JPH0259587B2 - - Google Patents

Info

Publication number
JPH0259587B2
JPH0259587B2 JP58039778A JP3977883A JPH0259587B2 JP H0259587 B2 JPH0259587 B2 JP H0259587B2 JP 58039778 A JP58039778 A JP 58039778A JP 3977883 A JP3977883 A JP 3977883A JP H0259587 B2 JPH0259587 B2 JP H0259587B2
Authority
JP
Japan
Prior art keywords
cobalt
active material
plate
electrode plate
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58039778A
Other languages
Japanese (ja)
Other versions
JPS59165370A (en
Inventor
Hideharu Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58039778A priority Critical patent/JPS59165370A/en
Publication of JPS59165370A publication Critical patent/JPS59165370A/en
Publication of JPH0259587B2 publication Critical patent/JPH0259587B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は活物質表面に水酸化コバルトが単独で
存在する層を有するアルカリ蓄電池用陽極板の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing an anode plate for an alkaline storage battery having a layer in which cobalt hydroxide exists alone on the surface of an active material.

(ロ) 従来技術 従来アルカリ蓄電池の陽極板は、カーボニルニ
ツケル粉末を主成分とするスラリーを芯体にコー
テイングし、これを還元雰囲気下で焼結して得た
多孔性ニツケル基板中に、硝酸ニツケルを主成分
とした含浸液を含浸し、次いでアルカリ溶液に浸
漬して基板の孔中に活物質を充填させる製造方法
を用いて作成されている。しかし、最近の市場要
求は、前述の製造方法で得た陽極板を用いたアル
カリ蓄電池では満足できず、電池の容量アツプを
強く望むものであり、該市場要求を満たすために
も、極板容量の大きな、また体積エネルギー密度
の大きな陽極板を開発する必要がある。極板容量
をアツプさせる基本的な方法としては、活物質の
利用率を増加させる方法が考えられ、一般に含浸
液中に硝酸コバルトを添加しておき活物質中にコ
バルトを均一に分散するコバルト添加が行なわれ
ている。該コバルト添加は、利用率及び高温特性
の向上に有効であるが、陽極板での活物質の利用
率は充分ではなかつた。
(b) Prior art The anode plate of a conventional alkaline storage battery is made by coating a core with a slurry mainly composed of carbonyl nickel powder and sintering this in a reducing atmosphere. The substrate is manufactured using a manufacturing method in which the active material is filled into the pores of the substrate by impregnating the substrate with an impregnating liquid containing as the main component, and then immersing it in an alkaline solution. However, recent market demands cannot be satisfied with alkaline storage batteries using anode plates obtained by the above-mentioned manufacturing method, and there is a strong desire for increased battery capacity. It is necessary to develop an anode plate with a large energy density and a large volumetric energy density. The basic method to increase the capacity of the electrode plate is to increase the utilization rate of the active material, and generally cobalt nitrate is added to the impregnating solution and cobalt is added to uniformly disperse the cobalt in the active material. is being carried out. Although the addition of cobalt is effective in improving the utilization rate and high-temperature characteristics, the utilization rate of the active material in the anode plate was not sufficient.

(ハ) 発明の目的 本発明はかかる点に鑑み、陽極活物質の利用率
を向上させることにより極板容量を向上させ、ま
た、充放電サイクルの増加に伴う容量劣化を抑制
した陽極板を製造することを目的とする。
(c) Purpose of the Invention In view of the above, the present invention provides an anode plate that improves the capacity of the electrode plate by improving the utilization rate of the anode active material, and suppresses capacity deterioration due to an increase in charge/discharge cycles. The purpose is to

(ニ) 発明の構成 本発明のアルカリ蓄電池用陽極板の製造方法
は、水酸化ニツケルを主成分とする陽極活物質ま
たは水酸化ニツケルのみの陽極活物質を保持した
多孔性金属基板を、硝酸コバルトを75%以上含む
硝酸塩水溶液に浸漬し、次いでアルカリ処理を行
ない前記活物質の表面に水酸化コバルトが単独で
存在する層を形成した後、過酸化水素水、オゾン
から選ばれた少なくとも1つの酸化剤を用いて前
記水酸化コバルトを酸化させてコバルトを3価に
することにより、活物質表層にコバルト添加した
陽極板の充放電サイクルにより容量劣化の防止及
び容量の向上を計るものである。
(d) Structure of the Invention The method for manufacturing an anode plate for an alkaline storage battery of the present invention is to replace a porous metal substrate holding an anode active material mainly composed of nickel hydroxide or only nickel hydroxide with cobalt nitrate. The active material is immersed in an aqueous nitrate solution containing 75% or more of cobalt hydroxide, and then subjected to alkali treatment to form a layer in which cobalt hydroxide exists alone on the surface of the active material. By oxidizing the cobalt hydroxide using a chemical agent to make cobalt trivalent, it is possible to prevent capacity deterioration and improve capacity through charging and discharging cycles of an anode plate with cobalt added to the surface layer of the active material.

