JP4146635B2 - Multilayer thin film photoelectric conversion device - Google Patents

Multilayer thin film photoelectric conversion device Download PDF

Info

Publication number
JP4146635B2
JP4146635B2 JP2001382072A JP2001382072A JP4146635B2 JP 4146635 B2 JP4146635 B2 JP 4146635B2 JP 2001382072 A JP2001382072 A JP 2001382072A JP 2001382072 A JP2001382072 A JP 2001382072A JP 4146635 B2 JP4146635 B2 JP 4146635B2
Authority
JP
Japan
Prior art keywords
thin film
photoelectric conversion
silicon
receiving surface
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001382072A
Other languages
Japanese (ja)
Other versions
JP2003188397A (en
Inventor
英樹 白間
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001382072A priority Critical patent/JP4146635B2/en
Publication of JP2003188397A publication Critical patent/JP2003188397A/en
Application granted granted Critical
Publication of JP4146635B2 publication Critical patent/JP4146635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【0001】
【発明の属する技術分野】
本発明は積層型シリコン系薄膜などを用いた多層型薄膜光電変換素子に関し、特に太陽電池として好適に用いることができる多層型薄膜光電変換素子に関する。
【0002】
【従来技術とその課題】
次世代民生用太陽電池の主力として大いに期待される薄膜多結晶シリコン太陽電池の高効率化のための研究が国内外で活発に行われている。とりわけ、薄膜素子に関する研究開発の中心的な課題は、限定された膜厚において太陽光を如何に効率よく吸収できるかという点であり、シングルセルにおいては光閉じ込め構造の形成によって短絡電流が大幅に向上することが各研究機関および企業から報告されている。
【0003】
一方、更なる高効率化を目指すには、上記の中心的な課題に対する有力な解決手段としての多層化は不可欠であると考えられる。すなわち、光学的バンドギャップの異なる複数の半導体層を積層し、各々の光電変換ユニットの低感度波長領域を相互に補完することにより、広い波長領域にわたって入射光を効率よく吸収することができる。
【0004】
この多層型薄膜多結晶シリコン素子の代表的な構造としては、受光面側に非晶質シリコンを光活性層とした光電変換ユニットを設け、裏面側に結晶質シリコンを光活性層とした光電変換ユニットを設けたものが挙げられる。この構造においては、一般的に受光面側の光電変換ユニットと裏面側の光電変換ユニットで発生する電流のバランス化を図るため、受光面側の光活性層、すなわち非晶質シリコン層の膜厚を比較的厚くする必要がある。
【0005】
しかしながら、プラズマCVD法等で形成される非晶質シリコン層を光活性層とした光電変換ユニットでは、膜厚が増大するにつれて光劣化率も増大するため、結果として高い変換効率を維持できないという問題があった。
【0006】
一方光劣化がない多層型薄膜多結晶シリコン素子構造として、結晶質シリコンを光活性層とした光電変換ユニットを重ねた構造が提案されている(例えば特開平10−294481)。しかしこの構造では、略同一品質の光活性層を用いた素子構造であるため、吸収できる波長領域が同じであり、シングル構造より高効率は期待できるものの、更なる高効率化には限界がある。
【0007】
本発明は、このような従来技術の課題に鑑みてなされたものであり、光劣化がほとんど生じない、高効率な多層型薄膜光電変換素子を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る多層型薄膜光電変換素子では、基板上に一方側電極を設け、この一方側電極上に一導電型半導体層、光活性層、および逆導電型半導体層から成る光電変換ユニットを複数設け、この光電変換ユニット上にさらに他方側電極を設けた多層型薄膜光電変換素子において、前記複数の光電変換ユニットのうち少なくとも2つの光電変換ユニットの光活性層が結晶質を含むシリコン系薄膜からなり、この結晶質を含む少なくとも2つのシリコン系薄膜のうち受光面側のシリコン系薄膜の体積結晶化分率が、受光面とは反対側のシリコン系薄膜の体積結晶化分率より低くなっているとともに、前記シリコン系薄膜のうち少なくとも1つのシリコン系薄膜の体積結晶化分率が受光面側から反対側に向けて大きくなるように膜厚方向に分布していることを特徴とする。
【0009】
上記多層型薄膜光電変換素子では、前記受光面側のシリコン系薄膜の体積結晶化分率が40〜80%であり、前記受光面とは反対側のシリコン系薄膜の体積結晶化分率が70%以上であることが望ましい。
【0011】
上記多層型薄膜光電変換素子では、前記受光面側のシリコン系薄膜の光学的バンドギャップが、前記受光面とは反対側のシリコン系薄膜の光学的バンドギャップより大きいことが望ましい。
【0012】
上記多層型薄膜光電変換素子では、前記複数の光電変換ユニットの光活性層のすべてが結晶質を含むシリコン系薄膜からなることが望ましい。
【0013】
上記多層型薄膜光電変換素子では、前記結晶質を含む少なくとも2つのシリコン系薄膜からなる光電変換ユニットの受光面側に、光活性層が水素を1〜5atm%含有する非晶質シリコン系薄膜からなる光電変換ユニットを備えることが望ましい。
【0014】
上記多層型薄膜光電変換素子では、前記光電変換ユニットの光活性層が光学的バンドギャップ1.8eV以下の非晶質シリコン系薄膜であることが望ましい。
【0015】
【発明の実施の形態】
以下、各請求項に係る発明の実施形態を詳細に説明する。
図1は請求項1に係る多層型薄膜光電変換素子の一実施形態を示す図である。図1中、1は基板、2は一方側電極、3は一導電型半導体層、4は結晶質Si系光活性層、5は逆導電型半導体層、6は一導電型半導体層、7は結晶質Si系光活性層、8は逆導電型半導体層、9は反射防止膜を兼ねた他方側電極、10は表取り出し電極、11は裏面電極2上に形成された裏取り出し電極である。3〜5が受光面とは反対側の光電変換ユニットA、6〜8が受光面側の光電変換ユニットBである。
【0016】
基板1はガラス、SUS等からなり、その基板1の表面には、入射した光が後述する一方側電極2表面で有効に乱反射されるように、微細な凹凸構造に形成されている。この微細な凹凸構造は、例えばRIE処理またはブラスト処理等の方法により形成することができる(例えば特願2001−293030号参照)。
