JPS59165371A - Cathode plate for alkaline storage battery - Google Patents

Cathode plate for alkaline storage battery

Info

Publication number
JPS59165371A
JPS59165371A JP58039777A JP3977783A JPS59165371A JP S59165371 A JPS59165371 A JP S59165371A JP 58039777 A JP58039777 A JP 58039777A JP 3977783 A JP3977783 A JP 3977783A JP S59165371 A JPS59165371 A JP S59165371A
Authority
JP
Japan
Prior art keywords
cobalt
active material
hydroxide
nickel
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58039777A
Other languages
Japanese (ja)
Inventor
Kensuke Nakatani
中谷 謙助
Yuji Morioka
盛岡 勇次
Hiroyuki Isooka
磯岡 寛行
Hideharu Yamamoto
英晴 山本
Hiroyuki Miyata
裕之 宮田
Makoto Kanbayashi
誠 神林
Shinsuke Nakahori
中堀 真介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58039777A priority Critical patent/JPS59165371A/en
Publication of JPS59165371A publication Critical patent/JPS59165371A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase capacity in normal temperature use and suppress capacity drop in high temperature use by adding cobalt to the inside of a cathode active material in addition to the surface of the cathode active material. CONSTITUTION:A layer of cobalt hydroxide alone is formed on the surface of active material of a porous metal substrate holding the active material obtained by uniformly dispersing cobalt hydroxide in nickel hydroxide. 0.5-5wt% cobalt hydroxide to nickel hydroxide is dispersed. For example, a sintered nickel substrate is immersed in nitrate solution containing nickel nitrate and cobalt nitrate and having a specific gravity of 1.7, then nickel and cobalt are converted into hydroxides in alkaline solution, and they are washed and dried. This process is repeated several times to obtain desired filling amount. Then this substrate is immersed in a sp. gr. 1.4 cobalt nitrate solution and treated in alkaline solution, washed, and dried to form a cobalt layer on the surface of an active material. Thereby, a cathode plate having cobalt on its surface and in its inside is obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は活物質表面に水酸化コバルトが単独で存在する
層を有するアルカリ蓄電池用陽極板に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an anode plate for an alkaline storage battery having a layer in which cobalt hydroxide exists alone on the surface of an active material.

←)従来&術 従来アルカリ蓄電池の陽極板はカーボニルニッケル粉末
を主成分とするスラリーを芯体にコーティングし、これ
を還元雰囲気下で焼結して得た多孔性ニッケル基板中に
硝酸ニッケルを主成分とした含浸液を含浸し、次いでア
ルカリ溶液に浸漬して基板孔中の硝酸ニッケルを陽極活
物質である水酸化ニッケルに変換することによυ製造さ
れている。しかし、こうして得られる陽極板では最近の
市場要求に答えられず、極板容量が大きく、体積エネル
ギー密度の大きな陽極板を開発する必要がある。本発明
者らは実験の結果活物質表層に水酸化コバルトを単独で
存在させることにより、活物質の利用率及び極板容量が
向上することを見い出−したが、この活物質表層に水酸
化コバルトを単独で存在させた陽極板は高温使用時に於
いて従来極板より極板容量が低くなることがわかった。
←) Conventional & Technique The anode plate of conventional alkaline storage batteries is made by coating the core with a slurry mainly composed of carbonyl nickel powder, and sintering this in a reducing atmosphere to form a porous nickel substrate containing mainly nickel nitrate. It is manufactured by impregnating the substrate with an impregnating liquid as a component and then immersing it in an alkaline solution to convert nickel nitrate in the holes of the substrate into nickel hydroxide, which is an anode active material. However, the anode plates obtained in this way cannot meet recent market demands, and there is a need to develop an anode plate with a large plate capacity and a large volumetric energy density. As a result of experiments, the present inventors found that the utilization rate of the active material and the capacity of the electrode plate were improved by the presence of cobalt hydroxide alone on the surface layer of the active material. It has been found that an anode plate in which cobalt oxide is present alone has a lower capacity than a conventional plate when used at high temperatures.

