜22、Ag膜17およびTi膜22よりなる3層電
極を形成する。この3層電極上に。
As shown in the figure, first, T is placed on the SUS substrate 21.
A three-layer electrode consisting of an i film 22, an Ag film 17, and a Ti film 22 is formed. on this three-layer electrode.

プラズマCVD法で、基板温度250℃にてPH,ガス
とSiH,ガスとを混合したガスを用いて、Pドープ水
素化微結晶シリコンn層5を、次に、SiH,ガスとG
 e H,ガスを混合したガスを用いて、ノンドープ水
素化アモルファスシリコンゲルマニウム(a−8iGe
:H)1層14を、さらにその上に、B、H,ガスとS
 i H,ガスとを混合したガスを用いて、Bドープ水
素化微結晶シリコンp層8を順次形成する。各層の膜厚
は1例えば1層300人、1層5000人、p層100
程度度で良い0次に、その全面に、基板温度150〜2
50℃の範囲内で真空蒸着法にてsbドープSnO□膜
6を100人の厚さに形成する。
By the plasma CVD method, the P-doped hydrogenated microcrystalline silicon n-layer 5 was formed using a mixed gas of PH, gas, SiH, and gas at a substrate temperature of 250°C.
Non-doped hydrogenated amorphous silicon germanium (a-8iGe
:H) 1 layer 14, and on top of that, B, H, gas and S
A B-doped hydrogenated microcrystalline silicon p layer 8 is sequentially formed using a mixed gas of iH and gas. The thickness of each layer is 1. For example, 300 layers per layer, 5000 layers per layer, 100 layers per layer.
The substrate temperature should be 150~2 on the entire surface.
An sb-doped SnO□ film 6 is formed to a thickness of 100 nm by vacuum evaporation within a temperature range of 50°C.

この上に、30μm間隔のストライブ状の高抵抗金属酸
化膜であるTa、Os膜7を形成する。しかる後、さら
に、Pドープ水素化微結晶シリコンn層5、ノンドープ
水素化アモルファスシリコンi層4.Bドープ水素化微
結晶シリコンp層8の順に形成する。各層の厚さは、n
層75人、1層4000人、p層80程度度とする。こ
の上に、膜厚100人のsbドープSnO,膜6と膜厚
50人のTa、O,膜7を形成する。しかる後、さらに
、Pドープ水素化微結晶シリコンn層5、ノンドープ水
素化アモルファス29121層4.Bドープ水素化アモ
ルファスシリコンカーバイドp層3の順に形成する。各
層の厚さは、9層75人、1層1800人、p層80程
度度とする。最後に、全面にITOTieを1800人
の厚さ形成する。
On top of this, a Ta, Os film 7, which is a high resistance metal oxide film, is formed in the form of stripes with an interval of 30 μm. Thereafter, a P-doped hydrogenated microcrystalline silicon n-layer 5, a non-doped hydrogenated amorphous silicon i-layer 4. A B-doped hydrogenated microcrystalline silicon p layer 8 is formed in this order. The thickness of each layer is n
There will be 75 people in each layer, 4000 people in each layer, and about 80 people in the p layer. On top of this, an sb-doped SnO film 6 with a thickness of 100 and a Ta, O film 7 with a thickness of 50 are formed. Thereafter, a P-doped hydrogenated microcrystalline silicon n layer 5, a non-doped hydrogenated amorphous 29121 layer 4. A B-doped hydrogenated amorphous silicon carbide p layer 3 is formed in this order. The thickness of each layer is 75 people for 9 layers, 1800 people for 1 layer, and 80 degrees for the p layer. Finally, ITOTie is formed to a thickness of 1800 mm over the entire surface.

本実施例において作製した多接合型アモルファスシリコ
ン系太陽電池の光電変換特性は、擬似太陽光100mW
/aj照射下で、曲線因子0.70、変換効率13.2
%が得られ、np接合間に中間層を有しない従来の3層
構造の太陽電池(曲線因子:0.62、変換効率:11
.2%)に比べて優れた特性を示した。
The photoelectric conversion characteristics of the multi-junction amorphous silicon solar cell produced in this example are as follows: 100 mW of simulated sunlight
/aj under irradiation, fill factor 0.70, conversion efficiency 13.2
%, compared to a conventional three-layer solar cell without an intermediate layer between np junctions (fill factor: 0.62, conversion efficiency: 11
.. 2%) showed superior properties.