【0017】
次に、一方側電極2となる金属膜を形成する。金属材料としては、光反射特性に優れるAg、Al等を用いるのが望ましい。成膜方法としては、電子ビーム蒸着法やスパッタリング法等の公知の技術を使用できる。膜厚は0.05〜2μmとし、この一方側電極2の表面が基板1の表面の微細な凹凸構造を反映した微細な凹凸構造を有したものにする。一方側電極2の膜厚を0.05〜2μmとすれば、一方側電極2表面の凹凸形状は基板1の表面の凹凸構造をほぼ反映したものとなる。
【0018】
なお、一方側電極2の膜厚を0.05μm以下とすると素子の直列抵抗成分の増加による特性低下を無視できなくなり、また2μm以上にすると基板1の表面の凹凸構造が一方側電極2の表面に有効に反映されにくくなると同時にコスト的にも現実的ではなくなる。
【0019】
また、ガラス基板1と一方側電極2との接着強度を高めるには、ガラス基板1と一方側電極2の間に例えばTiなどの金属層(不図示)を厚さ0.5〜200nmで挿入すればよい(特願2001−53290号参照)。
【0020】
さらに、一方側電極2から後述する光電変換ユニットAへの金属成分の拡散が問題になる場合は、一方側電極2と光電変換ユニットAとの間に拡散バリア層(不図示)を挿入すればよい。拡散バリアとしてTiなどの金属膜を用いる場合には厚さ10nm以下、ZnO、SnO2、ITOなどの透明導電膜を用いる場合には厚さ100nm以下にすればよい。透明導電膜を用いる場合は、拡散バリア層としての機能の他に一方側電極2の実効的反射率を向上させる機能も持たせることができる。また、透明導電膜を用いる場合、その成膜後に、表面の凹凸形状の平均高低差が透明導電膜と一方側電極2との界面の凹凸形状の平均高低差よりも小さくなるようにすることで、後述する光電変換ユニットAの形成においてリーク電流の発生が抑えられた高品質な膜の形成が可能となる(例えば特願2001−20623号参照)。
【0021】
次に、受光面とは反対側の光電変換ユニットAを形成する。光電変換ユニットAは一導電型半導体層3、結晶質Si系光活性層4、逆導電型半導体層5からなる。光活性層4は結晶質Si系薄膜で形成されている。
【0022】
まず、一方側電極2上に、一導電型半導体層3をプラズマCVD法や触媒CVD法で形成する。この一導電型半導体層3としては導電型決定不純物原子濃度が1E18〜5E21/cm3程度ドープされた、p+型(またはn+型)の非晶質Si薄膜、または、多結晶あるいは微結晶の結晶質Si薄膜とする。一導電型半導体層3の材料としてはSiに限定されるものではなく、例えばSiCやSiGe等を用いてもよい。膜厚は3〜300nmの範囲内、より好ましくは5〜100nmの範囲内とする。
【0023】
この一導電型半導体層3上に、結晶質Si系光活性層4として多結晶あるいは微結晶の結晶質Si薄膜をプラズマCVD法や触媒CVD法で形成する。なお、導電型は上記一導電型半導体層3よりドーピング濃度が低い同導電型とするか、あるいはi型とする。結晶質Si系光活性層4の材料としてはSiに限定されるものではなく、例えばSiCやSiGe等を用いてもよい。
【0024】
結晶質Si系光活性層4の膜厚は0.5〜20μmの範囲内、より好ましくは1〜10μmの範囲内とする。
【0025】
この結晶質Si系光活性層4は、体積結晶化分率が70%以上であることが望ましい。この光活性層4の体積結晶化分率が70%以上の結晶質Si系薄膜は、キャリア移動度が高いことに加えて、膜中水素量が比較的少ないため光劣化を起こしにくい。また、この光活性層4の体積結晶化分率を受光面側から反対側に向けて大きくなるように分布させてもよい。
【0026】
次に、結晶質Si系光活性層4上に半導体接合を形成すべく、一導電型半導体層3とは反対導電型である逆導電型半導体層5をプラズマCVD法や触媒CVD法で形成する。この逆導電型半導体層5としては導電型決定不純物原子濃度が1E18〜5E21/cm3程度ドープされた、n+型(またはp+型)の非晶質Si薄膜、または、多結晶あるいは微結晶の結晶質Si薄膜とする。逆導電型半導体層5の材料としてはSiに限定されるものではなく、例えばSiCやSiGe等を用いてもよい。膜厚は3〜300nmの範囲内、より好ましくは5〜100nmの範囲内とする。なお、接合特性をより改善するために、結晶質Si系光活性層4と逆導電型半導体層5との間に、実質的にi型の非単結晶Si系薄膜を挿入してもよい。この挿入層の厚さは、結晶質Si系薄膜の場合は10〜500nm程度、非晶質Si系薄膜の場合は1〜20nm程度とする。
【0027】
光電変換ユニットA上に、受光面側の光電変換ユニットBを形成する。光電変換ユニットBは一導電型半導体層6、結晶質Si系光活性層7、逆導電型半導体層8からなり、それぞれは、光電変換ユニットA中の対応する一導電型半導体層3、結晶質Si系光活性層4、逆導電型半導体層5と同様に形成する。この受光面側の光電変換ユニットBの光活性層7も結晶質Si系薄膜で形成される。
【0028】
但し、結晶質Si系光活性層7の体積結晶化分率は結晶質Si系光活性層4の体積結晶化分率より低く、40〜80%の範囲内である。体積結晶化分率が低いことは、非晶質成分が多いことに対応しており、特に70%以下となると、短波長域での吸収が大きくなり、分光感度が短波長側にシフトする。このため同じ材料(たとえばSi)を用いて光活性層を構成した場合でも、広い波長域で感度を向上させることが可能となる。即ち、結晶化率の異なるSiでタンデム構造にすることにより、分光感度が広くなり(低結晶化率:短波長側にピーク(アモルファス成分増による)、高結晶化率:長波長側にピーク)、シングル構造より高効率とできる。このとき低結晶化率を受光面側にしないと、膜厚調整の自由度がなく、高効率とならない。また、結晶化率が下がるとアモルファス成分が増え劣化が生じてしまうため、受光面側のシリコン系薄膜の体積結晶化分率が40〜80%で、受光面とは反対側のシリコン系薄膜の体積結晶化分率が70%以上とする。
【0029】
一方、低体積結晶化分率では若干ではあるが劣化が生じる。このため本発明の素子においても、若干の劣化が生じるが、多接合としているため、シングル接合素子においてこの低体積結晶化分率の光活性層を用いた場合に比較して、格段に抑制することが可能である。
【0030】
また、この結晶質Si系光活性層の体積結晶化分率を受光面側から反対側に向けて大きくなるように膜厚方向に分布させる。これにより劣化の生じる低体積結晶化分率域の膜厚を薄くし劣化度合いを抑え、かつ短波長域での高吸収を同時に実現することが可能となる。
【0031】
また、結晶質Si系薄膜の光学的バンドギャップは材料、体積結晶化分率等により決まるが、結晶質Si系光活性層7の光学的バンドギャップは結晶質Si系光活性層4の光学的バントギャップより大きく設定される。逆に設定されると、光電変換ユニットA、Bで発生する光電流を同じにするための膜厚比に自由度がなく、ロスが生じてしまうため、高い変換効率が得られない。
【0032】
結晶質Si系光活性層7の膜厚は0.2〜10μmの範囲内、より好ましくは0.5〜5μmの範囲内であって、結晶質Si系光活性層4の膜厚や材料、体積結晶化分率を考慮して、光電変換ユニットA、Bで発生する光電流が同じになるように調整する。
【0033】
ここで、逆導電型半導体層5と一導電型半導体層6との間の直列接続特性の改善や、光電変換ユニットA、Bで発生する光電流の整合のために、逆導電型半導体層5と一導電型半導体層6との間に透明導電膜を介在させることもできる(不図示)。この透明導電膜を介在させることにより、結晶質Si系光活性層7の膜厚を薄くすることが可能となり、劣化の抑制に効果的である。