(ハ)発明の目的 本発明はかかる点に鑑み常温下での使用時における容態
を向上させ、且つ高温下での使用時に於ける容量の低下
を抑制したアルカリ蓄電、池を得ることを目的とする。
(c) Purpose of the Invention In view of the above, the object of the present invention is to obtain an alkaline storage battery or battery that improves the condition when used at room temperature and suppresses the decrease in capacity when used at high temperatures. do.

に)発明の構成 本発明は、生活物質が水酸化ニッケル中に水酸化コバル
トを均一に存在させた混晶であり、この活物質を保持し
た多孔性金属基板の前記活物質表面に水酸化コバlシト
が単独で存在する層を有し、この活物質表層の水酸化コ
バルトの量が前記水酸化ニッケルに対して0.5〜5重
量%であるアルカリ蓄電池用陽極板である。
B) Structure of the Invention The present invention provides that the living substance is a mixed crystal in which cobalt hydroxide is uniformly present in nickel hydroxide, and that cobalt hydroxide is formed on the surface of the active material of a porous metal substrate holding this active material. The present invention is an anode plate for an alkaline storage battery, which has a layer in which nickel hydroxide is present alone, and the amount of cobalt hydroxide in the surface layer of the active material is 0.5 to 5% by weight based on the nickel hydroxide.

(ホ)実施例 本発明の実施例を示す前Kまず活物質表層に添加され単
独で存在する水酸化コバルトの適量及び特性を実験に基
づき説明する。
(e) Examples Before presenting examples of the present invention, the appropriate amount and characteristics of cobalt hydroxide added to the surface layer of the active material and present alone will be explained based on experiments.

実験1 硝酸ニッケルを主成分とする含浸液を用いて化学含浸法
により、焼結式ニッケル基板に、ニッケル陽極活物質を
保持せしめた利用率76%の極板を、ニッケルとコバル
トの含有率を変化させてなる比重1.4の硝酸塩含浸液
に5分間浸漬した後、続いてフルカリ処理、水洗、乾燥
を行ない陽極板を作成し、この極板を用いて利用率の測
定を行なった。第1図に前記硝酸塩含浸液中のニッケル
とコバルトの組成と利用率との関係を示す。図面よシ明
らかな様に活物質表層のコバルトの含有率が高くなる程
利用率は高い値を示し、含浸液組成としてはコバルトが
少なくとも75%以上、望ましくは100%であること
で高利用率が得られることがわかる。
Experiment 1 An electrode plate with a utilization rate of 76% that held a nickel anode active material was attached to a sintered nickel substrate by a chemical impregnation method using an impregnating liquid mainly composed of nickel nitrate, and the content of nickel and cobalt was After being immersed for 5 minutes in a nitrate-impregnated solution with a specific gravity of 1.4, an anode plate was prepared by performing a full caustic treatment, washing with water, and drying, and using this plate, the utilization rate was measured. FIG. 1 shows the relationship between the composition of nickel and cobalt in the nitrate impregnation solution and the utilization rate. As is clear from the drawing, the higher the content of cobalt in the surface layer of the active material, the higher the utilization rate.The impregnating liquid composition has a cobalt content of at least 75%, preferably 100%, to achieve a high utilization rate. It can be seen that the following can be obtained.

実験2 実験1と同様の利用率76%の極板を異なる比重の硝酸
コバルト水溶液に5分間浸漬した後、続いてアルカリ処
理、水洗、乾燥を行ない活物質表層へのコバルト添加量
を変化させた陽極板を作成し、この極板を用いて利用率
の測定を行なった。
Experiment 2 The same electrode plate as in Experiment 1 with a utilization rate of 76% was immersed in cobalt nitrate aqueous solutions with different specific gravity for 5 minutes, followed by alkali treatment, water washing, and drying to change the amount of cobalt added to the surface layer of the active material. An anode plate was prepared and the utilization rate was measured using this plate.