また、前記水酸化コバルトを前記水酸化ニツケ
ルに対し0.5〜5重量%とし、前記多孔性金属基
板の前記硝酸塩水溶液への浸漬が含浸時間をX
(分)、また含浸液温をY(℃)とした場合、 X≦(95−Y)/2.5 の範囲に設定することで、より一層大きな容量を
有するアルカリ蓄電池用陽極板を提供するもので
ある。
Further, the cobalt hydroxide is 0.5 to 5% by weight based on the nickel hydroxide, and the porous metal substrate is immersed in the nitrate aqueous solution for an impregnation time of
(minutes), and when the impregnating liquid temperature is Y (°C), by setting it in the range of be.

(ホ) 実施例 本発明に関する実験及び実施例を以下に示し、
図面を用いて説明する。
(e) Examples Experiments and examples related to the present invention are shown below.
This will be explained using drawings.

実験 1 硝酸ニツケルを主成分とする含浸液を用いて、
化学含浸法により焼結式ニツケル基板にニツケル
陽極活物質を保持せしめた利用率76%の極板を、
ニツケルとコバルトの含有率を変化させてなる比
重1、4の硝酸塩含浸液に5分間浸漬した後、続
いてアルカリ処理、水洗、乾燥を行ない陽極板を
作成し、利用率の測定を行なつた。第1図は硝酸
塩含浸液中のニツケルとコバルトの組成と利用率
との関係を示した図面である。図面より明らかな
様に含浸液組成によつて利用率は大きな影響を受
け、コバルトの比率が高くなる程利用率は高い値
を示す。すなわち、活物質表層のコバルト含有率
は高い程良く含浸液組成としてはコバルトは少な
くとも75%以上、望ましくは100%で高利用率が
得られる。
Experiment 1 Using an impregnating liquid containing nickel nitrate as the main component,
An electrode plate with a utilization rate of 76% is made by holding a nickel anode active material on a sintered nickel substrate using a chemical impregnation method.
After being immersed for 5 minutes in a nitrate impregnating solution with a specific gravity of 1 and 4, which was made by varying the content of nickel and cobalt, the anode plates were then treated with alkali, washed with water, and dried to create anode plates, and the utilization rate was measured. . FIG. 1 is a drawing showing the relationship between the composition of nickel and cobalt in the nitrate impregnation solution and the utilization rate. As is clear from the drawings, the utilization rate is greatly affected by the composition of the impregnating liquid, and the higher the proportion of cobalt, the higher the utilization rate. That is, the higher the cobalt content in the surface layer of the active material, the better, and a high utilization rate can be obtained when the impregnating liquid composition contains at least 75% cobalt, preferably 100%.

実験 2 実験1と同様の利用率76%の極板を、液温が20
℃、45℃、70℃である比重1、4の硝酸コバルト
含浸液に夫々任意時間浸漬後、アルカリ水溶液に
浸漬して水酸化コバルトに変換し、続いて水洗、
乾燥を行ない活物質表層にコバルトを析出させて
陽極板を作成した。第2図は硝酸コバルト含浸液
での含浸時間と利用率との関係を示した図面であ
り、第3図は高利用率を得るための含浸時間と含
浸液温との関係を示した図面である。第2図より
含浸時間が増すにもかかわらず利用率が減少して
いることがわかる。これは長時間極板を含浸液に
浸漬することにより、活物質のニツケルが溶け出
しコバルトとの混合が進み活物質表層部の水酸化
コバルトの含有率が減少するためと考えられる。
含浸液温が高い程利用率の減少が早いことも同様
な理由であり、高温になる程ニツケルのコバルト
への溶解混合が進行するためである。また、含浸
液温20℃では含浸時間30分以内、45℃では20分以
内、70℃では10分以内で含浸を行なうと利用率の
大幅な向上が期待できることがわかる。すなわち
第3図の斜線部の範囲であり、含浸液温をY
(℃)、含浸時間をX(分)とすれば一般に X≦(95−Y)/2.5 で好良な効果が得られる。
Experiment 2 An electrode plate with a utilization rate of 76% as in Experiment 1 was used at a liquid temperature of 20%.
℃, 45℃, and 70℃ in a cobalt nitrate impregnating solution with a specific gravity of 1 and 4, respectively, for an arbitrary period of time, and then immersed in an alkaline aqueous solution to convert it into cobalt hydroxide, followed by washing with water,
After drying, cobalt was deposited on the surface layer of the active material to prepare an anode plate. Figure 2 is a diagram showing the relationship between impregnation time and utilization rate with cobalt nitrate impregnating solution, and Figure 3 is a diagram showing the relationship between impregnation time and impregnating solution temperature to obtain a high utilization rate. be. From FIG. 2, it can be seen that the utilization rate decreased despite the increase in the impregnation time. This is thought to be because by immersing the electrode plate in the impregnating liquid for a long time, the active material nickel dissolves and mixes with cobalt, causing the content of cobalt hydroxide in the surface layer of the active material to decrease.
The reason for this is that the higher the temperature of the impregnating liquid, the faster the decrease in utilization rate occurs, and the higher the temperature, the more dissolution and mixing of nickel into cobalt progresses. It can also be seen that if the impregnation time is within 30 minutes at an impregnating solution temperature of 20°C, within 20 minutes at 45°C, and within 10 minutes at 70°C, a significant improvement in the utilization rate can be expected. In other words, this is the shaded area in Figure 3, and the temperature of the impregnating liquid is Y.
(°C) and the impregnation time is X (minutes), generally a good effect can be obtained when X≦(95-Y)/2.5.