【0034】
また、光電変換ユニットB上に更に含む光電変換ユニットCを積層してもよい(不図示)。この光電変換ユニットCはp+型(又はn+型)の非晶質Si系薄膜、p型(又はn型)もしくはi型の非晶質Si系薄膜からなる光活性層、n+型(又はp+型)の非晶質Si系薄膜からなる。
【0035】
この非晶質Si系光活性層の水素量は1〜5atm%とする。この低水素濃度非晶質Si系薄膜は触媒CVD法を用いると比較的容易に実現できる。水素濃度が1atm%以下では欠陥密度が増加し、逆に5atm%以上では光劣化率が上昇してしまう。また、この低水素濃度非晶質Si系薄膜の材料としてはSi、SiC、SiGe等からなる。この非晶質Si系光活性層の光学的バンドギャップを1.8eV以下とすると、光電変換ユニットBとのバンドオフセットが解消され、素子の高効率化に寄与する。
【0036】
また、光電変換ユニットBと光電変換ユニットCとの間の直列接続特性の改善や、光電変換ユニットA、B、Cで発生する光電流の整合のために、透明導電膜を介在させることもできる(不図示)。この透明導電膜を介在させることにより、非晶質Si系光活性層の膜厚を薄くすることが可能となり、光劣化の抑制に効果的である。
【0037】
次に、光電変換ユニットB(または光電変換ユニットC)上に他方側電極9を形成する。他方型電極9は、反射防止膜を兼ねた導電性膜から成る。このような導電性膜としては、ITOやSnO2など公知の材料を用いることができる。成膜方法としては、蒸着法、スパッタリング法、イオンプレーティング法など公知の技術を用いることができる。この膜厚は光学的干渉効果を考慮して60〜300nm程度にするのがよい。
【0038】
次に、他方側電極9上に表取り出し電極10となる金属膜を形成する。金属膜材料としては導電性に優れるAl、Agなどを用いるのが望ましい。成膜方法としては、蒸着法、スパッタリング法、スクリーン印刷法などの公知の技術を使用できる。このとき蒸着法、スパッタリング法においては、マスキング法、リフトオフ法などを用いて所望のパターンに金属膜を形成することができる。なお、他方側電極9との接着強度を強化するためには、他方側電極9と表取り出し電極10との間に、Ti等の酸化物材料との接着強度に優れる金属材料を挿入すると効果的である。
【0039】
以上のように作製された素子では、光電変換ユニットA、Bの光活性層が共に結晶質Si系薄膜で形成されることから、素子特性がほとんど劣化しない多層型薄膜光電変換素子となる。
【0040】
なお、本発明による多層型薄膜光電変換素子において積層される光電変換ユニットの数には制限はない。また、以上では光活性層を結晶質Si系薄膜で形成したサブストレート型の多層型結晶質Si系薄膜太陽電池素子について説明したが、スーパーストレート型の素子においても同様の効果が得られることは容易に推察される。
【0041】
【発明の効果】
以上のように、本発明に係る多層型薄膜光電変換素子によれば、複数の光電変換ユニットのうち少なくとも2つの光電変換ユニットの光活性層が結晶質を含むシリコン系薄膜からなることから、光劣化がほとんど生じない素子となる。また、このシリコン系薄膜のうち受光面側のシリコン系薄膜の体積結晶化分率が、受光面とは反対側のシリコン系薄膜の体積結晶化分率より低いことから、シングル接合のシリコン系薄膜光電変換素子より高効率な素子となる。
【図面の簡単な説明】
【図1】本発明に係る多層型薄膜光電変換素子の一実施形態を示す図である。
【符号の説明】
1:基板、2:一方側電極、3:一導電型半導体層、4:結晶質Si系光活性層、5:逆導電型半導体層、6:一導電型半導体層、7:結晶質Si系光活性層、8:逆導電型半導体層、9:他方側電極、10:表取り出し電極、11:裏取り出し電極、A:受光面とは反対側の光電変換ユニット、B:受光面側の光電変換ユニット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer thin film photoelectric conversion element using a laminated silicon-based thin film, and more particularly to a multilayer thin film photoelectric conversion element that can be suitably used as a solar cell.
[0002]
[Prior art and its problems]
Research for improving the efficiency of thin-film polycrystalline silicon solar cells, which are highly expected as the mainstay of next-generation consumer solar cells, has been actively conducted in Japan and overseas. In particular, the central issue of R & D on thin film devices is how efficiently sunlight can be absorbed at a limited film thickness. In a single cell, the formation of an optical confinement structure greatly reduces the short-circuit current. Improvements have been reported by research institutions and companies.
[0003]
On the other hand, in order to achieve higher efficiency, it is considered indispensable to make multiple layers as an effective solution to the above-mentioned central problem. That is, by stacking a plurality of semiconductor layers having different optical band gaps and mutually complementing the low sensitivity wavelength regions of the respective photoelectric conversion units, incident light can be efficiently absorbed over a wide wavelength region.
[0004]