第2図にコバルト添加率(活物質の水酸化ニッケルに対
する活物質表層の水酸化コバルトの割合)と利用率との
関係を示す。第2図より、活物質表層へのコバルトの添
加量にも最適値があシ、水酸化コバルトの添加量は活物
質の水酸化ニッケルに対してO15〜5.0重量%であ
ることで高利用率が得られる仁とがわかる。
FIG. 2 shows the relationship between the cobalt addition rate (the ratio of cobalt hydroxide in the surface layer of the active material to nickel hydroxide in the active material) and the utilization rate. From Figure 2, there is no optimum value for the amount of cobalt added to the surface layer of the active material, and the amount of cobalt hydroxide added is 15 to 5.0% by weight of O to the nickel hydroxide of the active material. You can see the benefits that will increase the usage rate.

実験6 実験2と同一の操作により活物質表層へのコバルト添加
量を変化させた陽極板を得、この陽極板とカドミウム陰
極板をセパレーターを介して巻回し外装缶に挿入した後
、電解液としてKOH溶液を注入し、封口を行ない公称
容i1200mAHである電池を作成した。この電池を
20”C及び60°Cの下で0.1Cで16時間充電し
、室温下で10で放電して容量を測定した。第6図に陽
極の活物質表層へのコバルト添加率と、次式で算出した
容量との関係を示す。
Experiment 6 An anode plate in which the amount of cobalt added to the surface layer of the active material was varied was obtained by the same operation as in Experiment 2, and the anode plate and cadmium cathode plate were wound together via a separator and inserted into an outer can, and then used as an electrolyte. A KOH solution was injected and the container was sealed to produce a battery having a nominal capacity of 1200 mAH. This battery was charged at 0.1C for 16 hours at 20"C and 60°C, and then discharged at room temperature at 10C to measure the capacity. Figure 6 shows the cobalt addition rate and the amount of cobalt added to the surface layer of the active material of the anode. , shows the relationship with the capacity calculated by the following formula.

第6図よシ、活物質表層へのコバルト添加量の増加に伴
い容量率が低下し、活物質表層へのコバルト添加量の増
加に伴ない6U’C充電における容量劣化が著しくなる
ことがわかる。
Figure 6 shows that as the amount of cobalt added to the surface layer of the active material increases, the capacity ratio decreases, and as the amount of cobalt added to the surface layer of the active material increases, the capacity deterioration during 6U'C charging becomes more significant. .

実験4゜ 実験1と同様の利用率76%の極板を、比重1.4の硝
酸コバルト水溶液に室温で5分間浸漬した後、続いてア
ルカリ処理、水洗、乾燥して得た陽極板と、前記利用率
76%の極板とを用い、夫々実験6と同一の操作を行な
い、公称容量1200mAHの電池を作成した。仁うし
て作成された陽極活物質表層にコバルトが添加されてい
る電池をA、陽極活物質表層にコバルトが添加されてい
ない電池をBとして、この電池A及びBを用い充電温度
を変化させ0.1Cで16時間充電し、また室温で10
で放電して容量を測定した。第4図に市1池A及びBの
充電温度と容量との関係を示す。
Experiment 4 An anode plate obtained by immersing an electrode plate with a utilization rate of 76% similar to Experiment 1 in an aqueous cobalt nitrate solution with a specific gravity of 1.4 at room temperature for 5 minutes, followed by alkali treatment, washing with water, and drying. Using the electrode plates with a utilization rate of 76%, the same operations as in Experiment 6 were performed to create a battery with a nominal capacity of 1200 mAh. A battery in which cobalt was added to the surface layer of the anode active material prepared by the above process was designated as A, and a battery in which cobalt was not added to the surface layer of the anode active material was designated as B. Using these batteries A and B, the charging temperature was changed to 0. .Charged at 1C for 16 hours, then charged at room temperature for 10 hours.
The capacity was measured by discharging the battery. Figure 4 shows the relationship between charging temperature and capacity for City 1 Ponds A and B.