実験 3 実験1と同様の利用率76%の極板を、液温20℃
の異なる比重の硝酸コバルト水溶液に5分間浸漬
した後、続いてアルカリ処理、水洗、乾燥を行な
い活物質表層へのコバルト添加量を変化させた陽
極板を作成し、利用率を側定した。第4図は硝酸
コバルト含浸液の比重とコバルト添加率(活物質
の水酸化ニツケルに対する活物質表層の水酸化コ
バルトの割合)との関係を示す図面であり、第5
図はコバルト添加率と利用率との関係を示す図面
である。第4図より硝酸コバルト含浸液の比重を
変化させることで、コバルトの添加量を変化させ
られることがわかる。コバルトの添加量を変化さ
せる方法として同じ比重の含浸液を用い含浸時間
を変化させる方法も考えられるが、前述のとお
り、長時間の硝酸コバルト水溶液への浸漬は利用
率の低下を招き好ましくない。また第5図からわ
かるように、コバルト添加が少ない場合は、コバ
ルトの添加に伴なう利用率の向上がうかがえる
が、利用率はまだ十分ではなく、それと同時に充
放電サイクルでの劣化が大きくなる(後述)。コ
バルト添加が多すぎる場合は、コバルトの添加に
伴ない利用率の低下がうかがわれ、またガス発生
による極板の部分的剥離が生じ、コバルトのセパ
レーターへの移動が著しくなり電池構成時にシヨ
ート等の危険を伴なう。このコバルト添加が多す
ぎる場合の利用率の低下の原因は極板内の空孔の
一部がコバルトに閉鎖され、また活物質表層に存
在するコバルト層が厚くなり過ぎ電解液の拡散、
浸透が制限されるためと推測される。上述の様に
活物質表層へのコバルトの添加量には最適値があ
り0.5〜5.0重量%が望ましい。
Experiment 3 An electrode plate with a utilization rate of 76% as in Experiment 1 was used at a liquid temperature of 20℃.
After being immersed in cobalt nitrate aqueous solutions with different specific gravity for 5 minutes, anode plates were then treated with alkali, washed with water, and dried to create anode plates with varying amounts of cobalt added to the surface layer of the active material, and the utilization rates were evaluated. FIG. 4 is a drawing showing the relationship between the specific gravity of the cobalt nitrate impregnation liquid and the cobalt addition rate (ratio of cobalt hydroxide in the surface layer of the active material to nickel hydroxide in the active material).
The figure is a diagram showing the relationship between cobalt addition rate and utilization rate. It can be seen from FIG. 4 that the amount of cobalt added can be changed by changing the specific gravity of the cobalt nitrate impregnation liquid. One possible way to change the amount of cobalt added is to use an impregnating liquid of the same specific gravity and change the impregnation time, but as mentioned above, long-term immersion in an aqueous cobalt nitrate solution is undesirable because it reduces the utilization rate. Furthermore, as can be seen from Figure 5, when the amount of cobalt added is small, it can be seen that the utilization rate improves due to the addition of cobalt, but the utilization rate is still not sufficient and at the same time, the deterioration during charge/discharge cycles increases. (described later). If too much cobalt is added, the utilization rate will decrease due to the addition of cobalt, and partial peeling of the electrode plate will occur due to gas generation, and the movement of cobalt to the separator will be significant. involves the risk of If too much cobalt is added, the utilization rate decreases because some of the pores in the electrode plates are closed by cobalt, and the cobalt layer on the surface of the active material becomes too thick, causing electrolyte diffusion and
This is presumed to be due to limited penetration. As mentioned above, the amount of cobalt added to the surface layer of the active material has an optimum value, and is preferably 0.5 to 5.0% by weight.

実験 4 実験1乃至3の結果を考慮して極板A〜Fを作
成してサイクル特性を調べてた。
Experiment 4 Considering the results of Experiments 1 to 3, electrode plates A to F were created and their cycle characteristics were investigated.