As a typical structure of this multilayer thin film polycrystalline silicon element, a photoelectric conversion unit using amorphous silicon as a photoactive layer is provided on the light receiving surface side, and photoelectric conversion using crystalline silicon as a photoactive layer on the back surface side. The thing which provided the unit is mentioned. In this structure, in order to balance the current generated in the photoelectric conversion unit on the light receiving surface side and the photoelectric conversion unit on the back surface side in general, the thickness of the photoactive layer on the light receiving surface side, that is, the amorphous silicon layer Needs to be relatively thick.
[0005]
However, in a photoelectric conversion unit using an amorphous silicon layer formed by plasma CVD or the like as a photoactive layer, the photodegradation rate increases as the film thickness increases, and as a result, high conversion efficiency cannot be maintained. was there.
[0006]
On the other hand, as a multilayer thin film polycrystalline silicon element structure free from light deterioration, a structure in which photoelectric conversion units using crystalline silicon as a photoactive layer are stacked is proposed (for example, Japanese Patent Laid-Open No. 10-294448). However, this structure is an element structure using photoactive layers of substantially the same quality, so the wavelength range that can be absorbed is the same, and although higher efficiency can be expected than a single structure, there is a limit to further increase in efficiency. .
[0007]
The present invention has been made in view of such a problem of the prior art, and an object of the present invention is to provide a highly efficient multilayer thin-film photoelectric conversion element that hardly causes photodegradation.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, in the multilayer thin film photoelectric conversion device according to claim 1, a one-side electrode is provided on a substrate, and a one-conductivity-type semiconductor layer, a photoactive layer, and a reverse-conductivity type are provided on the one-side electrode. In a multilayer thin film photoelectric conversion element in which a plurality of photoelectric conversion units made of a semiconductor layer are provided and the other electrode is further provided on the photoelectric conversion unit, a photoactive layer of at least two of the plurality of photoelectric conversion units Is composed of a silicon-based thin film containing crystalline material, and the volume crystallization fraction of the silicon-based thin film on the light-receiving surface side of at least two silicon-based thin films containing the crystalline material is that of the silicon-based thin film on the side opposite to the light-receiving surface. together are lower Kuna' than the volume crystallinity fraction, bulky crystallization fraction of at least one silicon-based thin film of the silicon-based thin film is toward the opposite side from the light receiving surface side Characterized in that distributed in the film thickness direction so that.
[0009]
In the multilayer thin film photoelectric conversion element, the volume crystallization fraction of the silicon thin film on the light receiving surface side is 40 to 80%, and the volume crystallization fraction of the silicon thin film on the side opposite to the light receiving surface is 70%. % Or more is desirable.