(実施例 3) 第3図に1本実施例において作製した多接合型アモルフ
ァスシリコン系太陽電池の構成を示す。
(Example 3) FIG. 3 shows the structure of a multijunction type amorphous silicon solar cell produced in this example.

実施例2と同様に、SUS基板21上に、まずTi膜2
2、Ag膜17およびTi膜22よりなる3層電極を形
成し、該電極上に第1接合セルとして、Pドープ水素化
微結晶シリコンn層5を。
As in Example 2, a Ti film 2 is first deposited on the SUS substrate 21.
2. A three-layer electrode consisting of an Ag film 17 and a Ti film 22 is formed, and a P-doped hydrogenated microcrystalline silicon n layer 5 is formed on the electrode as a first junction cell.

a−8iGe:Hi層14を、Bドープ水素化微結晶シ
リコンp層8を順次形成する。次に、その全面に、sb
ドープSnO□膜6を100人の厚さに形成する。この
上に、100μm間隔の10μm幅のストライプ状Cr
電極23と、その隙間にTie、膜24を形成する。さ
らに、sbドープS n O,膜6を100人の厚さ形
成する。しかる後、第2接合セルとして実施例2と同様
に、Pドープ水素化微結晶シリコンn層5、ノンドープ
水素化アモルファス29121層4、Bドープ水素化微
結晶シリコンp層8の順に形成する。この上に、膜厚1
00人のsbドープSnO,膜6を、ついで、Cr電極
23とTa、O,膜7をストライプ状に形成する。しか
る後、第3接合セルとして実施例2同様に、Pドープ水
素化微結晶シリコンn層5、ノンドープ水素化アモルフ
ァス29121層4、Bドープ水素化アモルファスシリ
コンカーバイドp層3の順に形成する。最後に、全面に
ITOTieを1800人の厚さ形成する。本実施例に
おいて作製した多接合型アモルファスシリコン系太陽電
池の光電変換特性は、擬似太陽光100mW/ai照射
下で、曲線因子0.69、変換効率13.0%が得られ
、np接合間に中間層を有しない従来の3層構造太陽電
池(曲線因子:0.62、変換効率:11.2%)に比
べて優れた特性を示した。
An a-8iGe:Hi layer 14 and a B-doped hydrogenated microcrystalline silicon p layer 8 are sequentially formed. Next, on the entire surface, sb
A doped SnO□ film 6 is formed to a thickness of 100 mm. On top of this, striped Cr with a width of 10 μm and an interval of 100 μm is applied.
A tie and a film 24 are formed on the electrode 23 and in the gap therebetween. Further, an sb-doped SnO film 6 is formed to a thickness of 100 nm. Thereafter, as in Example 2, a P-doped hydrogenated microcrystalline silicon n-layer 5, a non-doped hydrogenated amorphous 29121 layer 4, and a B-doped hydrogenated microcrystalline silicon p-layer 8 are formed in this order as a second junction cell. On top of this, a film thickness of 1
Then, a Cr electrode 23 and a Ta, O film 7 are formed in a stripe shape. Thereafter, as in Example 2, a P-doped hydrogenated microcrystalline silicon n-layer 5, a non-doped hydrogenated amorphous 29121 layer 4, and a B-doped hydrogenated amorphous silicon carbide p-layer 3 are formed in this order as a third junction cell. Finally, ITOTie is formed to a thickness of 1800 mm over the entire surface. The photoelectric conversion characteristics of the multi-junction amorphous silicon solar cell fabricated in this example showed that a fill factor of 0.69 and a conversion efficiency of 13.0% were obtained under 100 mW/ai irradiation of simulated sunlight, with a It exhibited superior characteristics compared to a conventional three-layer solar cell without an intermediate layer (fill factor: 0.62, conversion efficiency: 11.2%).