第4図より、電池Aは充電温度が20℃近傍では、電池
Bに比較してかなり高い容量を持つが、充電温度が40
°Cを越えると電池Aは電池Bよシ容量が低くなるどと
がわかる。
From Figure 4, battery A has a considerably higher capacity than battery B when the charging temperature is around 20°C, but when the charging temperature is around 40°C, battery A has a considerably higher capacity than battery B.
It can be seen that when the temperature exceeds °C, battery A has a lower capacity than battery B.

本発明者らは活物質表層にコバルト添加を行なっ友陽極
板の高温特性の低下を抑制するために、活物質表面層の
コバルトとは別に活物質内部にも水酸化コバルトを添加
する仁とが有効であることを見い出したので以下に寮施
例を示し説明する。
The present inventors added cobalt to the surface layer of the active material in order to suppress the deterioration of the high-temperature characteristics of the anode plate. Since we have found that this method is effective, we will explain it below using an example of a dormitory.

焼結式ニッケル基板を、硝酸ニッケルと硝酸コバルトと
の混合比率を変化させた比重1.7の硝酸塩水溶液中に
浸漬し、次いでアルカリ水溶液中でニッケル及びコバル
トを水酸化物に変換せしめ、水洗、乾燥を行なう充填操
作を数回操り返し、所定の充填量を得た後、更に比重1
.4の硝酸コバルト水溶液中に5分間浸漬し、次いでア
ルカリ処理、水洗、乾燥を行ない活物質表面にコバルト
層を有し、活物質内部のコバルト添加量が異なった陽極
板を作成した。こうして得られた陽極板は、活物質内部
では水酸化ニッケル中に水酸化コバルトが均一に分散し
ており、活物質表面には活物質の水酸化ニッケルに列し
約6重量%の純粋な水酸化コバルト層が形成されている
。この陽極板を用いて活物質表面にコバルト層を有する
陽極板の活物質内部の水酸化ニッケルに対する水酸化コ
バルトの添加率と活物質の利用率との関係を測定し、そ
の結果を第5図に示す。活物質内部にのみコバルトを、
均一に添加する場合、コバルトの添加量が増加するに従
い活物質の利用率が向上し、添加量が約10重t%で利
用率が最大値を示すことは公知である。しかしながら第
5図に示す如く、活物質表面にコバルトを単独で添加す
る場合には、活物質内部のコバルト添加の効果はtlと
んと見られず、むしろ活物質内部のコバルト添加量が増
加するに従って、活物質の利用率が減少し、特に活物質
内部のコバルト添加が10重量%以上で利用率の低下は
顕著にあられれる。
A sintered nickel substrate was immersed in a nitrate aqueous solution with a specific gravity of 1.7 in which the mixing ratio of nickel nitrate and cobalt nitrate was varied, and then nickel and cobalt were converted to hydroxide in an alkaline aqueous solution, and washed with water. After repeating the drying filling operation several times to obtain the desired filling amount, the specific gravity is further increased to 1.
.. The electrode plates were immersed in the aqueous cobalt nitrate solution of No. 4 for 5 minutes, then treated with alkali, washed with water, and dried to produce anode plates having a cobalt layer on the surface of the active material and different amounts of cobalt added inside the active material. The anode plate obtained in this way has cobalt hydroxide uniformly dispersed in nickel hydroxide inside the active material, and approximately 6% by weight of pure water on the surface of the active material, which is aligned with the nickel hydroxide of the active material. A cobalt oxide layer is formed. Using this anode plate, we measured the relationship between the addition rate of cobalt hydroxide to nickel hydroxide inside the active material of an anode plate having a cobalt layer on the surface of the active material and the utilization rate of the active material, and the results are shown in Figure 5. Shown below. Cobalt only inside the active material,
It is known that when added uniformly, the utilization rate of the active material improves as the amount of cobalt added increases, and the utilization rate reaches its maximum value when the amount added is about 10% by weight. However, as shown in FIG. 5, when cobalt is added alone to the surface of the active material, the effect of adding cobalt inside the active material is not seen at all; rather, as the amount of cobalt added inside the active material increases, The utilization rate of the active material decreases, especially when the amount of cobalt added inside the active material is 10% by weight or more.

次に前述の活物質表面にコバルト層を有し活物質内部に
コバルトが添加された陽極板を用い以下実験4と同一の
操作を行なって公称容:It1200m A )i(7
) N池を作成し、20℃及び6o′cでo、1Cで1
6時間充電し、また室温で10で放電しで1容奮を測定
した。第6図に活物質表層にコバルト添加された陽極板
の活物質内部の水酸化ニッケルに対する水酸化コバルト
の添加率と容量との関係を示す。@6図より20℃で光
重した場合は活物質内部の水酸化コバルト無添加時に比
し容量は′減少しているが、実験4で示した活物質表面
にコバルト添加を行なっていない電池Bと比較すると、
電池Bの20℃充電時の容量が1270mAMであるの
で、第6図で示す?li−池は活物質内部のコバルト添
加率が10重量%以内では電池Bに比し高い容量を示し
ている。また60°Cで充電した場合は、活物質内部の
水酸化コバルト無添加時の容量を起点として活物質内部
の水酸化コバルトの添加量の増加に伴い容量は増加し、
活物質内部のコバルト添加率が6重弗%〜9重角%で容
量は最大となる。実験4で示した電池Bと比較すると、
電池Bの60℃充市5時の容量が8QQmAliである
ので、第6図で示す電池は活物質内部のコバルト添加率
が6重量%〜9重量%で電池Bと容量はほぼ同等となっ
ている。
Next, using the above-mentioned anode plate having a cobalt layer on the surface of the active material and cobalt added inside the active material, the same operation as in Experiment 4 was performed to obtain a nominal volume: It1200mA)i(7
) Create a N pond, o at 20℃ and 6o'c, 1 at 1C.
The battery was charged for 6 hours and then discharged at room temperature for 10 minutes to measure 1 stroke. FIG. 6 shows the relationship between the capacity and the addition ratio of cobalt hydroxide to nickel hydroxide inside the active material of an anode plate in which cobalt is added to the surface layer of the active material. @6 From Figure 6, when exposed to light at 20°C, the capacity is reduced compared to when no cobalt hydroxide is added inside the active material, but this is true for battery B, which did not have cobalt added to the surface of the active material shown in Experiment 4. Compared to,
Since the capacity of battery B when charged at 20°C is 1270 mAM, it is shown in Figure 6. The Li-pond shows a higher capacity than Battery B when the cobalt addition rate inside the active material is within 10% by weight. In addition, when charging at 60°C, the capacity starts from the capacity when no cobalt hydroxide is added inside the active material, and increases as the amount of cobalt hydroxide added inside the active material increases.
The capacity is maximized when the cobalt addition rate inside the active material is 6% to 9%. Compared to battery B shown in Experiment 4,
Since the capacity of Battery B at 5 hours after charging at 60°C is 8QQmAli, the battery shown in Figure 6 has a cobalt addition rate of 6% to 9% by weight inside the active material, and the capacity is almost the same as Battery B. There is.

(へ)発明の効果 本発明により陽極活物質表面へのコバルト添加の他に陽
極活物質内部にもコバルトを添加することによって、従
来電池と比較して常温下での使用時で高容是を有し、高
温下での使用時に同等の容量を有するアルカリ蓄電池が
得られる効果がある。
(f) Effects of the Invention By adding cobalt to the surface of the positive electrode active material and also to the inside of the positive electrode active material, the present invention achieves a high capacity when used at room temperature compared to conventional batteries. This has the effect of providing an alkaline storage battery with the same capacity when used at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は活物質表層のニッケルとコバルトとの組成と、
利用率との関係を示す図、第2図は活物質表層のコバル
ト添加率と利用率との関係を示す図、第6図は活物質表
層のコバルト添加率と電池の容量率との関係を示す図、
第4図は充電温度と電池容量との関係を示す図、第5図
は活物質内部のコバルト添加率と利用率との関係を示す
図、第6図は活物質内部のコバルト添加率と電池容量と
の関係を示す図である。 第1図 第2図 コバルトfカO#ry、+ 丸! ;11! (’す
Figure 1 shows the composition of nickel and cobalt in the surface layer of the active material,
Figure 2 shows the relationship between the cobalt addition rate in the surface layer of the active material and the utilization rate, and Figure 6 shows the relationship between the cobalt addition rate in the surface layer of the active material and the battery capacity rate. diagram showing,
Figure 4 shows the relationship between charging temperature and battery capacity, Figure 5 shows the relationship between the cobalt addition rate inside the active material and the utilization rate, and Figure 6 shows the relationship between the cobalt addition rate inside the active material and the battery capacity. FIG. 3 is a diagram showing the relationship with capacity. Figure 1 Figure 2 Cobalt fka O#ry, + Circle! ;11! ('vinegar

Claims (1)

【特許請求の範囲】 (11主活物質が水酸化ニッケル中に水酸化コバルトを
均一に存在させた混晶であシ、この活物質を保持した多
孔性金属基板の前記活物質表面に、水酸化コバルトが単
独で存在する層を有し、この活物質表層の水酸化コバル
トの量が前記水酸化ニッケルに対して0.5〜5重景重
量あることを特徴とするアルカリ蓄電池用陽極板。 (2)前記水酸化ニッケル中の水酸化コバルトの量が前
記水酸化ニッケルに対して9重量%以内である特許請求
の範囲第1項記載のアルカリ蓄電池用陽極板。
[Claims] (11) The main active material is a mixed crystal in which cobalt hydroxide is uniformly present in nickel hydroxide, and the surface of the active material of the porous metal substrate holding this active material is coated with water. 1. An anode plate for an alkaline storage battery, comprising a layer in which cobalt oxide exists alone, and the amount of cobalt hydroxide in the surface layer of the active material is 0.5 to 5 times the weight of the nickel hydroxide. (2) The anode plate for an alkaline storage battery according to claim 1, wherein the amount of cobalt hydroxide in the nickel hydroxide is within 9% by weight based on the nickel hydroxide.
JP58039777A 1983-03-09 1983-03-09 Cathode plate for alkaline storage battery Pending JPS59165371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58039777A JPS59165371A (en) 1983-03-09 1983-03-09 Cathode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58039777A JPS59165371A (en) 1983-03-09 1983-03-09 Cathode plate for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS59165371A true JPS59165371A (en) 1984-09-18

Family

ID=12562359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58039777A Pending JPS59165371A (en) 1983-03-09 1983-03-09 Cathode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS59165371A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143669A (en) * 1980-04-10 1981-11-09 Sanyo Electric Co Ltd Positive plate for alkaline storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143669A (en) * 1980-04-10 1981-11-09 Sanyo Electric Co Ltd Positive plate for alkaline storage battery

Similar Documents

Publication Publication Date Title
US3288643A (en) Process for making charged cadmium electrodes
JPS59165371A (en) Cathode plate for alkaline storage battery
JPS5983347A (en) Sealed nickel-cadmium storage battery
JP2926732B2 (en) Alkaline secondary battery
JPH0259587B2 (en)
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPS58201271A (en) Sealed type alkaline storage battery
JPH0410181B2 (en)
JPS5853159A (en) Air cell
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery
JPH04359864A (en) Non-sintering nickel positive electrode and its manufacture
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS62122064A (en) Manufacture of nickel positive plate for alkaline storage battery
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JPH10172551A (en) Nickel electrode for alkaline storage battery
JPS63124368A (en) Manufacture of zinc electrode for alkaline storage battery
JPH041992B2 (en)
JPS5973844A (en) Production method of cadmium negative pole plate for alkaline storage battery
JPS63138655A (en) Manufacture of sintered type cadmium negative electrode plate for alkaline cell
JPS63285870A (en) Manufacture of nickel cathode for alkaline storage battery
JPS58186161A (en) Negative electrode for alkaline battery
JPS60158552A (en) Manufacture of paste type cadmium anode
JPS63160161A (en) Manufacture of cathode plate for aikaline storage battery