極板 A 実験1で用いた利用率76%の極板をベース極板
とし、このベース極板を比重1.4の硝酸コバルト
水溶液に室温で5分間浸漬し、続いて乾燥、アル
カリ処理、水洗、乾燥を行なつて水酸化コバルト
の添加量が活物質に対して約3.0%となつて陽極
板である。
Electrode plate A The electrode plate with a utilization rate of 76% used in Experiment 1 was used as a base electrode plate, and this base electrode plate was immersed in a cobalt nitrate aqueous solution with a specific gravity of 1.4 at room temperature for 5 minutes, followed by drying, alkali treatment, water washing, and drying. By doing this, the amount of cobalt hydroxide added to the active material was about 3.0%, and the anode plate was made.

極板 B 極板Aの作成条件のうち浸漬時間を60分とし、
その他の条件は同一で作成し、水酸化コバルトの
添加量が活物質に対して約3.5%となつた陽極板
である。
Plate B Among the conditions for making Plate A, the immersion time is 60 minutes.
The anode plate was prepared under the same conditions except that the amount of cobalt hydroxide added was about 3.5% based on the active material.

極板 C 極板Aの作成条件のうち硝酸コバルト水溶液の
比重1、1とし、その他の条件は同一で作成し、
水酸化コバルトの添加量が活物質に対して約0.5
%となつた陽極板である。
Electrode plate C was prepared under the same conditions as electrode plate A, with the specific gravity of the cobalt nitrate aqueous solution being 1.1, and the other conditions being the same.
The amount of cobalt hydroxide added is approximately 0.5 to the active material.
% anode plate.

極板 D 前記ベース極板をコバルトとニツケルのモル比
で3対1である比重1、4の硝酸塩水溶液に室温
で5分間浸漬し、続いて乾燥、アルカリ処理、水
洗、乾燥を行なつて水酸化コバルトの添加量が活
物質に対して約2.8%となつた陽極板である。
Electrode Plate D The base electrode plate is immersed in a nitrate aqueous solution with a specific gravity of 1.4 and a molar ratio of cobalt and nickel of 3:1 at room temperature for 5 minutes, followed by drying, alkaline treatment, washing with water, drying, and immersion in water. This is an anode plate in which the amount of cobalt oxide added is approximately 2.8% based on the active material.

極板 E 極板Dの作成条件のうち比重1、4の硝酸塩水
溶液のコバルトとニツケルのモル比を1対3と
し、その他の条件は同一で作成し、水酸化コバル
トの添加量が活物質に対して約1.6%となつた陽
極板である。
Electrode plate E Electrode plate D was prepared under the conditions that the molar ratio of cobalt and nickel in a nitrate aqueous solution with a specific gravity of 1 and 4 was 1:3, and the other conditions were the same, and the amount of cobalt hydroxide added to the active material was For the anode plate, it was about 1.6%.

尚、ベース極板を極板Fとする。 Note that the base electrode plate is referred to as electrode plate F.

これらの極板のサイクル試験は、ニツケル板を
対極として電解液過剰の下で電解液に比重1、23
のKOHを用い、充電は理論容量の0.1C×16時間、
また放電は0.2Cで行なつた。第6図にこの試験に
より得られたサイクル数と容量との関係を示す。
第6図より極板A乃至Eはいずれもベース極板F
に比較して容量アツプがうかがわれるが、極板D
及びEは活物質量が他の極板より4〜8%増加し
ているので活物質の利用率では低下しており、ま
たコバルト添加の少ない極板Cではサイクル劣化
が他の極板に比し極端に大きくなつている。次い
で極板A及びFの体積効率並びに充放電時のニツ
ケルの価数の測定を行なうと、体積効率では極板
Fが430mAH/c.c.であるのに対し、極板Aは
540mAH/c.c.と大幅に増加していることがわか
り、またニツケルの価数では充電時に両極板とも
約3.1でほぼ同等であるが、放電時には極板Aが
価数約2.1まで放電されるのに対し、極板Fは価
数約2.3までしか放電されず、この0.2の価数の差
が容量アツプにつながつているものと考えられ
る。これは極板Fの場合放電時に活物質表面層よ
り充電生成物のNiOOHが導電性の低いNi(OH)2
に変化し、放電が進行するのに従い活物質表面層
がNi(OH)2におおわれ、内部のNiOOHの反応が
進みにくくなるのに対し、極板Aの場合は活物質
表面層に放電し難いCoOOHが存在し、この
CoOOHはNi(OH)2より導電性が高いため表面層
にNi(OH)2の様な不働態層が生成しにくく、内
部までNiOOHの反応が進むからと考えられる。
A cycle test of these electrode plates was carried out using a nickel plate as a counter electrode and applying a specific gravity of 1,23 to the electrolyte under an excess of electrolyte.
Using KOH, charging is the theoretical capacity of 0.1C x 16 hours.
Further, the discharge was performed at 0.2C. FIG. 6 shows the relationship between the number of cycles and capacity obtained by this test.
From Figure 6, all of the plates A to E are the base plate F.
It is seen that the capacity has increased compared to the plate D.
Since the amount of active material and E is increased by 4 to 8% compared to other electrode plates, the utilization rate of active material is lower, and in electrode plate C with less cobalt addition, the cycle deterioration is higher than that of other electrode plates. It has become extremely large. Next, we measured the volumetric efficiency of plates A and F and the valence of nickel during charging and discharging, and found that plate F had a volumetric efficiency of 430 mAH/cc, while plate A had a volumetric efficiency of 430 mAH/cc.
It can be seen that the valence has increased significantly to 540 mAH/cc, and the valence of Nickel is approximately 3.1 for both plates during charging, which is almost the same, but when discharging, plate A is discharged to a valence of approximately 2.1. On the other hand, the electrode plate F is discharged only to a valence of about 2.3, and it is thought that this difference in valence of 0.2 leads to an increase in capacity. This is because in the case of electrode plate F, the charged product NiOOH is Ni(OH), which has a lower conductivity than the active material surface layer during discharge .
As the discharge progresses, the surface layer of the active material becomes covered with Ni(OH) 2 , making it difficult for the reaction of NiOOH inside to proceed, whereas in the case of electrode plate A, it is difficult to discharge to the surface layer of the active material. CoOOH exists and this
This is thought to be because CoOOH has higher conductivity than Ni(OH) 2 , so it is difficult to form a passive layer like Ni(OH) 2 on the surface layer, and the NiOOH reaction progresses to the inside.

しかしながら前述の活物質表面層にコバルトを
添加した極板は、充放電サイクルが進むにつれ容
量が劣化することがわかつた。以下に本発明の実
施例を示し、本発明による極板と、前述の極板A
及びFとを比較しながら説明する。
However, it has been found that the capacity of the electrode plate in which cobalt is added to the active material surface layer described above deteriorates as the charge/discharge cycle progresses. Examples of the present invention are shown below, and the electrode plate according to the present invention and the above-mentioned electrode plate A are shown below.
This will be explained by comparing and F.

実施例 実験4で用いた極板Aを2%過酸化水素水に30
分間浸漬し、活物質表層のコバルトを酸化させて
3価とした。尚、この極板の前記活物質表面層
は、硝酸コバルトを75%以上含む硝酸塩水溶液に
浸漬した後アルカリ処理を行なつて形成したもの
であり、前記実験1で示した如く利用率が高く、
活物質の表面に水酸化コバルトが単独で存在する
層が形成されていると推定される。そしてこのよ
うにして得た極板をGとする。
Example: Plate A used in Experiment 4 was dissolved in 2% hydrogen peroxide solution for 30 minutes.
The cobalt on the surface layer of the active material was oxidized to trivalent by dipping for a minute. The active material surface layer of this electrode plate was formed by immersing it in a nitrate aqueous solution containing 75% or more of cobalt nitrate and then performing an alkali treatment, and as shown in Experiment 1, the utilization rate was high.
It is presumed that a layer in which cobalt hydroxide exists alone is formed on the surface of the active material. The electrode plate thus obtained is designated as G.

比較例 1 前述の極板Aを2%次亜塩素酸ソーダ溶液に30
分間浸漬し、活物質表層のコバルトを酸化した。
この極板をHとする。
Comparative example 1 The above-mentioned electrode plate A was added to a 2% sodium hypochlorite solution for 30 minutes.
The sample was immersed for a minute to oxidize the cobalt on the surface of the active material.
Let this electrode plate be H.

比較例 2 前述の極板Aを減圧容器内で減圧及び空気注入
の操作を数回繰り返し、活物質表層のコバルトを
酸化した。この極板をIとする 尚、比較例3,4として前記極板A及びFを用
いる。
Comparative Example 2 The operation of reducing the pressure and injecting air into the electrode plate A described above in a reduced pressure container was repeated several times to oxidize the cobalt on the surface layer of the active material. This electrode plate is designated as I. The electrode plates A and F are used as Comparative Examples 3 and 4.

前記極板A及びF乃至Iを実験4と同一条件で
0.2Cで放電した時の放電容量と放電電圧との関係
を第7図に示す。ここに於いて極板Hと極板Gは
同一のカーブを、極板Iと極板Aも同一のカーブ
を示した。次いで実験4と同一条件でサイクル試
験を行ない、サイクル数と極板容量の関係を第8
図に示す。
The electrode plates A and F to I were subjected to the same conditions as in Experiment 4.
Figure 7 shows the relationship between discharge capacity and discharge voltage when discharging at 0.2C. Here, plate H and plate G showed the same curve, and plate I and plate A also showed the same curve. Next, a cycle test was conducted under the same conditions as in Experiment 4, and the relationship between the number of cycles and the plate capacity was determined in the 8th experiment.
As shown in the figure.

極板Aは第7図より放電電圧が極板F,G及び
Hより全体的に若干低く、特に放電末期に放電電
圧が低くなり、なだらかなカーブを描いて減少し
ていることがわかる。これは充電によつて高次酸
化物となつたコバルトの一部が放電によつて2価
に変化し、活物質表層の導電性が悪くなるからと
考えられる。また第8図より極板Aは30サイクル
程度までは容量劣化はほとんどなく良好である
が、それ以降のサイクルでは容量劣化が大きく生
じていることがわかる。
It can be seen from FIG. 7 that the discharge voltage of plate A is slightly lower overall than that of plates F, G, and H, and that the discharge voltage is particularly low at the end of discharge, decreasing in a gentle curve. This is thought to be because a part of the cobalt, which has become a higher order oxide through charging, changes into divalent state through discharging, and the conductivity of the surface layer of the active material deteriorates. Further, from FIG. 8, it can be seen that the electrode plate A is good with almost no capacity deterioration up to about 30 cycles, but the capacity deterioration significantly occurs in subsequent cycles.

次に、本発明の実施例の極板G、及び比較例の
極板A,F,H,Iを見ると、第7図よりわかる
様に極板G及びHは放電電圧が極板Aに比し若干
ではあるが全体的に高くなつている。また放電末
期にも放電電圧の低下はほとんど表われず極板F
とほぼ同様なカーブを描いている。しかし、空気
で酸化を行なつた極板Iは極板Aと類似したカー
ブを描き、極板G及びHのような効果は得られな
かつた。これは活物質表層に添加したコバルトを
完全に酸化できなかつたためと考えられる。また
第8図より、極板Gは全般的にほとんど容量劣化
はみられず高容量を維持し、活物質表層のコバル
ト酸化の効果が表われていることがわかる。一
方、次亜塩素酸ソーダで酸化させた極板Hは、サ
イクル劣化が極板Aより大きくなつてしまつた。
これは、次亜塩素酸ソーダのような強力な酸化剤
を用いると、コバルトの酸化と共に、極板をも腐
食させてしまうためであると考えられる。このよ
うに、次亜塩素酸ソーダを酸化剤として用いた場
合には、極板を腐食させ易く条件設定が難しくな
るので、極板の製造工程には採用しがたい。
Next, looking at the electrode plates G of the embodiment of the present invention and the electrode plates A, F, H, and I of the comparative example, as can be seen from FIG. It has increased overall, albeit slightly. In addition, there is almost no drop in discharge voltage even at the end of discharge, and the electrode plate F
It draws almost the same curve. However, Plate I, which was oxidized with air, drew a curve similar to Plate A, and did not have the same effect as Plate G and H. This is thought to be because the cobalt added to the surface layer of the active material could not be completely oxidized. Further, from FIG. 8, it can be seen that the electrode plate G maintains a high capacity with almost no deterioration in capacity as a whole, and the effect of cobalt oxidation on the surface layer of the active material is manifested. On the other hand, the cycle deterioration of plate H oxidized with sodium hypochlorite was greater than that of plate A.
This is thought to be because using a strong oxidizing agent such as sodium hypochlorite not only oxidizes cobalt but also corrodes the electrode plate. As described above, when sodium hypochlorite is used as an oxidizing agent, it is difficult to use in the manufacturing process of electrode plates because it tends to corrode the electrode plates and it becomes difficult to set the conditions.

しかし、酸化力の強いオゾンを酸化剤として用
い、前記比較例と同様にして極板を作製してサイ
クル試験を行つたところ、本発明の極板Gと同様
な傾向が得られたことから、単に酸化力の強弱で
は評価し得ないことが分かる。
However, when ozone, which has a strong oxidizing power, was used as an oxidizing agent, an electrode plate was prepared in the same manner as in the comparative example and a cycle test was conducted, and the same tendency as that of the electrode plate G of the present invention was obtained. It can be seen that evaluation cannot be made simply by the strength or weakness of oxidizing power.

よつて、酸化剤を用いる際に、極板を腐食させ
ない条件でコバルトを十分酸化させるには、過酸
化水素水、オゾンを用いる必要がある。
Therefore, when using an oxidizing agent, it is necessary to use a hydrogen peroxide solution or ozone in order to sufficiently oxidize cobalt under conditions that do not corrode the electrode plate.

これらの実験により、活物質表層へのコバルト
添加による前述の欠点は極板表面のコバルトを酸
化することにより解消されることがわかつたが、
この理由は活物質のニツケルと直接接触するコバ
ルトが活性な2価である可能性があるため、この
状態で充放電を行なうとニツケルとコバルトの固
溶体が形成され易く、さらにサイクル数の増加と
共にコバルトの拡散も進むからと考えられ、充放
電の前にコバルトを酸化させ3価にしておくこと
で前記固溶体の生成が抑制され、同時にコバルト
の拡散も抑制され良好な効果が得られるものと考
えられる。
These experiments revealed that the above-mentioned drawbacks due to the addition of cobalt to the surface layer of the active material can be overcome by oxidizing the cobalt on the surface of the electrode plate.
The reason for this is that the cobalt that is in direct contact with the active material nickel may be an active divalent cobalt, so if charging and discharging are performed in this state, a solid solution of nickel and cobalt is likely to be formed, and as the number of cycles increases, the cobalt It is thought that this is because the diffusion of cobalt also progresses, and by oxidizing cobalt to make it trivalent before charging and discharging, the formation of the solid solution is suppressed, and at the same time, the diffusion of cobalt is also suppressed, resulting in a good effect. .

(ヘ) 発明の効果 本発明のアルカリ蓄電池用陽極板の製造方法に
よれば、水酸化ニツケルを主成分とする陽極活物
質または水酸化ニツケルのみの陽極活物質を保持
した多孔性金属基板を、硝酸コバルトを75%以上
含む硝酸塩水溶液に浸漬し、次いでアルカリ処理
を行ない前記活物質の表面に水酸化コバルトが単
独で存在する層を形成した後、過酸化水素水、オ
ゾンから選ばれた少なくとも1つの酸化剤を用い
て前記水酸化コバルトを酸化させてコバルトを3
価にすることにより、活物質表層にコバルト添加
した陽極板の充放電サイクルによる容量劣化の防
止及び極板容量の向上を計ることができる。
(F) Effects of the Invention According to the method for manufacturing an anode plate for an alkaline storage battery of the present invention, a porous metal substrate holding an anode active material mainly composed of nickel hydroxide or only nickel hydroxide can be used. After immersing the active material in a nitrate aqueous solution containing 75% or more of cobalt nitrate, and then performing alkali treatment to form a layer in which cobalt hydroxide exists alone on the surface of the active material, at least one selected from hydrogen peroxide and ozone is added. The cobalt hydroxide is oxidized using 3 oxidizing agents to reduce cobalt to 3
By adding cobalt to the surface layer of the active material, it is possible to prevent capacity deterioration due to charge/discharge cycles of the anode plate and to improve the capacity of the plate.

また、前記水酸化コバルトを前記水酸化ニツケ
ルに対し0.5〜5重量%とし、前記多孔性金属基
板の前記硝酸塩水溶液への浸漬が含浸時間をX
(分)、また含浸液温をY(℃)とした場合、 X≦(95−Y)/2.5 の範囲に設定することで、より一層大きな容量を
有するアルカリ蓄電池用陽極板を提供することが
でき、その工業的価値は極めて大きい。
Further, the cobalt hydroxide is 0.5 to 5% by weight based on the nickel hydroxide, and the porous metal substrate is immersed in the nitrate aqueous solution for an impregnation time of
(minutes), and when the impregnating liquid temperature is Y (°C), by setting it in the range of and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は含浸液中のコバルトとニツケルの組成
と利用率との関係を示す図面、第2図は硝酸コバ
ルト含浸液への含浸時間と利用率との関係を示す
図面、第3図は高利用率を得るための含浸時間と
含浸液温との関係を示す図面、第4図は含浸液の
比重とコバルト添加率との関係を示す図面、第5
図はコバルト添加率と利用率との関係を示す図
面、第6図及び第8図は、サイクル数と極板容量
との関係を示す図面、第7図は放電容量と放電電
圧との関係を示す図面である。
Figure 1 is a diagram showing the relationship between the composition of cobalt and nickel in the impregnating solution and the utilization rate, Figure 2 is a diagram showing the relationship between the immersion time in the cobalt nitrate impregnating liquid and the utilization rate, and Figure 3 is a diagram showing the relationship between the utilization rate and the composition of cobalt and nickel in the impregnating solution. Figure 4 is a diagram showing the relationship between the impregnation time and impregnating liquid temperature to obtain the utilization rate; Figure 4 is a diagram showing the relationship between the specific gravity of the impregnating liquid and the cobalt addition rate;
The figure shows the relationship between cobalt addition rate and utilization rate, Figures 6 and 8 show the relationship between cycle number and plate capacity, and Figure 7 shows the relationship between discharge capacity and discharge voltage. FIG.

Claims (1)

【特許請求の範囲】 1 水酸化ニツケルを主成分とする陽極活物質ま
たは水酸化ニツケルのみの陽極活物質を保持した
多孔性金属基板を、硝酸コバルトを75%以上含む
硝酸塩水溶液に浸漬し、次いでアルカリ処理を行
ない前記活物質の表面に水酸化コバルトが単独で
存在する層を形成した後、過酸化水素水、オゾン
から選ばれた少なくとも1つの酸化剤を用いて前
記水酸化コバルトを酸化させてコバルトを3価に
することを特徴とするアルカリ蓄電池用陽極板の
製造方法。 2 前記水酸化コバルトが前記水酸化ニツケルに
対し0.5〜5重量%である特許請求の範囲第1項
記載のアルカリ蓄電池用陽極板の製造方法。 3 前記多孔性金属基板の前記硝酸塩水溶液への
浸漬が含浸時間をX(分)、また含浸液温をY(℃)
とすると、 X≦(95−Y)/2.5 の関係である特許請求の範囲第1項、または第2
項記載のアルカリ蓄電池用陽極板の製造方法。
[Claims] 1. A porous metal substrate holding an anode active material mainly composed of nickel hydroxide or only nickel hydroxide is immersed in a nitrate aqueous solution containing 75% or more of cobalt nitrate, and then After performing alkali treatment to form a layer in which cobalt hydroxide exists alone on the surface of the active material, the cobalt hydroxide is oxidized using at least one oxidizing agent selected from hydrogen peroxide and ozone. A method for producing an anode plate for an alkaline storage battery, characterized by making cobalt trivalent. 2. The method for producing an anode plate for an alkaline storage battery according to claim 1, wherein the cobalt hydroxide is 0.5 to 5% by weight based on the nickel hydroxide. 3 The porous metal substrate is immersed in the nitrate aqueous solution for an impregnation time of X (minutes) and an impregnation solution temperature of Y (°C).
Then, the first claim or the second claim has the relationship X≦(95-Y)/2.5.
A method for producing an anode plate for an alkaline storage battery as described in .
JP58039778A 1983-03-09 1983-03-09 Manufacture of cathode plate for alkaline storage battery Granted JPS59165370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58039778A JPS59165370A (en) 1983-03-09 1983-03-09 Manufacture of cathode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58039778A JPS59165370A (en) 1983-03-09 1983-03-09 Manufacture of cathode plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS59165370A JPS59165370A (en) 1984-09-18
JPH0259587B2 true JPH0259587B2 (en) 1990-12-12

Family

ID=12562391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58039778A Granted JPS59165370A (en) 1983-03-09 1983-03-09 Manufacture of cathode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS59165370A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105370A (en) * 1985-10-31 1987-05-15 Shin Kobe Electric Mach Co Ltd Manufacture of cathode plate for alkaline storage battery
JP2609911B2 (en) * 1988-10-19 1997-05-14 三洋電機株式会社 Alkaline storage battery
JP2019075291A (en) * 2017-10-17 2019-05-16 トヨタ自動車株式会社 Positive electrode and alkaline secondary battery provided with the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928068A (en) * 1974-05-20 1975-12-23 Westinghouse Electric Corp Active electrode composition and electrode
JPS51121742A (en) * 1975-04-17 1976-10-25 Matsushita Electric Ind Co Ltd Method of producing nickel plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928068A (en) * 1974-05-20 1975-12-23 Westinghouse Electric Corp Active electrode composition and electrode
JPS51121742A (en) * 1975-04-17 1976-10-25 Matsushita Electric Ind Co Ltd Method of producing nickel plate

Also Published As

Publication number Publication date
JPS59165370A (en) 1984-09-18

Similar Documents

Publication Publication Date Title
JP3010950B2 (en) Alkaline storage battery and method for manufacturing the same
JPH0259587B2 (en)
JPH0221098B2 (en)
JPS5916269A (en) Manufacture of positive plate for alkaline battery
JPH0677452B2 (en) Nickel positive electrode plate for alkaline storage battery and manufacturing method thereof
US6120937A (en) Electrode for alkaline storage battery and method for manufacturing the same
JP3976520B2 (en) Method for producing nickel electrode for alkaline storage battery
JPH10334903A (en) Substrate for alkaline storage battery, its manufacture, and alkaline storage battery
JP3253476B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPS59163753A (en) Manufacture of anode plate for alkali storage battery
JP3691281B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JPH0560222B2 (en)
JPH0410181B2 (en)
JP3625681B2 (en) Method for producing nickel electrode for alkaline storage battery
JP3454614B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP2639915B2 (en) Method for producing nickel positive electrode for alkaline storage battery
JPH041992B2 (en)
JP3596148B2 (en) Method for producing sintered positive electrode plate for alkaline storage battery
JPS62122063A (en) Manufacture of nickel positive plate for alkaline storage battery
JPS59165371A (en) Cathode plate for alkaline storage battery
JP2003229131A (en) Alkaline storage battery having nickel electrode and its manufacturing method
JPH0544778B2 (en)
JPS6340255A (en) Sintered nickel electrode for alkaline storage battery