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく1本発明の多接合型アモルフ
ァスシリコン系太陽電池において、第1接合セルと第2
接合セルの間に中間層を設けることにより、特定波長よ
り短波長の光は第1接合セルにおいて充分に吸収され、
該波長より長波長の光は第2接合セルで吸収され効率よ
く光電変換される。また、第2接合セルと第3接合セル
の間においても上記と同様の中間層を設けることにより
上記と同様の効果が得られる。したがって、光電変換効
率の高い多接合型アモルファスシリコン系太陽電池を実
現することができる。
As explained in detail above, in the multi-junction amorphous silicon solar cell of the present invention, the first junction cell and the second
By providing an intermediate layer between the junction cells, light with a wavelength shorter than a specific wavelength is sufficiently absorbed in the first junction cell,
Light with a wavelength longer than this wavelength is absorbed by the second junction cell and efficiently converted into electricity. Moreover, the same effect as above can be obtained by providing an intermediate layer similar to the above between the second junction cell and the third junction cell. Therefore, a multijunction type amorphous silicon solar cell with high photoelectric conversion efficiency can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1において作製した多接合型ア
モルファスシリコン系太陽電池の構成の一例を示す模式
図、第2図は本発明の実施例2において作製した多接合
型アモルファスシリコン系太陽電池の構成の一例を示す
模式図、第3図は本発明の実施例3において作製した多
接合型アモルファスシリコン系太陽電池の構成の一例を
示す模式図、第4図は従来の多接合型のアモルファスシ
リコン系太陽電池の光電流の分光感度特性を示すグラフ
である。 1・・・ガラス基板    2・・・SnO,透明電極
3・・・Bドープ水素化アモルファスシリコンカーバイ
ドp層 4・・・ノンドープ水素化アモルファス29121層5
・・・Pドープ水素化微結晶シリコンn層6・・・sb
ドープSnO□膜 7−Ta205膜 8・・・Bドープ水素化微結晶シリコンp層12・・・
ノンドープ窒化シリコン膜 14・・・ノンドープ水素化アモルファスシリコンゲル
マニウム(a−8iGe :H)i層16−ITO(I
nとSnの酸化物)膜17・・・Ag膜     21
・・・SUS基板22・・・Ti膜     23・・
・Cr電極24・・・T i O,膜 第 7目 先
FIG. 1 is a schematic diagram showing an example of the structure of a multijunction type amorphous silicon solar cell manufactured in Example 1 of the present invention, and FIG. 2 is a schematic diagram showing an example of the configuration of a multijunction type amorphous silicon solar cell manufactured in Example 2 of the present invention. FIG. 3 is a schematic diagram showing an example of the structure of a multi-junction type amorphous silicon solar cell produced in Example 3 of the present invention, and FIG. 3 is a graph showing the spectral sensitivity characteristics of photocurrent of an amorphous silicon solar cell. 1... Glass substrate 2... SnO, transparent electrode 3... B-doped hydrogenated amorphous silicon carbide p layer 4... Non-doped hydrogenated amorphous 29121 layer 5
...P-doped hydrogenated microcrystalline silicon n layer 6...sb
Doped SnO□ film 7-Ta205 film 8... B-doped hydrogenated microcrystalline silicon p layer 12...
Non-doped silicon nitride film 14...Non-doped hydrogenated amorphous silicon germanium (a-8iGe:H) i layer 16-ITO (I
n and Sn oxide) film 17...Ag film 21
...SUS substrate 22...Ti film 23...
・Cr electrode 24...T i O, film 7th point

Claims (1)