[0011]
In the multilayer thin-film photoelectric conversion element, it is preferable that the optical band gap of the silicon-based thin film on the light-receiving surface side is larger than the optical band gap of the silicon-based thin film on the side opposite to the light-receiving surface.
[0012]
In the multilayer thin film photoelectric conversion element, it is preferable that all of the photoactive layers of the plurality of photoelectric conversion units are made of a silicon-based thin film containing a crystalline material.
[0013]
In the multilayer thin film photoelectric conversion element, the photoactive layer is formed of an amorphous silicon thin film containing 1 to 5 atm% of hydrogen on the light receiving surface side of the photoelectric conversion unit including at least two silicon thin films containing the crystalline material. It is desirable to provide a photoelectric conversion unit.
[0014]
In the multilayer thin film photoelectric conversion element, the photoactive layer of the photoelectric conversion unit is preferably an amorphous silicon thin film having an optical band gap of 1.8 eV or less.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the invention according to each claim will be described in detail.
FIG. 1 is a view showing an embodiment of a multilayer thin film photoelectric conversion element according to claim 1. In FIG. 1, 1 is a substrate, 2 is a one-side electrode, 3 is a one-conductivity-type semiconductor layer, 4 is a crystalline Si-based photoactive layer, 5 is a reverse-conductivity-type semiconductor layer, 6 is a one-conductivity-type semiconductor layer, and 7 is A crystalline Si-based photoactive layer, 8 is a reverse conductivity type semiconductor layer, 9 is the other electrode serving also as an antireflection film, 10 is a front extraction electrode, and 11 is a back extraction electrode formed on the back electrode 2. 3 to 5 are photoelectric conversion units A on the side opposite to the light receiving surface, and 6 to 8 are photoelectric conversion units B on the light receiving surface side.
[0016]
The substrate 1 is made of glass, SUS, or the like, and is formed on the surface of the substrate 1 in a fine concavo-convex structure so that incident light is effectively diffusely reflected on the surface of the one-side electrode 2 described later. This fine concavo-convex structure can be formed, for example, by a method such as RIE treatment or blast treatment (see, for example, Japanese Patent Application No. 2001-293030).
[0017]
Next, a metal film to be the one side electrode 2 is formed. As the metal material, it is desirable to use Ag, Al, etc., which are excellent in light reflection characteristics. As a film forming method, a known technique such as an electron beam evaporation method or a sputtering method can be used. The film thickness is 0.05 to 2 μm, and the surface of the one-side electrode 2 has a fine uneven structure reflecting the fine uneven structure of the surface of the substrate 1. If the film thickness of the one-side electrode 2 is 0.05 to 2 μm, the uneven shape on the surface of the one-side electrode 2 almost reflects the uneven structure on the surface of the substrate 1.
[0018]
If the thickness of the one-side electrode 2 is 0.05 μm or less, the characteristic deterioration due to the increase of the series resistance component of the element cannot be ignored, and if it is 2 μm or more, the uneven structure on the surface of the substrate 1 is It becomes difficult to be effectively reflected in the cost, and at the same time, it is not realistic in terms of cost.
[0019]
Further, in order to increase the adhesive strength between the glass substrate 1 and the one side electrode 2, a metal layer (not shown) such as Ti is inserted between the glass substrate 1 and the one side electrode 2 with a thickness of 0.5 to 200 nm. (See Japanese Patent Application No. 2001-53290).
[0020]
Furthermore, when diffusion of the metal component from the one side electrode 2 to the photoelectric conversion unit A described later becomes a problem, a diffusion barrier layer (not shown) is inserted between the one side electrode 2 and the photoelectric conversion unit A. Good. When a metal film such as Ti is used as the diffusion barrier, the thickness may be 10 nm or less, and when a transparent conductive film such as ZnO, SnO 2 or ITO is used, the thickness may be 100 nm or less. When using a transparent conductive film, in addition to the function as a diffusion barrier layer, a function of improving the effective reflectance of the one-side electrode 2 can be provided. Moreover, when using a transparent conductive film, the average height difference of the uneven | corrugated shape of a surface is made smaller than the average height difference of the uneven | corrugated shape of the interface between a transparent conductive film and the one side electrode 2 after the film-forming. Thus, it is possible to form a high-quality film in which generation of a leakage current is suppressed in the formation of the photoelectric conversion unit A described later (see, for example, Japanese Patent Application No. 2001-20623).
[0021]
Next, the photoelectric conversion unit A opposite to the light receiving surface is formed. The photoelectric conversion unit A includes a one-conductivity type semiconductor layer 3, a crystalline Si-based photoactive layer 4, and a reverse conductivity type semiconductor layer 5. The photoactive layer 4 is formed of a crystalline Si-based thin film.
[0022]
First, the one conductivity type semiconductor layer 3 is formed on the one-side electrode 2 by a plasma CVD method or a catalytic CVD method. The one-conductivity-type semiconductor layer 3 is a p + -type (or n + -type) amorphous Si thin film doped with a conductivity-determining impurity atom concentration of about 1E18 to 5E21 / cm 3 , or polycrystalline or microcrystalline. A crystalline Si thin film. The material of the one conductivity type semiconductor layer 3 is not limited to Si, and for example, SiC, SiGe or the like may be used. The film thickness is in the range of 3 to 300 nm, more preferably in the range of 5 to 100 nm.
[0023]
A polycrystalline or microcrystalline crystalline Si thin film is formed as a crystalline Si-based photoactive layer 4 on this one-conductivity type semiconductor layer 3 by a plasma CVD method or a catalytic CVD method. Note that the conductivity type is the same conductivity type having a doping concentration lower than that of the one-conductivity type semiconductor layer 3 or i-type. The material of the crystalline Si-based photoactive layer 4 is not limited to Si, and for example, SiC or SiGe may be used.
[0024]
The film thickness of the crystalline Si photoactive layer 4 is in the range of 0.5 to 20 μm, more preferably in the range of 1 to 10 μm.
[0025]
The crystalline Si photoactive layer 4 preferably has a volume crystallization fraction of 70% or more. The crystalline Si-based thin film having a volume crystallization fraction of the photoactive layer 4 of 70% or more has a high carrier mobility and a relatively small amount of hydrogen in the film, so that it does not easily cause photodegradation. Further, the volume crystallization fraction of the photoactive layer 4 may be distributed so as to increase from the light receiving surface side toward the opposite side.
[0026]
Next, in order to form a semiconductor junction on the crystalline Si-based photoactive layer 4, a reverse conductivity type semiconductor layer 5 having a conductivity type opposite to that of the one conductivity type semiconductor layer 3 is formed by a plasma CVD method or a catalytic CVD method. . The reverse conductivity type semiconductor layer 5 may be an n + type (or p + type) amorphous Si thin film or a polycrystal or microcrystal doped with a conductivity determining impurity atom concentration of about 1E18 to 5E21 / cm 3. A crystalline Si thin film. The material of the reverse conductivity type semiconductor layer 5 is not limited to Si, and for example, SiC or SiGe may be used. The film thickness is in the range of 3 to 300 nm, more preferably in the range of 5 to 100 nm. In order to further improve the junction characteristics, a substantially i-type non-single-crystal Si-based thin film may be inserted between the crystalline Si-based photoactive layer 4 and the reverse conductivity type semiconductor layer 5. The thickness of the insertion layer is about 10 to 500 nm for a crystalline Si-based thin film, and about 1 to 20 nm for an amorphous Si-based thin film.
[0027]
On the photoelectric conversion unit A, the photoelectric conversion unit B on the light receiving surface side is formed. The photoelectric conversion unit B includes a one-conductivity-type semiconductor layer 6, a crystalline Si-based photoactive layer 7, and a reverse-conductivity-type semiconductor layer 8, each of which corresponds to a corresponding one-conductivity-type semiconductor layer 3, a crystalline material in the photoelectric conversion unit A. It is formed similarly to the Si photoactive layer 4 and the reverse conductivity type semiconductor layer 5. The photoactive layer 7 of the photoelectric conversion unit B on the light receiving surface side is also formed of a crystalline Si thin film.
[0028]
However, the volume crystallization fraction of the crystalline Si photoactive layer 7 is lower than the volume crystallization fraction of the crystalline Si photoactive layer 4 and is in the range of 40 to 80%. The low volume crystallization fraction corresponds to the fact that there are many amorphous components. In particular, when it is 70% or less, the absorption in the short wavelength region increases and the spectral sensitivity shifts to the short wavelength side. For this reason, even when the photoactive layer is formed using the same material (for example, Si), the sensitivity can be improved in a wide wavelength range. That is, by using a tandem structure with Si having a different crystallization rate, the spectral sensitivity is broadened (low crystallization rate: peak on the short wavelength side (due to increased amorphous components), high crystallization rate: peak on the long wavelength side). Higher efficiency than single structure. At this time, unless the low crystallization ratio is set on the light receiving surface side, there is no degree of freedom in adjusting the film thickness, and high efficiency is not achieved. Further, since the amorphous component increases and deterioration occurs when the crystallization rate is lowered, the volume crystallization fraction of the silicon thin film on the light receiving surface side is 40 to 80%, and the silicon thin film on the side opposite to the light receiving surface is The volume crystallization fraction is 70% or more.
[0029]
On the other hand, the low volume crystallization fraction causes slight deterioration. For this reason, although the element of the present invention is also slightly deteriorated, since it is multi-junction, it is remarkably suppressed as compared with the case where a photoactive layer having a low volume crystallization fraction is used in a single junction element. It is possible.
[0030]
Further, the volume crystallization fraction of the crystalline Si photoactive layer is distributed in the film thickness direction so as to increase from the light receiving surface side to the opposite side. As a result, it is possible to reduce the thickness of the low volume crystallization fraction region where deterioration occurs, suppress the deterioration degree, and simultaneously achieve high absorption in a short wavelength region.
[0031]
The optical band gap of the crystalline Si-based thin film is determined by the material, the volume crystallization fraction, etc., but the optical band gap of the crystalline Si-based photoactive layer 7 is the optical band gap of the crystalline Si-based photoactive layer 4. It is set larger than the bunt gap. If set reversely, there is no degree of freedom in the film thickness ratio for making the photoelectric currents generated in the photoelectric conversion units A and B the same, and loss occurs, so that high conversion efficiency cannot be obtained.
[0032]
The film thickness of the crystalline Si photoactive layer 7 is in the range of 0.2 to 10 μm, more preferably in the range of 0.5 to 5 μm. In consideration of the volume crystallization fraction, the photoelectric currents generated in the photoelectric conversion units A and B are adjusted to be the same.
[0033]
Here, in order to improve the series connection characteristics between the reverse conductivity type semiconductor layer 5 and the one conductivity type semiconductor layer 6 and to match the photocurrent generated in the photoelectric conversion units A and B, the reverse conductivity type semiconductor layer 5 is used. A transparent conductive film can also be interposed between the one-conductive semiconductor layer 6 (not shown). By interposing this transparent conductive film, the thickness of the crystalline Si-based photoactive layer 7 can be reduced, which is effective in suppressing deterioration.
[0034]
Moreover, you may laminate | stack the photoelectric conversion unit C further included on the photoelectric conversion unit B (not shown). The photoelectric conversion unit C includes a p + type (or n + type) amorphous Si-based thin film, a photoactive layer composed of a p-type (or n-type) or i-type amorphous Si thin film, an n + type ( (Or p + -type) amorphous Si thin film.
[0035]
The amount of hydrogen in the amorphous Si photoactive layer is 1 to 5 atm%. This low hydrogen concentration amorphous Si-based thin film can be realized relatively easily using the catalytic CVD method. When the hydrogen concentration is 1 atm% or less, the defect density increases. Conversely, when the hydrogen concentration is 5 atm% or more, the photodegradation rate increases. The material of the low hydrogen concentration amorphous Si thin film is made of Si, SiC, SiGe or the like. When the optical band gap of the amorphous Si photoactive layer is 1.8 eV or less, the band offset with respect to the photoelectric conversion unit B is eliminated, contributing to higher efficiency of the element.
[0036]
In addition, a transparent conductive film can be interposed to improve the series connection characteristics between the photoelectric conversion unit B and the photoelectric conversion unit C and to match the photocurrent generated in the photoelectric conversion units A, B, and C. (Not shown). By interposing this transparent conductive film, it is possible to reduce the film thickness of the amorphous Si-based photoactive layer, which is effective in suppressing photodegradation.
[0037]
Next, the other electrode 9 is formed on the photoelectric conversion unit B (or the photoelectric conversion unit C). The other-type electrode 9 is made of a conductive film that also serves as an antireflection film. As such a conductive film, a known material such as ITO or SnO 2 can be used. As a film forming method, a known technique such as an evaporation method, a sputtering method, or an ion plating method can be used. This film thickness is preferably about 60 to 300 nm in consideration of the optical interference effect.
[0038]
Next, a metal film to be the front extraction electrode 10 is formed on the other side electrode 9. As the metal film material, it is desirable to use Al, Ag or the like having excellent conductivity. As the film forming method, known techniques such as vapor deposition, sputtering, and screen printing can be used. At this time, in the vapor deposition method and the sputtering method, a metal film can be formed in a desired pattern by using a masking method, a lift-off method, or the like. In order to enhance the adhesive strength with the other electrode 9, it is effective to insert a metal material having excellent adhesive strength with an oxide material such as Ti between the other electrode 9 and the front extraction electrode 10. It is.
[0039]
In the device manufactured as described above, since the photoactive layers of the photoelectric conversion units A and B are both formed of a crystalline Si-based thin film, a multilayer thin film photoelectric conversion device in which device characteristics hardly deteriorate is obtained.
[0040]
In addition, there is no restriction | limiting in the number of the photoelectric conversion units laminated | stacked in the multilayer type thin film photoelectric conversion element by this invention. In addition, the substrate type multi-layered crystalline Si-based thin film solar cell element in which the photoactive layer is formed of a crystalline Si-based thin film has been described above, but the same effect can be obtained even in a superstrate-type element. Easy to guess.
[0041]
【The invention's effect】
As described above, according to the multilayer thin film photoelectric conversion element according to the present invention, since the photoactive layers of at least two photoelectric conversion units among the plurality of photoelectric conversion units are made of a silicon-based thin film containing a crystalline substance, It becomes an element which hardly deteriorates. Moreover, since the volume crystallization fraction of the silicon thin film on the light receiving surface side of this silicon thin film is lower than the volume crystallization fraction of the silicon thin film on the side opposite to the light receiving surface, a single junction silicon thin film The element is more efficient than the photoelectric conversion element.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a multilayer thin film photoelectric conversion device according to the present invention.
[Explanation of symbols]
1: substrate, 2: one-side electrode, 3: one-conductivity-type semiconductor layer, 4: crystalline Si-based photoactive layer, 5: reverse-conductivity-type semiconductor layer, 6: one-conductivity-type semiconductor layer, 7: crystalline-Si-based Photoactive layer, 8: reverse conductivity type semiconductor layer, 9: other side electrode, 10: front extraction electrode, 11: back extraction electrode, A: photoelectric conversion unit on the side opposite to the light receiving surface, B: photoelectric on the light receiving surface side Conversion unit

Claims (6)

基板上に一方側電極を設け、この一方側電極上に一導電型半導体層、光活性層、および逆導電型半導体層から成る光電変換ユニットを複数設け、この光電変換ユニット上にさらに他方側電極を設けた多層型薄膜光電変換素子において、前記複数の光電変換ユニットのうち少なくとも2つの光電変換ユニットの光活性層が結晶質を含むシリコン系薄膜からなり、この結晶質を含む少なくとも2つのシリコン系薄膜のうち受光面側のシリコン系薄膜の体積結晶化分率が、受光面とは反対側のシリコン系薄膜の体積結晶化分率より低くなっているとともに、前記シリコン系薄膜のうち少なくとも1つのシリコン系薄膜の体積結晶化分率が受光面側から反対側に向けて大きくなるように膜厚方向に分布していることを特徴とする多層型薄膜光電変換素子。A one-side electrode is provided on the substrate, and a plurality of photoelectric conversion units each including a one-conductivity-type semiconductor layer, a photoactive layer, and a reverse-conductivity-type semiconductor layer are provided on the one-side electrode, and the other-side electrode is further provided on the photoelectric conversion unit. In the multilayer thin-film photoelectric conversion element provided with the above, at least two of the plurality of photoelectric conversion units, the photoactive layer of the photoelectric conversion unit is formed of a silicon-based thin film containing a crystalline material, and at least two silicon-based materials including the crystalline material volume crystallinity fraction of silicon-based thin film of the light-receiving surface side of the thin film, with which low Kuna' than the volume crystallinity fraction of silicon-based film on the side opposite to the light receiving surface, at least one of the silicon-based thin film 1 multi-layered thin film photoelectric conversion element in which One of the silicon-based thin film volume crystallinity fraction, characterized in that distributed in the film thickness direction to be larger toward the opposite side from the light receiving surface side . 前記受光面側のシリコン系薄膜の体積結晶化分率が40〜80%であり、前記受光面とは反対側のシリコン系薄膜の体積結晶化分率が70%以上であることを特徴とする請求項1に記載の多層型薄膜光電変換素子。  The volume crystallization fraction of the silicon thin film on the light receiving surface side is 40 to 80%, and the volume crystallization fraction of the silicon thin film on the side opposite to the light receiving surface is 70% or more. The multilayer thin film photoelectric conversion element according to claim 1. 前記受光面側のシリコン系薄膜の光学的バンドギャップが、前記受光面とは反対側のシリコン系薄膜の光学的バンドギャップより大きいことを特徴とする請求項1に記載の多層型薄膜光電変換素子。  2. The multilayer thin film photoelectric conversion element according to claim 1, wherein an optical band gap of the silicon thin film on the light receiving surface side is larger than an optical band gap of the silicon thin film on the side opposite to the light receiving surface. . 前記複数の光電変換ユニットの光活性層のすべてが結晶質を含むシリコン系薄膜からなることを特徴とする請求項1に記載の多層型薄膜光電変換素子。  2. The multilayer thin film photoelectric conversion element according to claim 1, wherein all of the photoactive layers of the plurality of photoelectric conversion units are made of a silicon-based thin film containing a crystalline material. 前記結晶質を含む少なくとも2つのシリコン系薄膜からなる光電変換ユニットの受光面側に、光活性層が水素を1〜5atm%含有する非晶質シリコン系薄膜からなる光電変換ユニットを備えたことを特徴とする請求項1に記載の多層型薄膜光電変換素子。  The photoactive layer is provided with a photoelectric conversion unit comprising an amorphous silicon thin film containing 1 to 5 atm% of hydrogen on the light receiving surface side of the photoelectric conversion unit comprising at least two silicon thin films containing the crystalline material. The multilayer thin-film photoelectric conversion element according to claim 1, wherein 前記光電変換ユニットの光活性層が光学的バンドギャップ1.8eV以下の非晶質シリコン系薄膜であることを特徴とする請求項に記載の多層型薄膜光電変換素子。6. The multilayer thin film photoelectric conversion element according to claim 5 , wherein the photoactive layer of the photoelectric conversion unit is an amorphous silicon thin film having an optical band gap of 1.8 eV or less.
JP2001382072A 2001-12-14 2001-12-14 Multilayer thin film photoelectric conversion device Expired - Fee Related JP4146635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001382072A JP4146635B2 (en) 2001-12-14 2001-12-14 Multilayer thin film photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001382072A JP4146635B2 (en) 2001-12-14 2001-12-14 Multilayer thin film photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2003188397A JP2003188397A (en) 2003-07-04
JP4146635B2 true JP4146635B2 (en) 2008-09-10

Family

ID=27592559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001382072A Expired - Fee Related JP4146635B2 (en) 2001-12-14 2001-12-14 Multilayer thin film photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP4146635B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5583196B2 (en) * 2011-12-21 2014-09-03 パナソニック株式会社 Thin film solar cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003188397A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
JP6788144B1 (en) Solar cell module, solar cell and its manufacturing method
AU2010239265B2 (en) High-efficiency solar cell structures and methods of manufacture
US10084107B2 (en) Transparent conducting oxide for photovoltaic devices
JP4811945B2 (en) Thin film photoelectric converter
KR101622091B1 (en) Solar cell and method for manufacuring the same
JP4671002B2 (en) Photoelectric conversion device
US20080173347A1 (en) Method And Apparatus For A Semiconductor Structure
JP2001308354A (en) Stacked solar cell
WO2005011002A1 (en) Silicon based thin film solar cell
CN114038921B (en) Solar cell and photovoltaic module
KR20150108239A (en) Solar cell
JP2017520928A (en) Solar cells
JPH04127580A (en) Multi-junction type amorphous silicon solar cell
JP2004260014A (en) Multilayer type thin film photoelectric converter
JP2002118273A (en) Integrated hybrid thin film photoelectric conversion device
CN108615775B (en) Interdigital back contact heterojunction monocrystalline silicon battery
JP4146635B2 (en) Multilayer thin film photoelectric conversion device
CN111403538A (en) Solar cell and preparation method thereof
JP2675754B2 (en) Solar cell
JP4358493B2 (en) Solar cell
JP4243050B2 (en) Stacked solar cell device
CN108039388A (en) A kind of Cu2ZnSn(S,Se)4Thin-film solar cells and preparation method thereof
JPH09181343A (en) Photoelectric conversion device
WO2020035987A1 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
JPH10144942A (en) Amorphous semiconductor solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees