JPS62122064A - Manufacture of nickel positive plate for alkaline storage battery - Google Patents

Manufacture of nickel positive plate for alkaline storage battery

Info

Publication number
JPS62122064A
JPS62122064A JP60263039A JP26303985A JPS62122064A JP S62122064 A JPS62122064 A JP S62122064A JP 60263039 A JP60263039 A JP 60263039A JP 26303985 A JP26303985 A JP 26303985A JP S62122064 A JPS62122064 A JP S62122064A
Authority
JP
Japan
Prior art keywords
nickel
positive plate
positive electrode
electrode plate
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60263039A
Other languages
Japanese (ja)
Other versions
JPH0577148B2 (en
Inventor
Masayuki Yoshimura
公志 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP60263039A priority Critical patent/JPS62122064A/en
Publication of JPS62122064A publication Critical patent/JPS62122064A/en
Publication of JPH0577148B2 publication Critical patent/JPH0577148B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a nickel positive plate whose discharge potential is noble by impregnating a solution mainly comprising nickel salt or cobalt salt in a positive plate or a substrate, and immersing it in a mixed solution of chlorite or peroxydisulfate serving as oxidizing agent and caustic alkali for alkali treatment and oxidizing treatment. CONSTITUTION:100pts. nickel hydroxide powder, 5pts. metallic cobalt powder, and 15pts. carbonyl nickel powder are kneaded with 50pts. 1% methyl cellulose solution. 5pts. epoxy resin latex whose solid content is 50% and its curing agent are added to the kneaded mixture to prepare active material paste. The active material is applied to a perforated nickel plated steel core, dried at 90 deg.C, and immersed in nickel nitrate solution, and then immersed in sp.gr. 1.200 (20 deg.C) sodium hydroxide solution containing 2.0% of sodium chlorite for alkali treatment and oxidizing treatment, and a positive plate is manufactured. This positive plate evolves no oxigen gas from the initial stage of charge, and the battery using this positive plate is free from decrease in electrolyte and electro lyte leakage caused by increase in internal pressure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルカリ蓄電池用ニッケル正極板の製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a nickel positive electrode plate for an alkaline storage battery.

従来の技術とその問題点 アルカリ蓄電池用ニッケル正極板としては、従来、ポケ
ット式及び焼結式と叶ばれる方式のものがあるが、性能
のすぐれている焼結式極板の比率が年々増加している。
Conventional technology and its problems Nickel positive electrode plates for alkaline storage batteries have traditionally been available in the pocket type and sintered type, but the proportion of sintered plates, which have excellent performance, is increasing year by year. ing.

最近ではコストダウンを主な目的にスポンジ状ニッケル
多孔体に正極活物質を物理的に充填した発泡ニッケル方
式の正極板が商品化されつつあり、また集電体である金
属性芯体に活物質を塗着しただけのペースト式と呼ばれ
ている方式についても開発が行なわれている。
Recently, foamed nickel type positive electrode plates, in which a sponge-like porous nickel material is physically filled with a positive electrode active material, are being commercialized with the main purpose of reducing costs. A method called a paste method, in which the material is simply painted, is also being developed.

アルカリ蓄電池、特にニッケルーカドミウム蓄電池は、
近年需要が増加の一途をたどる中で市場では、その性能
においてエネルギー密度の向上を望む声が強い。エネル
ギー密度を高める方法としては、容量制限極である正極
板の活物質利用率あるいは族m電位の向上がその主なも
のとしてあげられる。活物質利用率の向上については現
在の製品でほぼ限界に達しているのに対し、放電電位に
ついては有効な手段が見い出されていなかった。
Alkaline storage batteries, especially nickel-cadmium storage batteries,
As demand continues to increase in recent years, there is a strong desire in the market for improved energy density in terms of performance. The main methods for increasing the energy density include improving the active material utilization rate of the positive electrode plate, which is the capacity-limiting electrode, or the group m potential. While current products have almost reached their limits in improving the active material utilization rate, no effective means have been found for improving the discharge potential.

一方、未化成のニッケル正極板の生活物質は導電性の低
い2価の水酸化ニッケルであるため、初充電時の分極が
それ以後のサイクルにおけるものよりも大きく、競争反
応である酸素ガス発生が起こりやすい状態になっており
、特にペースト式正極板においては、充電初期からの酸
素ガス発生による極板の崩壊が大きな問題となっていた
On the other hand, since the living substance in the unformed nickel positive electrode plate is divalent nickel hydroxide, which has low conductivity, the polarization during the first charge is greater than that during subsequent cycles, and the competitive reaction of oxygen gas generation occurs. In particular, in paste-type positive electrode plates, collapse of the electrode plate due to oxygen gas generation from the early stage of charging has become a major problem.

また上記のように酸素ガス発生が充電初期から起こる正
極板を用いた密閉形電池では、負極板の充電が充分進ん
でおらず、ガス吸収に有効な金属カドミウムの生成が充
分でない状態で内圧が上昇してしまうために、安全弁が
作動し、電解液の減少や液漏れが起こり、電池の性能や
*命が劣化する危険がある。
In addition, in a sealed battery using a positive electrode plate where oxygen gas is generated from the early stage of charging as described above, the charge of the negative electrode plate has not progressed sufficiently, and the internal pressure increases without enough metal cadmium, which is effective for gas absorption, being generated. As a result, the safety valve is activated, causing a decrease in electrolyte and leakage, which poses a risk of deteriorating battery performance and life.

本発明は以上述べた従来技術の問題点を解決することを
目的とするものである。
The present invention aims to solve the problems of the prior art described above.

問題点を解決するための手段 本発明はアルカリ蓄電池用のニッケル正極板の%’7造
法において、化学含浸法によってニッケル塩あるいはコ
バルト塩を主成分とする溶液をU板あるいは極板に含浸
した後、苛性アルカリと酸化剤の混合溶液中に浸漬して
アルカリ処理と酸化処理を同時に行ない、2価を越える
高級酸化物の活物質を保持させるものであり、その酸化
剤が亜塩素酸塩あるいはベルオキソニ硫a塩を主成分と
することを特徴とするものである。その反応を苛性アル
カリとして水酸化ナトリウムを用い、酸化剤として亜塩
素酸ナトリウムを用いた場合について記述すると、1式
および2式になる。
Means for Solving the Problems The present invention is a manufacturing method for nickel positive electrode plates for alkaline storage batteries, in which the U plate or electrode plate is impregnated with a solution containing nickel salt or cobalt salt as a main component by a chemical impregnation method. After that, it is immersed in a mixed solution of caustic alkali and an oxidizing agent to perform alkaline treatment and oxidation treatment at the same time, thereby retaining the active material of higher oxides with more than two valences, and when the oxidizing agent is chlorite or It is characterized by containing beroxonisulfate a salt as the main component. When the reaction is described using sodium hydroxide as the caustic alkali and sodium chlorite as the oxidizing agent, equations 1 and 2 are obtained.

4N!    (NO3)2   +8Na   0)
−1+Na   cl   0−4Ni 00H+8N
a NO3+Na cl +21−10・・・・・・・
・・・・・1式 %式% 0・・・・・・・・・・・・2式 作  用 2価の活物* N i  (OH) 2 ヤCO(OH
) 2は先に述べたように1[性が低いが、それに比べ
2価を越える高級酸化物、例えばNi0OHやCo O
OHは非常に高い導電性を持っている。このことについ
て検討を重ねた結果、充電初期から酸素ガス発生を起こ
しやすいペースト式正極板に本発明による処理を行なっ
たところ、充電反応における反応の過電圧が減少して1
時間率のようなrq率充電の条件でも充電初期からの酸
素ガス発生が起きないことを見い出した。さらに検討し
たところ、前記の効果は高級酸化物の分布によって影響
を受けており、それが極板中全体に均一に分布している
場合は前記の効果を得るに必要な高級酸化物のmは多く
なるのに対し、本発明では高級酸化物が三次元の網目構
造を形成していると考えられ、このような場合その必1
ffiは非常に少なくてすむ。第1図は本発明を適用し
たペースト式正極板を用いた密閉形ニッケルーカドミウ
ム蓄電池の充准末期の内圧上昇を示したものであるが、
2価を越える高級酸化物を3%以上含有していれば良い
ことがわかる。
4N! (NO3)2 +8Na 0)
-1+Na cl 0-4Ni 00H+8N
a NO3+Na cl +21-10・・・・・・
...1 type % formula % 0...2 type action divalent active substance * Ni (OH) 2 Ya CO (OH
) As mentioned earlier, 2 has a lower valence than 1, but compared to higher oxides with more than 2 valences, such as NiOH and CoO
OH has very high conductivity. As a result of repeated studies on this issue, we applied the treatment according to the present invention to paste-type positive electrode plates that tend to generate oxygen gas from the early stages of charging.
It has been found that even under RQ rate charging conditions such as time rate, oxygen gas generation does not occur from the initial stage of charging. Further investigation revealed that the above effect is influenced by the distribution of the higher oxide, and if it is uniformly distributed throughout the electrode plate, m of the higher oxide necessary to obtain the above effect is In contrast, in the present invention, the higher oxide is thought to form a three-dimensional network structure, and in such a case, it is necessary to
Very little ffi is required. Figure 1 shows the internal pressure rise at the end of charging of a sealed nickel-cadmium storage battery using a paste-type positive electrode plate to which the present invention is applied.
It can be seen that it is sufficient to contain 3% or more of higher oxides having a valence of more than 2.

本発明は上記の如く、本来はペースト式正極板の改良を
目的として考案されたものであるが、その過程において
予想していなかった新しい効果が見い出された。つまり
本発明を適用した正極板は焼結式、発泡式、ペースト式
を問わず、従来法によって作製した正極板に比べ、その
放電電位がりであり、その傾向は放電電流が大きい程、
放電深度が深い程、著しくなっている。またこの効果は
一過性でなく、持続することがわかった。
As mentioned above, the present invention was originally devised for the purpose of improving paste-type positive electrode plates, but in the process, unexpected new effects were discovered. In other words, the positive electrode plate to which the present invention is applied, regardless of whether it is a sintered type, a foamed type, or a paste type, has a higher discharge potential than a positive electrode plate manufactured by a conventional method, and the tendency is that the larger the discharge current, the higher the discharge potential.
The deeper the depth of discharge, the more remarkable it becomes. It was also found that this effect was not temporary but continued.

上記の原因はまだよくわかっていないが、放電電位が員
になっていることから推察すると、本発明による処理を
受けた場合、極板内部では2価を越える高級酸化物が三
次元の網目構造を形成していると考えられ、これが極板
内部の導電性を非常に良くしていることによって、活物
質が充電されやすく、充電生成物の多くがγ−NiOO
Hより放電電位の貴なβ−Niooト+になっているも
のと考えられる。
The cause of the above is not yet well understood, but it can be inferred from the fact that the discharge potential is negative that when treated according to the present invention, higher oxides with more than two valences form a three-dimensional network structure inside the electrode plate. This is thought to form γ-NiOO, which makes the conductivity inside the electrode plate very good, so that the active material is easily charged, and most of the charging products are γ-NiOO.
It is considered that β-Nio+ has a nobler discharge potential than H.

ニッケルの高級酸化物、特にγ−Ni OOHの製造法
としては従来から知られている公知技術がある。これは
反応槽の中に苛性アルカリと酸化剤の混合物を仕込んで
おき、そこへ水酸化ニッケルあるいはニッケル塩を投入
してニッケルのn級酸化物を製造するという活物質本体
の製造法であったが、この方法の場合、幾つかの欠点が
ある。
There are conventionally known techniques for producing higher nickel oxides, particularly γ-Ni OOH. This was a method for producing the active material itself, in which a mixture of caustic alkali and an oxidizing agent was placed in a reaction tank, and nickel hydroxide or nickel salt was added thereto to produce an n-class oxide of nickel. However, this method has several drawbacks.

第1に、前記の反応を行なうための製造装置や精製装置
、洗浄水、人件費等が余分に必要となるため、最終的な
極板の製造コストが現行に比べかなり割高になること。
First, because extra manufacturing equipment, purification equipment, washing water, labor costs, etc. are required to carry out the above reaction, the final manufacturing cost of the electrode plate will be considerably higher than the current cost.

第2に、製造されたニッケルの高級酸化物を貯蔵する施
設が必要であり、また貯蔵中にニッケルの高級酸化物が
徐々に分解するため、定期的に品!を管理を行なう必要
があること。
Second, a facility is required to store the produced high-grade nickel oxide, and because the high-grade nickel oxide gradually decomposes during storage, it is necessary to store the product periodically. need to be managed.

第3に、焼結式ニッケル正極板に適用できないこと。Thirdly, it cannot be applied to a sintered nickel positive electrode plate.

第4に、ペースト式あるいは発泡式正極板に適用する場
合、ニッケルの高級酸化物が極板中に均一に分散してい
るため、本発明によるのと同等の効果を得るのに必要な
最小限のニッケルの高級酸化物の添加量が多くなること
、等があげられる。
Fourth, when applied to a paste-type or foam-type positive electrode plate, since the higher nickel oxide is uniformly dispersed in the electrode plate, the minimum amount necessary to obtain the same effect as the present invention is required. For example, the amount of higher nickel oxide added increases.

これに対し、本発明はニッケル正極板の製造法に関する
ものであるため、前記の公知技術とは根本的に異なって
おり、また前記の公知技術において存在する欠点が本発
明の場合はほとんど無い。
On the other hand, since the present invention relates to a method for manufacturing a nickel positive electrode plate, it is fundamentally different from the above-mentioned known techniques, and the present invention has almost no drawbacks that exist in the above-mentioned known techniques.

つまり本発明の場合は、焼結式正極板に適用できること
、現行製造法と比較した場合のコストアップがわずかで
あること、極板製造工程から電池組立工程までの時間が
短いため、その間の高級酸化物の分解がほとんど無視で
きる量であること、極板内で高級酸化物が互いに接触し
て三次元の網目構造を形成していると考えられるため、
その集電性は良好であるにもかかわらず、高級酸化物の
石が少なくて済む、などである。
In other words, in the case of the present invention, it can be applied to sintered positive electrode plates, there is only a slight increase in cost compared to the current manufacturing method, and the time from the electrode plate manufacturing process to the battery assembly process is short, so it is possible to The amount of oxide decomposition is almost negligible, and it is thought that higher oxides contact each other within the electrode plate to form a three-dimensional network structure.
Although its current collecting properties are good, it requires less amount of higher oxide stones.

また本発明は酸化剤単独で酸化する方法とも異なる。つ
まり、酸化剤単独で酸化した場合は、本発明による効果
が得られないという理由の他に、活物質以外にその金属
製の支持体、例えばニッケルや鉄をも酸化して極板の機
械的強度を低下させてしまうのに対し、本発明の場合、
酸化処理に用いる溶液は強いアルカリ性であるため、金
R製支持体には回答影響を及ぼさない。
The present invention is also different from a method of oxidizing using an oxidizing agent alone. In other words, if the oxidizing agent is used alone, not only the effect of the present invention cannot be obtained, but also the metal support such as nickel or iron in addition to the active material may be oxidized, causing mechanical damage to the electrode plate. In contrast, in the case of the present invention, the strength is reduced.
Since the solution used for the oxidation treatment is strongly alkaline, it does not affect the gold R support.

実施例 以下、本発明の実施例について詳述する。Example Examples of the present invention will be described in detail below.

実施例1 多孔度85%の焼結ニッケル基板に硝酸ニッ
ケル及び硝酸コバルトの混合溶液を含浸した後、水酸化
すi・リウムの水溶液でアルカリ処理するという通常の
化学含浸の工程を5回繰り返して2価の水酸化ニッケル
と水酸化コバルhの活物質を基板内に充填する。6回目
の化学含浸の工程においては、亜塩素酸ナトリウム2.
0%を含む比m 1.20の水酸化ナトリウム水溶液を
用いて、アルカリ処理すると同時に酸化処理する以外は
全て前回までと同様にして活物質を充填し、正極板を作
製した。これを試料Aとする。
Example 1 A sintered nickel substrate with a porosity of 85% was impregnated with a mixed solution of nickel nitrate and cobalt nitrate, and then the usual chemical impregnation process of alkali treatment with an aqueous solution of lithium hydroxide was repeated five times. The substrate is filled with active materials of divalent nickel hydroxide and cobal hydroxide h. In the sixth chemical impregnation step, sodium chlorite 2.
A positive electrode plate was prepared by filling an active material in the same manner as before except that an alkali treatment and an oxidation treatment were performed simultaneously using an aqueous sodium hydroxide solution containing 0% and a ratio m of 1.20. This is designated as sample A.

実施例2 実施例1の6回目の化学含浸の工程における
亜塩素酸ナトリウムの代わりにベルオキソニ硫酸カリウ
ムを用いた以外は全て実施例1と同じ方法で正極板を作
製した。これを試料Bとする。
Example 2 A positive electrode plate was produced in the same manner as in Example 1, except that potassium peroxonisulfate was used instead of sodium chlorite in the sixth chemical impregnation step of Example 1. This is designated as sample B.

実施例3 実施例1の6回目の化学含浸の工程における
亜塩素酸ナトリウムの代わりに次亜塩素酸ナトリウムを
用いた以外は全て実施例1と同じ方法で正極板を作製し
た。これを試料Cとする。
Example 3 A positive electrode plate was produced in the same manner as in Example 1 except that sodium hypochlorite was used instead of sodium chlorite in the sixth chemical impregnation step of Example 1. This is designated as sample C.

実施例4 比較のために実施例1の6回目の化学含浸の
工程におけるアルカリ処理を比fi 1.20の水酸化
ナトリウム水溶液単独で行なった以外は全て実施例1と
同じ方法で正lfj仮を作製した。これを試料りとする
Example 4 For comparison, a positive lfj provisional was prepared in the same manner as in Example 1, except that the alkali treatment in the sixth chemical impregnation step of Example 1 was performed solely with an aqueous sodium hydroxide solution with a ratio fi of 1.20. Created. Use this as a sample.

以上のようにして作製した試料正極板の比重1.250
 (20℃)KOI−1水溶液中での放電特性を第2図
に示す。本発明による処理を行なった試料へ及びBは従
来法によって作製した試料りに比べ放電電位が高く、中
間電位が約20 mV貞になっている。
Specific gravity of the sample positive electrode plate prepared as above: 1.250
(20° C.) The discharge characteristics in an aqueous KOI-1 solution are shown in FIG. Samples B and B treated according to the present invention have a higher discharge potential than samples prepared by the conventional method, and the intermediate potential is about 20 mV.

また次亜塩素酸ナトリウムを用いた試料Cの放電電位は
従来品の試料りと大差なく、放電電位を員にする効果が
認められなかった。
Further, the discharge potential of Sample C using sodium hypochlorite was not significantly different from that of the conventional sample, and no effect of increasing the discharge potential was observed.

次にペースト式正極板の実施例について述べる。Next, an example of a paste type positive electrode plate will be described.

実施例5 水酸化ニッケル粉末100部、金属コバルト
粉末5部、カーボニルニッケル粉末15部を1%メチル
セルロース溶液50部と混練し、その後固形分50%の
エポキシ樹脂ラテックス5部とエポキシ樹脂用硬化剤を
加えて活物質ペーストを調製した。この活物質ペースト
を穿孔鋼板にニッケルメッキした芯体に塗着した後、9
0℃で乾燥してベース正極板を作製した。次にこのベー
ス正極板に硝酸ニッケルの水溶液を含浸した後、比重1
.200(20℃)の水酸化ナトリウム水溶液中でアル
カリ処理して正極板を作製した。これを試料Eとする。
Example 5 100 parts of nickel hydroxide powder, 5 parts of metal cobalt powder, and 15 parts of carbonyl nickel powder were kneaded with 50 parts of 1% methyl cellulose solution, and then 5 parts of epoxy resin latex with a solid content of 50% and a curing agent for epoxy resin were kneaded. In addition, an active material paste was prepared. After applying this active material paste to the nickel-plated core of a perforated steel plate,
A base positive electrode plate was prepared by drying at 0°C. Next, after impregnating this base positive electrode plate with an aqueous solution of nickel nitrate,
.. A positive electrode plate was prepared by alkali treatment in a sodium hydroxide aqueous solution at 200° C. (20° C.). This is designated as sample E.

実施例6 実施例5におけるアルカリ処理を亜塩素酸ナ
トリウム2.0%含む比重1.200 (20℃)水酸
化ナトリウム水溶液中で行なってアルカリ処理すると同
時に酸化処理を行ない正極板を作製した。これを試料F
とする。
Example 6 The alkaline treatment in Example 5 was carried out in a sodium hydroxide aqueous solution with a specific gravity of 1.200 (20° C.) containing 2.0% sodium chlorite, and the alkali treatment and oxidation treatment were simultaneously performed to prepare a positive electrode plate. This is sample F.
shall be.

実施例7 実施例6における硝酸ニッケルの代わりに硝
酸コバルトを用い、また亜塩素酸ナトリウムの代わりに
ベルオキソニ硫酸カリウムを用いた以外は全て実施例6
と同じ方法で正極板を作製した。これを試料Gとする。
Example 7 All the same as Example 6 except that cobalt nitrate was used instead of nickel nitrate in Example 6, and potassium peroxonisulfate was used instead of sodium chlorite.
A positive electrode plate was prepared in the same manner as above. This is designated as sample G.

実施例8 実施例6における亜塩素酸ナトリウムの代わ
りに次亜塩素酸ナトリウムを用いた以外は全て実施例6
と同じ方法で正極板を作製した。
Example 8 All the same as Example 6 except that sodium hypochlorite was used instead of sodium chlorite in Example 6.
A positive electrode plate was prepared in the same manner as above.

これを試料Hとする。This is designated as sample H.

以上のようにして作製した試料正極板を通常の化学含浸
法によって作製した焼結式カドミウム負極板と組み合わ
けて円筒形の密閉電池を作製し、公称容量の1時間率で
充電した時の内圧を第3図に示す。図から明らかなよう
に従来品の試料Eは充電初期から酸素ガス発生が起きて
いるのに対し、本発明による処理を行なった試料F及び
Gは充電初期から酸素ガス発生は起きておらず、内圧の
異常な上昇による電解液の減少や液漏れの危険がない。
The sample positive electrode plate prepared as described above was combined with a sintered cadmium negative electrode plate prepared by the usual chemical impregnation method to prepare a cylindrical sealed battery, and the internal pressure when charged at a rate of 1 hour to the nominal capacity. is shown in Figure 3. As is clear from the figure, in the conventional sample E, oxygen gas generation occurred from the early stage of charging, whereas in the samples F and G treated according to the present invention, oxygen gas generation did not occur from the early stage of charging. There is no risk of electrolyte loss or leakage due to abnormal increase in internal pressure.

酸化処理に次亜塩素酸ナトリウムを用いた試料Hでは従
来品よりも内圧の上昇が始まる時期は幾分遅くなってい
るが、本発明による処理を行なった試料F及びGと比較
した場合には明らかに悪い。また確認のために試料極板
を4 CIIX 4 C1lの寸法に切断し、これと同
寸法の焼結式カドミウム負極板2枚を用いて大量のアル
カリ電解液中において、理論容量に対し1時間率で充電
した結果、本発明による処理を行なった試料F及びGは
150%充電しても形状の変化が無かったのに対し、従
来品の試料Eは約30%で、次亜塩素酸ナトリウムを用
いた試料ト(は約60%の充電で活物質が全て芯体から
脱落するという結果になった。
In Sample H, which used sodium hypochlorite for oxidation treatment, the internal pressure started to rise somewhat later than in the conventional product, but when compared with Samples F and G, which were treated according to the present invention. Obviously bad. For confirmation, the sample electrode plate was cut to a size of 4 CIIX 4 C1l, and two sintered cadmium negative electrode plates of the same size were placed in a large amount of alkaline electrolyte at a rate of 1 hour relative to the theoretical capacity. As a result of charging, samples F and G treated according to the present invention did not change their shape even after being charged to 150%, whereas sample E, a conventional product, was charged at about 30% and did not contain sodium hypochlorite. The result of the sample used was that all of the active material fell off from the core at about 60% charge.

以上のことから本発明による効果は明らかである。From the above, the effects of the present invention are clear.

発明の効果 以上のように本発明に基づき、ニッケル塩あるいはコバ
ルト塩を主成分とする溶液を正極板あるいは基板に含浸
した後、亜塩素酸塩あるいはベルオキソニammの酸化
剤と苛性アルカリとの混合溶液中に浸漬してアルカリ処
理すると同時に酸化処理を行なうことによって、族N電
位が自なニッケル正極板を1りることができる。またペ
ースト式ニッケル正極板の場合には充電時の極板の崩壊
を抑制し、充電効率を向上させることができる。
Effects of the Invention As described above, based on the present invention, after impregnating a positive electrode plate or substrate with a solution containing nickel salt or cobalt salt as the main component, a mixed solution of chlorite or belloxonia amm oxidizing agent and caustic alkali is applied. A nickel positive electrode plate with a group N potential of the same can be obtained by immersing the nickel plate in a liquid and performing an alkali treatment and an oxidation treatment at the same time. Furthermore, in the case of a paste-type nickel positive electrode plate, collapse of the electrode plate during charging can be suppressed and charging efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は初充電直前の正極板中の2I11iを越える高
級酸化物の含有率と電池内圧の関係を示す特性図、第2
図は本発明方法及び従来法によって作製された正極板の
放電電位を比較して示す特性図、第3図は本発明方法及
び従来法によって作製された正極板を用いた円筒形密閉
電池の充電時内圧上昇を比較して示す特性図である。 π 1  旧 z@hfilt)締部ちt嘘 彦Z 光g1.狩間/會 オ 7 図 /CA”1=/外 手続?rtt正書(自発) 昭和60年12月23日 1、事件の表示 昭和60年 特 許 願 第263039号2、発明の
名称 アルカリ蓄電池用ニッケル正極板の製造法4、補正の対
象 明細書の「発明の詳細な説明」の欄。 5、補正の内容 ゛(1)明細書第4頁第11行目の r4Ni  (NO3)2 +8Na OH+Na c
l 0=4Ni 00)−l+8Na NO3+l’、
la C1+2HO・・・・・・・・・・・・1式 %式% O・・・・・・・・・・・・2式」を 「 4  N  i   (N  O3)  2  +
  8  N  a  Oトl  +  N  a  
 Cl   02−4Ni 0OII+8Na NO3
+Na C+ +21−120・・・・・・・・・・・
・1式 %式% 0・・・・・・・・・・・・2式」と訂正する。 以上
Figure 1 is a characteristic diagram showing the relationship between the content of higher oxides exceeding 2I11i in the positive electrode plate immediately before the first charge and the battery internal pressure.
The figure is a characteristic diagram comparing the discharge potential of positive electrode plates produced by the method of the present invention and the conventional method. Figure 3 is the charging of a cylindrical sealed battery using the positive electrode plates produced by the method of the present invention and the conventional method. FIG. 3 is a characteristic diagram showing a comparison of internal pressure increases during operation. π 1 Former z@hfilt) Shimebe Chit Uso HikoZ Hikari g1. Karima/Aio 7 Figure/CA”1=/Outside procedure?RTT official document (spontaneous) December 23, 1985 1. Display of the incident 1985 Patent application No. 263039 2. Name of the invention Alkaline storage battery 4, "Detailed Description of the Invention" column of the specification subject to amendment. 5. Contents of amendment (1) r4Ni (NO3)2 +8Na OH+Na c on page 4, line 11 of the specification
l 0=4Ni 00)-l+8Na NO3+l',
la C1+2HO・・・・・・・・・1 formula %formula% O・・・・・・・・・2 formula” to “4 N i (N O3) 2 +
8 Na Otl + Na
Cl 02-4Ni 0OII+8Na NO3
+Na C+ +21-120・・・・・・・・・・・・
・Correct it to ``1 formula % formula % 0......2 formula.''that's all

Claims (2)

【特許請求の範囲】[Claims] (1)多孔性金属基板あるいは水酸化ニッケルを主成分
とする活物質を保持したニッケル正極板にニッケル塩あ
るいはコバルト塩を主成分とする溶液を含浸した後、苛
性アルカリと酸化剤の混合溶液中に浸漬してアルカリ処
理を行ない、2価を越える高級酸化物の活物質を保持さ
せる工程を有するものであり、その酸化剤がペルオキソ
二硫酸塩あるいは亜塩素酸塩を主成分とすることを特徴
とするアルカリ蓄電池用ニッケル正極板の製造法。
(1) After impregnating a porous metal substrate or a nickel positive electrode plate holding an active material mainly composed of nickel hydroxide with a solution mainly composed of nickel salt or cobalt salt, it is placed in a mixed solution of caustic alkali and an oxidizing agent. It has a process of immersing it in water and performing alkali treatment to retain the active material of a higher oxide with a valence of more than 2, and the oxidizing agent is mainly composed of peroxodisulfate or chlorite. A method for manufacturing nickel positive electrode plates for alkaline storage batteries.
(2)保持された活物質の3%以上を2価を越える高級
酸化物に変化せしめたものである特許請求の範囲第(1
)項記載のアルカリ蓄電池用ニッケル正極板の製造法。
(2) Claim No. 1 in which 3% or more of the retained active material is changed into a higher oxide with a valence exceeding divalent.
) A method for producing a nickel positive electrode plate for an alkaline storage battery as described in item 2.
JP60263039A 1985-11-21 1985-11-21 Manufacture of nickel positive plate for alkaline storage battery Granted JPS62122064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60263039A JPS62122064A (en) 1985-11-21 1985-11-21 Manufacture of nickel positive plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60263039A JPS62122064A (en) 1985-11-21 1985-11-21 Manufacture of nickel positive plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS62122064A true JPS62122064A (en) 1987-06-03
JPH0577148B2 JPH0577148B2 (en) 1993-10-26

Family

ID=17384018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60263039A Granted JPS62122064A (en) 1985-11-21 1985-11-21 Manufacture of nickel positive plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS62122064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200555A (en) * 1987-10-15 1989-08-11 Sanyo Electric Co Ltd Manufacture of positive pole plate for alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200555A (en) * 1987-10-15 1989-08-11 Sanyo Electric Co Ltd Manufacture of positive pole plate for alkaline storage battery
JP2589123B2 (en) * 1987-10-15 1997-03-12 三洋電機株式会社 Method for producing positive electrode plate for alkaline storage battery

Also Published As

Publication number Publication date
JPH0577148B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
US3288643A (en) Process for making charged cadmium electrodes
JPH0221098B2 (en)
JPS62122064A (en) Manufacture of nickel positive plate for alkaline storage battery
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
US3764388A (en) Chloride free amalgamation of zinc powder using acetic oxalic and boric acids
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPS62122063A (en) Manufacture of nickel positive plate for alkaline storage battery
JPH01281668A (en) Alkaline storage battery and manufacture thereof
JPS607060A (en) Manufacture of positive plate for nickel cadmium storage battery
JPH0410181B2 (en)
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP2925764B2 (en) Manufacturing method of alkaline storage battery
JPH0232750B2 (en)
JP3018879B2 (en) Chemical formation method of paste-type cadmium anode
JPH041992B2 (en)
JPS5832745B2 (en) Manufacturing method of cadmium negative electrode plate for alkaline storage batteries
JPH01173572A (en) Manufacture of cadmium negative electrode plate
JPH0620717A (en) Manufacture of sealed nickel-cadmium storage battery
JPS62168341A (en) Manufacture of electrode plate for lead storage battery
JP2000285913A (en) Hydrogen storage alloy, and hydrogen storage alloy electrode using the same
JPS6340255A (en) Sintered nickel electrode for alkaline storage battery
JPS63146354A (en) Manufacture of hydrogen absorbing electrode
JPS59165371A (en) Cathode plate for alkaline storage battery
JPH01146253A (en) Manufacture of cadmium electrode for battery
JPH01221858A (en) Manufacture of cadmium negative electrode for alkaline storage battery