【特許請求の範囲】 1、複数のpin接合セルを積層して構成した多接合型
アモルファスシリコン系太陽電池において、上記pin
接合セルとpin接合セルとの間に、特定波長よりも短
い波長の光を反射する中間層を設けたことを特徴とする
多接合型アモルファスシリコン系太陽電池。2、請求の
範囲第1項において、特定波長の光は、光入射側のpi
n接合セルの分光感度特性が漸減する領域の波長の光で
あることを特徴とする多接合型アモルファスシリコン系
太陽電池。 3、請求の範囲第1項または第2項において、特定波長
よりも短い波長の光を反射する中間層は、金属の酸化膜
、窒化膜のうちから選ばれる少なくとも1種の薄膜から
なることを特徴とする多接合型アモルファスシリコン系
太陽電池。 4、複数のpin接合セルを積層して構成した多接合型
アモルファスシリコン系太陽電池において、上記pin
接合セルとpin接合セルとの間に、上記pin接合セ
ルを構成するp、i、n各層よりも屈折率の小さい光透
過膜からなる中間層を設けたことを特徴とする多接合型
アモルファスシリコン系太陽電池。 5、請求の範囲第4項において、pin接合セルを構成
するp、i、n各層よりも屈折率の小さい光透過膜から
なる中間層は、金属の酸化物、窒化物、フッ化物のうち
から選ばれる少なくとも1種の薄膜からなることを特徴
とする多接合型アモルファスシリコン系太陽電池。 6、請求の範囲第1項、第2項または第4項において、
中間層が導電性の光透過膜と絶縁性膜との積層膜からな
ることを特徴とする多接合型アモルファス系太陽電池。 7、請求の範囲第1項ないし第6項のいずれか1項にお
いて、多接合型アモルファスシリコン系太陽電池を構成
する各pin接合セルが、アモルファスシリコンおよび
アモルファスシリコンゲルマニウムからなることを特徴
とする多接合型アモルファスシリコン系太陽電池。
[Claims] 1. In a multi-junction amorphous silicon solar cell constructed by stacking a plurality of pin junction cells, the pin
A multi-junction amorphous silicon solar cell characterized in that an intermediate layer that reflects light with a wavelength shorter than a specific wavelength is provided between a junction cell and a pin junction cell. 2. In claim 1, the light of a specific wavelength is
A multi-junction amorphous silicon solar cell characterized in that the light has a wavelength in a region where the spectral sensitivity characteristics of the n-junction cell gradually decrease. 3. In claim 1 or 2, it is provided that the intermediate layer that reflects light with a wavelength shorter than a specific wavelength is made of at least one kind of thin film selected from metal oxide films and nitride films. Features of multi-junction amorphous silicon solar cells. 4. In a multi-junction amorphous silicon solar cell configured by stacking a plurality of pin junction cells, the pin
A multi-junction type amorphous silicon characterized in that an intermediate layer made of a light-transmitting film having a lower refractive index than each of the p, i, and n layers constituting the pin junction cell is provided between the junction cell and the pin junction cell. system solar cells. 5. In claim 4, the intermediate layer consisting of a light-transmitting film having a lower refractive index than each of the p, i, and n layers constituting the pin junction cell is made of a metal oxide, nitride, or fluoride. A multi-junction amorphous silicon solar cell comprising at least one selected thin film. 6. In claim 1, 2 or 4,
A multijunction amorphous solar cell characterized in that the intermediate layer consists of a laminated film of a conductive light-transmitting film and an insulating film. 7. In any one of claims 1 to 6, each pin junction cell constituting the multijunction amorphous silicon solar cell is made of amorphous silicon and amorphous silicon germanium. Junction type amorphous silicon solar cell.
JP2247141A 1990-09-19 1990-09-19 Multi-junction amorphous silicon solar cell Expired - Fee Related JPH0793451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2247141A JPH0793451B2 (en) 1990-09-19 1990-09-19 Multi-junction amorphous silicon solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2247141A JPH0793451B2 (en) 1990-09-19 1990-09-19 Multi-junction amorphous silicon solar cell

Publications (2)

Publication Number Publication Date
JPH04127580A true JPH04127580A (en) 1992-04-28
JPH0793451B2 JPH0793451B2 (en) 1995-10-09

Family

ID=17159044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2247141A Expired - Fee Related JPH0793451B2 (en) 1990-09-19 1990-09-19 Multi-junction amorphous silicon solar cell

Country Status (1)

Country Link
JP (1) JPH0793451B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076396A (en) * 2000-08-29 2002-03-15 Fuji Electric Corp Res & Dev Ltd Multi-junction thin-film solar cell and manufacturing method thereof
US6670543B2 (en) * 1999-07-26 2003-12-30 Schott Glas Thin-film solar cells and method of making
EP1724840A1 (en) * 2004-02-20 2006-11-22 Sharp Kabushiki Kaisha Substrate for photoelectric converter, photoelectric converter, and multilayer photoelectric converter
WO2009038083A1 (en) * 2007-09-18 2009-03-26 Mitsubishi Electric Corporation Thin-film solar cell device and method for manufacturing the same
WO2009057698A1 (en) * 2007-11-02 2009-05-07 Kaneka Corporation Thin-film photoelectric conversion device
WO2009057692A1 (en) * 2007-10-30 2009-05-07 Sanyo Electric Co., Ltd. Solar cell
JP2009117463A (en) * 2007-11-02 2009-05-28 Kaneka Corp Thin-film photoelectric conversion device
JP2009147172A (en) * 2007-12-14 2009-07-02 Kaneka Corp Multi-junction silicon thin-film photoelectric converter
US7560750B2 (en) 2003-06-26 2009-07-14 Kyocera Corporation Solar cell device
JP2009231781A (en) * 2008-03-25 2009-10-08 Kaneka Corp Multijunction silicon thin film photoelectric converter
WO2010087312A1 (en) * 2009-01-28 2010-08-05 三菱電機株式会社 Thin film photoelectric conversion device and method for manufacturing same
JP2011508430A (en) * 2007-12-21 2011-03-10 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Multi-junction photovoltaic cell
EP1798774A3 (en) * 2005-12-13 2011-05-18 The Boeing Company Multijunction solar cell with bonded transparent conductive interlayer
JP2012520563A (en) * 2009-08-19 2012-09-06 エルジー エレクトロニクス インコーポレイティド Solar cell
US8643935B2 (en) 1999-10-05 2014-02-04 Qualcomm Mems Technologies, Inc. Photonic MEMS and structures
JP2018160657A (en) * 2017-03-23 2018-10-11 株式会社東芝 Solar cell, multi-junction solar cell, solar cell module, and solar power generation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110011443A1 (en) * 2009-07-17 2011-01-20 Sanyo Electric Co., Ltd. Solar battery module and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211987A (en) * 1984-04-06 1985-10-24 Hitachi Ltd Multiplayered silicon solar battery
JPS61196583A (en) * 1985-02-25 1986-08-30 Sharp Corp Photovoltaic device
JPS6377167A (en) * 1986-09-19 1988-04-07 Sanyo Electric Co Ltd Laminated photovoltaic device
JPH02237172A (en) * 1989-03-10 1990-09-19 Mitsubishi Electric Corp Multilayer structure solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211987A (en) * 1984-04-06 1985-10-24 Hitachi Ltd Multiplayered silicon solar battery
JPS61196583A (en) * 1985-02-25 1986-08-30 Sharp Corp Photovoltaic device
JPS6377167A (en) * 1986-09-19 1988-04-07 Sanyo Electric Co Ltd Laminated photovoltaic device
JPH02237172A (en) * 1989-03-10 1990-09-19 Mitsubishi Electric Corp Multilayer structure solar cell

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670543B2 (en) * 1999-07-26 2003-12-30 Schott Glas Thin-film solar cells and method of making
US7041342B2 (en) * 1999-07-26 2006-05-09 Schott Glas Thin-film solar cells and method of making
US8643935B2 (en) 1999-10-05 2014-02-04 Qualcomm Mems Technologies, Inc. Photonic MEMS and structures
JP2002076396A (en) * 2000-08-29 2002-03-15 Fuji Electric Corp Res & Dev Ltd Multi-junction thin-film solar cell and manufacturing method thereof
US7910916B2 (en) 2003-06-26 2011-03-22 Kyocera Corporation Multi-junction type solar cell device
US7560750B2 (en) 2003-06-26 2009-07-14 Kyocera Corporation Solar cell device
EP1724840A4 (en) * 2004-02-20 2009-12-23 Sharp Kk Substrate for photoelectric converter, photoelectric converter, and multilayer photoelectric converter
US8957300B2 (en) 2004-02-20 2015-02-17 Sharp Kabushiki Kaisha Substrate for photoelectric conversion device, photoelectric conversion device, and stacked photoelectric conversion device
EP2469605A3 (en) * 2004-02-20 2014-03-05 Sharp Kabushiki Kaisha Substrate for photoelectric conversion device, photoelectric conversion device, and stacked photoelectric conversion device
JP2009060149A (en) * 2004-02-20 2009-03-19 Sharp Corp Stacked photoelectric conversion device
EP1724840A1 (en) * 2004-02-20 2006-11-22 Sharp Kabushiki Kaisha Substrate for photoelectric converter, photoelectric converter, and multilayer photoelectric converter
US11211510B2 (en) 2005-12-13 2021-12-28 The Boeing Company Multijunction solar cell with bonded transparent conductive interlayer
EP1798774A3 (en) * 2005-12-13 2011-05-18 The Boeing Company Multijunction solar cell with bonded transparent conductive interlayer
WO2009038083A1 (en) * 2007-09-18 2009-03-26 Mitsubishi Electric Corporation Thin-film solar cell device and method for manufacturing the same
JP5143136B2 (en) * 2007-09-18 2013-02-13 三菱電機株式会社 Method for manufacturing thin-film solar cell element
WO2009057692A1 (en) * 2007-10-30 2009-05-07 Sanyo Electric Co., Ltd. Solar cell
JP4940309B2 (en) * 2007-10-30 2012-05-30 三洋電機株式会社 Solar cell
WO2009057698A1 (en) * 2007-11-02 2009-05-07 Kaneka Corporation Thin-film photoelectric conversion device
US8410355B2 (en) 2007-11-02 2013-04-02 Kaneka Corporation Thin film photoelectric conversion device having a stacked transparent oxide and carbon intermediate layer
JP2009117463A (en) * 2007-11-02 2009-05-28 Kaneka Corp Thin-film photoelectric conversion device
JP2009147172A (en) * 2007-12-14 2009-07-02 Kaneka Corp Multi-junction silicon thin-film photoelectric converter
JP2011508430A (en) * 2007-12-21 2011-03-10 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Multi-junction photovoltaic cell
JP2009231781A (en) * 2008-03-25 2009-10-08 Kaneka Corp Multijunction silicon thin film photoelectric converter
JPWO2010087312A1 (en) * 2009-01-28 2012-08-02 三菱電機株式会社 Thin film photoelectric conversion device and manufacturing method thereof
WO2010087312A1 (en) * 2009-01-28 2010-08-05 三菱電機株式会社 Thin film photoelectric conversion device and method for manufacturing same
JP2012520563A (en) * 2009-08-19 2012-09-06 エルジー エレクトロニクス インコーポレイティド Solar cell
JP2018160657A (en) * 2017-03-23 2018-10-11 株式会社東芝 Solar cell, multi-junction solar cell, solar cell module, and solar power generation system

Also Published As

Publication number Publication date
JPH0793451B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JP5409007B2 (en) High efficiency solar cell and preparation method thereof
US5091764A (en) Semiconductor device having a transparent electrode and amorphous semiconductor layers
JPH04127580A (en) Multi-junction type amorphous silicon solar cell
JP2001308354A (en) Stacked solar cell
JP2006319068A (en) Multi-junction silicone thin film photoelectric converter and its manufacturing method
JP2003142709A (en) Laminated solar battery and method for manufacturing the same
KR20120070312A (en) Thin film solar cell
CN111916523A (en) Heterojunction solar cell, assembly thereof and preparation method
JP2008270562A (en) Multi-junction type solar cell
JPH0693519B2 (en) Amorphous photoelectric conversion device
CN219677267U (en) Solar cell structure
US20110030780A1 (en) Solar cell
JPH0583199B2 (en)
JP5266375B2 (en) Thin film solar cell and manufacturing method thereof
JPS6074685A (en) Photovoltaic device
JP2669834B2 (en) Stacked photovoltaic device
CN110797428A (en) Heterojunction solar cell
JPS61203665A (en) Production of amorphous silicon-type photo-diode
JP2010103347A (en) Thin film photoelectric converter
JPH0273672A (en) Film photoelectric transfer element
JP5409675B2 (en) Thin film solar cell and manufacturing method thereof
JPH0521891Y2 (en)
JP3143392B2 (en) Stacked solar cell
JP4146635B2 (en) Multilayer thin film photoelectric conversion device
JPS6276569A (en) Thin-film photoelectric conversion element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees