JP3596148B2 - Method for producing sintered positive electrode plate for alkaline storage battery - Google Patents

Method for producing sintered positive electrode plate for alkaline storage battery Download PDF

Info

Publication number
JP3596148B2
JP3596148B2 JP6172796A JP6172796A JP3596148B2 JP 3596148 B2 JP3596148 B2 JP 3596148B2 JP 6172796 A JP6172796 A JP 6172796A JP 6172796 A JP6172796 A JP 6172796A JP 3596148 B2 JP3596148 B2 JP 3596148B2
Authority
JP
Japan
Prior art keywords
nickel
positive electrode
battery
electrode plate
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6172796A
Other languages
Japanese (ja)
Other versions
JPH09231966A (en
Inventor
尾崎  博樹
佐々木  秀樹
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP6172796A priority Critical patent/JP3596148B2/en
Publication of JPH09231966A publication Critical patent/JPH09231966A/en
Application granted granted Critical
Publication of JP3596148B2 publication Critical patent/JP3596148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、負極にカドミウム、水素吸蔵合金、亜鉛あるいは鉄等を用いたアルカリ蓄電池用焼結式正極板およびその製造方法に関する。
【0002】
【従来の技術】
近年の携帯電話、ビデオカメラあるいはヘッドホンステレオ等の種々の小型携帯機器の普及にともない、それらの電源としてアルカリ蓄電池は重要な役割を果たしている。一般にアルカリ蓄電池に用いられる焼結式正極板は、ニッケル粉末を穿孔鋼板に焼結した支持体である焼結ニッケル基板(以下、焼結基板と称す)に酸性ニッケル塩を主体とする溶液を含浸し、それにアルカリを作用させて水酸化物に変換後、洗浄・乾燥するという操作を数回繰り返して、水酸化ニッケルを主体とする活物質を保持させて製作される。
【0003】
焼結式正極板に用いられる焼結基板の性能改善に関連して、特開昭59−96659号公報に示されるような焼結基板を酸素雰囲気中で加熱処理して酸化皮膜を形成させて放電特性を向上させる方法が提案されている。また、特開昭63−48747号公報に示されるような焼結基板上に水酸化ニッケルと水酸化コバルトのモル比が7:3〜5:5である固溶体層を形成する方法や、特開昭62−37875号公報や特開昭62−58566号公報に示されるような焼結基板の表面に水酸化コバルトを生成させ、ついで陽極酸化あるいは酸化剤にて水酸化コバルトを酸化コバルトあるいはオキシ水酸化コバルトに変化させた後、酸性ニッケル塩の含浸を伴う活物質充填操作をおこなう方法等、活物質充填操作をおこなった際の焼結基板の腐食を防止する手段が提案されている。
【0004】
【発明が解決しようとする課題】
一般に、アルカリ蓄電池を長期間使用しないで放置すると、正極活物質のエージング現象すなわち水酸化ニッケルの結晶の整順化が進行し、充電効率が低下することが知られている。そのため、放置後には充放電を数サイクル繰り返さないと放置前の放電容量まで回復しない。この場合、電池の開路電圧の低下をともなうが、その度合いが大きい場合には不可逆な容量低下がおこり、充放電を繰り返しても放置前の容量が得られなくなるという問題がある。
【0005】
また最近では、使用上の安全を考慮して、電池電圧がたとえば1V程度の設定値に満たないと電池の充電が開始されないように制御する等の保護回路を設けた充電器もみられるようになった。これは、たとえば微小短絡によって開路電圧が低下した電池が充電された場合の異常加熱等による火災や、電池が正確にセットできていない状態での充電や逆充電等を防止することを目的としている。そのため、長期間放置されて開路電圧が設定値より低い電池は、このタイプの充電器では充電することができないという問題も生じている。そこで、アルカリ蓄電池を長期放置したときに生ずるこれらの問題点に対する有効な解決手段が求められていた。
【0006】
【課題を解決するための手段】
本発明は前記課題を解決するべく、焼結ニッケル基板のニッケル焼結体に不働態酸化物皮膜を付与した後、その表面にコバルトとニッケルのモル比が20:80〜97:3であるコバルト・ニッケル混合水酸化物を形成し、ついで前記混合水酸化物を酸化処理した後に水酸化ニッケルを主体とする活物質を保持させたアルカリ蓄電池用焼結式正極板の製造方法を提供するものである。なお、前記混合水酸化物は、前記水酸化ニッケルを主体とする活物質に対して1〜15wt%含まれることが望ましい。
【0007】
【発明の実施の形態】
本発明では、支持体である焼結ニッケル基板のニッケル焼結体に、不働態酸化物皮膜を付与する。ついで、その表面にコバルトとニッケルのモル比が20:80〜97:3であるコバルト・ニッケル混合水酸化物を形成させる。さらに、前記混合水酸化物を酸化処理した後、水酸化ニッケルを主体とする活物質を保持させてアルカリ蓄電池用焼結式正極板を製作するものである。このような構成の焼結式正極板を用いたアルカリ蓄電池は、長期間放置されても開路電圧および不可逆な放電容量の低下が小さいという特徴がある。なお、前記水酸化ニッケルを主体とする活物質に対する前記混合水酸化物の割合が1〜15wt%である場合に、長期間放置における性能低下の改善に特に効果が大きくかつ実用的である。
【0008】
【実施例】
以下、本発明の詳細を実施例を用いて説明する。
【0009】
多孔度が約85%の焼結基板を空気中400℃で20分間加熱処理して、緻密な酸化ニッケルの不働態酸化物皮膜を付与した。これに、コバルトとニッケルのモル比が70:30の2.5M硝酸塩水溶液を減圧含浸したのちアルカリ性水溶液に浸漬し、次いで湯洗および乾燥をおこなうことにより、焼結基板表面にコバルト・ニッケル混合水酸化物を形成した。ついで、0.5Mの過マンガン酸カリウム水溶液に1時間浸漬して前記混合水酸化物を酸化したのち、湯洗・乾燥した。さらに、硝酸ニッケルを主成分とする5.5M硝酸塩水溶液を減圧含浸したのち、アルカリ性水溶液に浸漬し、次いで湯洗および乾燥するという操作を数回繰り返すことにより、水酸化ニッケルを主体とする活物質を充填して本発明によるアルカリ蓄電池用焼結式正極板を製作した。このとき、水酸化ニッケルを主体とする活物質に対する焼結基板表面のコバルト・ニッケル混合水酸化物の割合は、約10wt%であった。
【0010】
この正極板と、正極より充分大きな容量をもち化成処理によって部分充電済みの公知の焼結式カドミウム負極板とを、親水性を付与したポリプロピレン製セパレータを介して渦巻状に捲回し、電解液として7M水酸化カリウム水溶液を用いて公称容量1600mAh、KR−SCサイズの密閉式ニッケル−カドミウム電池A(以下、本発明電池A)を製作した。
【0011】
比較として、コバルト・ニッケル混合水酸化物を形成した後に酸化処理をおこなわずに活物質を充填した正極板を用いたこと以外は本発明電池Aと同様にした比較電池B、正極板に加熱処理をおこなわない焼結基板を用いたこと以外は本発明電池Aと同様にした比較電池C、前記混合水酸化物を形成することなしに、加熱処理した焼結基板表面に水酸化ニッケルを主体とする活物質を充填した正極板を用いたこと以外は本発明電池Aと同様にした比較電池D、および正極板に加熱処理をおこなわない焼結基板を用いたこと以外は比較電池Dと同様にした比較電池Eを製作した。
【0012】
これらの電池を、25℃において0.1CmA(160mA)で15時間初充電したのち、1CmA(1600mA)で1Vまで放電した。さらに、1CmAで1.2時間充電し、0.2CmA(320mA)で放電するという充放電を5サイクルおこなった。放電状態の電池を45℃の恒温室中に90日間放置した。放置後、電池を25℃の雰囲気に戻し、3時間経過してから再び放置前と同じ条件で充放電を5サイクルおこなった。
【0013】
各電池の45℃における放置中の開路電圧の変化を図1に示す。不働態酸化物皮膜を付与した焼結基板のニッケル焼結体にコバルト・ニッケル混合水酸化物を形成した後、酸化処理をおこなった正極板を用いた本発明電池Aの放置中の開路電圧の低下は小さく、放置90日目においても1V以上の高い値を示した。
【0014】
これに対して、前記混合水酸化物の酸化処理をおこなわない正極板を用いた比較電池Bの開路電圧は、放置90日目において1V以上ではあるが、本発明電池Aに比べて低かった。不働態酸化物皮膜が付与されていない焼結基板のニッケル焼結体の表面に前記混合水酸化物を形成した正極板を用いた比較電池Cの開路電圧は、放置50日目付近で大きく低下し、放置90日目には約0.2Vになった。また、焼結基板のニッケル焼結体の表面に前記混合水酸化物を形成していない正極板を用いた比較電池DおよびEの開路電圧は放置20日目付近から大きく低下し、放置90日目の値は、ニッケル焼結体に不働態酸化物皮膜のみを付与した比較電池Dでは約0.6V、不働態酸化物皮膜も前記混合水酸化物も形成されていない比較電池Eでは約0.2Vであった。
【0015】
すなわち、正極の焼結基板のニッケル焼結体に不働態酸化物皮膜を付与することのみによる放置中の開路電圧の低下を抑制する効果は小さく、ニッケル焼結体表面にコバルト・ニッケル混合水酸化物を形成した場合でも、不働態酸化物皮膜が付与されていないと電圧低下を抑制することはできなかった。また、不働態酸化物皮膜を付与したニッケル焼結体の表面に前記混合水酸化物を形成させても酸化処理をおこなわない正極板を用いた場合も、電圧低下の抑制効果は不充分であった。これに対し、不働態酸化物皮膜を付与した焼結基板のニッケル焼結体の表面にコバルト・ニッケル混合水酸化物を形成した後、酸化処理をおこなった正極板を用いることによって、初めて放置中の開路電圧の低下を長期間にわたって抑制することが可能となった。
【0016】
なお、前記混合水酸化物の酸化処理をおこなわない場合には、活物質の含浸工程において酸性溶液である含浸液中に前記混合水酸化物の一部の溶出がおこった。これは、含浸液の組成および濃度の変化要因となるため、前記混合水酸化物の形成量や含浸液濃度の管理が困難になるといった問題が生じた。本発明による正極板の製造方法は、これらの問題をも解決できるものである。
【0017】
つぎに、放置性能に及ぼすコバルト・ニッケル混合水酸化物の組成の影響を検討すべく、コバルトとニッケルのモル比を適宜調整した2.5M硝酸塩水溶液を用いて、種々の組成のコバルト・ニッケル混合水酸化物を形成したこと以外は本発明電池Aと同様にして種々の電池を製作した。これらの電池を用いて、前述と同様の実験をおこなった際の各電池の45℃・90日間放置後の開路電圧を図2に示す。
【0018】
正極の焼結基板のニッケル焼結体の表面に形成した化合物がニッケルあるいはコバルト単独である場合、放置後の開路電圧はそれぞれ約0.55Vおよび約0.80Vと低い値であった。これに対して、コバルト・ニッケル混合水酸化物を形成させた場合には電圧低下は抑制され、特に混合水酸化物中のコバルトとニッケルのモル比が20:80〜97:3の場合に45℃・90日間放置後の開路電圧が1V以上を示すという顕著な効果が得られた。この理由は定かではないが、ニッケル焼結体表面の化合物中にニッケルを添加したことによって、いわゆるオキシ水酸化コバルトによるネットワークの形成効果が増幅されたためと思われる。
【0019】
この試験における焼結基板のニッケル焼結体の表面に形成したコバルト・ニッケル混合水酸化物の組成と容量回復率との関係を図3に示す。ここで、各電池の容量回復率は容量回復率(%)={放置後5サイクル目の放電容量(mAh)/放置前の放電容量(mAh)}×100と定義した。前記混合水酸化物中のコバルトの割合が20モル%以上の場合には、容量回復率は95%を越える高い値を示し、放置による不可逆な容量低下が小さい電池を得ることができた。
【0020】
さらに、放置性能に及ぼすニッケル焼結体表面へのコバルト・ニッケル混合水酸化物の形成量の影響を調査するために、コバルトとニッケルのモル比を70:30に固定して種々の濃度に調製した硝酸塩水溶液を用い、これ以外は本発明電池Aと同様にして、正極の焼結基板のニッケル焼結体表面へのコバルト・ニッケル混合水酸化物の形成量が異なる種々の電池を製作した。なお、各電池において水酸化ニッケルを主体とする活物質の理論容量がほぼ等しくなるように、含浸回数を適宜調整した。
【0021】
これらの電池を用いて、前述と同様の実験をおこなった際の45℃・90日間放置後の各電池の開路電圧を図4に示す。この場合の水酸化ニッケルを主体とする活物質に対するニッケル焼結体の表面の前記混合水酸化物の割合が1wt%以上の場合に、放置後の開路電圧は1V以上の高い値を示した。しかしながら、前記混合水酸化物の形成量が多くなり過ぎると正極板の残留多孔度が減少するため、充分な放電容量を得るための活物質を充填できなくなる等の問題があるので実用的でない。したがって、水酸化ニッケルを主体とする活物質に対するニッケル焼結体の表面に形成されるコバルト・ニッケル混合水酸化物の割合は、実用上1〜15wt%に限られる。
【0022】
なお、実施例に示した本発明による正極板では、焼結基板のニッケル焼結体への不働態酸化物皮膜の付与方法として空気中で加熱処理する方法を示したが、電気化学的あるいは化学的な方法を用いて金属ニッケルを酸化しても良いし、あるいは酸化物を付着させる方法も有効である。焼結ニッケル体の表面に形成するコバルト・ニッケル混合水酸化物の酸化処理方法として過マンガン酸カリウム水溶液を用いて化学的に酸化する方法を示したが、アルカリ水溶液中で電気化学的に陽極酸化する方法でも同様の効果が得られた。また、活物質の充填方法には、化学的含浸法だけでなく電気化学的含浸法も用いることができる。
【0023】
言うまでもなく、本発明の効果はニッケル・カドミウム電池に限定されるものではなく、負極に水素吸蔵合金、亜鉛あるいは鉄等を用いたアルカリ蓄電池においても有効である。
【0024】
【発明の効果】
本発明によるアルカリ蓄電池用焼結式正極板は、長期間の放置による電池の開路電圧の低下を抑制でき、かつ不可逆な容量低下の小さい放置性能の優れた電池を提供するものであり、その工業的価値は極めて大きい。
【図面の簡単な説明】
【図1】各電池の放置中の開路電圧の変化を示した図
【図2】正極板中のコバルト・ニッケル混合水酸化物の組成と電池の放置後の開路電圧との関係を示した図
【図3】正極板中のコバルト・ニッケル混合水酸化物の組成と放置後の容量回復率との関係を示した図
【図4】活物質に対する正極板中のコバルト・ニッケル混合水酸化物の割合と電池の放置後の開路電圧との関係を示した図
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sintered positive electrode plate for an alkaline storage battery using cadmium, a hydrogen storage alloy, zinc, iron, or the like for a negative electrode, and a method for producing the same.
[0002]
[Prior art]
With the spread of various small portable devices such as mobile phones, video cameras, and headphone stereos in recent years, alkaline storage batteries play an important role as a power source for these devices. Generally, a sintered positive electrode plate used for an alkaline storage battery is obtained by impregnating a solution mainly composed of an acidic nickel salt into a sintered nickel substrate (hereinafter referred to as a sintered substrate) which is a support obtained by sintering nickel powder into a perforated steel plate. Then, the operation of converting the hydroxide to hydroxide by the action of an alkali, washing and drying is repeated several times, thereby producing an active material mainly composed of nickel hydroxide.
[0003]
In connection with the improvement of the performance of the sintered substrate used in the sintered positive electrode plate, a sintered substrate as disclosed in JP-A-59-96659 is heated in an oxygen atmosphere to form an oxide film. Methods for improving discharge characteristics have been proposed. Also, a method of forming a solid solution layer having a molar ratio of nickel hydroxide to cobalt hydroxide of 7: 3 to 5: 5 on a sintered substrate as disclosed in JP-A-63-48747, Cobalt hydroxide is formed on the surface of a sintered substrate as disclosed in JP-A-62-37875 and JP-A-62-58566, and then the cobalt hydroxide is converted to cobalt oxide or oxywater using anodizing or an oxidizing agent. Means for preventing corrosion of a sintered substrate when performing an active material filling operation, such as a method of performing an active material filling operation involving impregnation with an acidic nickel salt after changing to cobalt oxide, have been proposed.
[0004]
[Problems to be solved by the invention]
In general, it is known that when an alkaline storage battery is left unused for a long period of time, the aging phenomenon of the positive electrode active material, that is, the regularization of nickel hydroxide crystals proceeds, and the charging efficiency decreases. Therefore, the discharge capacity before recovery is not recovered unless the charge and discharge are repeated several cycles after the storage. In this case, although the open circuit voltage of the battery is reduced, if the degree is large, irreversible capacity reduction occurs, and there is a problem in that the capacity before being left cannot be obtained even after repeated charging and discharging.
[0005]
Also, recently, in consideration of safety in use, some chargers have been provided with a protection circuit such as controlling the battery charging not to start unless the battery voltage falls below a set value of about 1 V, for example. Was. This is intended to prevent, for example, a fire due to abnormal heating or the like when the battery whose open-circuit voltage is reduced due to a minute short circuit is charged, and charging or reverse charging in a state where the battery is not correctly set. . Therefore, there is also a problem that a battery that has been left for a long time and has an open circuit voltage lower than the set value cannot be charged by this type of charger. Therefore, effective solutions to these problems that occur when the alkaline storage battery is left for a long time have been demanded.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a passive nickel oxide film on a nickel sintered body of a sintered nickel substrate, and then applies a cobalt: nickel molar ratio of 20:80 to 97: 3 on the surface. The present invention provides a method for producing a sintered positive electrode plate for an alkaline storage battery in which a nickel mixed hydroxide is formed and then an active material mainly composed of nickel hydroxide is retained after oxidizing the mixed hydroxide. is there. It is desirable that the mixed hydroxide be contained in an amount of 1 to 15% by weight based on the active material mainly containing nickel hydroxide.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a passive oxide film is provided on a nickel sintered body of a sintered nickel substrate as a support. Next, a cobalt / nickel mixed hydroxide having a molar ratio of cobalt to nickel of 20:80 to 97: 3 is formed on the surface. Further, after oxidizing the mixed hydroxide, a sintered positive electrode plate for an alkaline storage battery is manufactured by holding an active material mainly composed of nickel hydroxide. The alkaline storage battery using the sintered positive electrode plate having such a configuration is characterized in that the open-circuit voltage and the irreversible discharge capacity are less reduced even when left for a long time. In addition, when the ratio of the mixed hydroxide to the active material mainly composed of the nickel hydroxide is 1 to 15% by weight, it is particularly effective and practical for improvement of performance degradation during long-term storage.
[0008]
【Example】
Hereinafter, the details of the present invention will be described using examples.
[0009]
A sintered substrate having a porosity of about 85% was heated in air at 400 ° C. for 20 minutes to give a dense passive oxide film of nickel oxide. This was impregnated with an aqueous 2.5 M nitrate solution having a molar ratio of cobalt to nickel of 70:30 and then immersed in an alkaline aqueous solution, followed by washing with hot water and drying. An oxide formed. Then, the mixed hydroxide was oxidized by immersing it in a 0.5 M aqueous potassium permanganate solution for 1 hour, followed by washing with hot water and drying. Further, an operation of impregnating a 5.5 M nitrate aqueous solution containing nickel nitrate as a main component under reduced pressure, immersing the same in an alkaline aqueous solution, followed by washing with hot water and drying is repeated several times to obtain an active material mainly containing nickel hydroxide. To prepare a sintered positive electrode plate for an alkaline storage battery according to the present invention. At this time, the ratio of the cobalt / nickel mixed hydroxide on the surface of the sintered substrate to the active material mainly composed of nickel hydroxide was about 10 wt%.
[0010]
This positive electrode plate, and a known sintered cadmium negative electrode plate having a capacity sufficiently larger than the positive electrode and partially charged by a chemical conversion treatment, are spirally wound via a polypropylene separator imparting hydrophilicity, and used as an electrolyte. A KR-SC size sealed nickel-cadmium battery A (hereinafter, battery A of the present invention) having a nominal capacity of 1600 mAh and a nominal capacity of 1600 mAh was prepared using a 7M aqueous potassium hydroxide solution.
[0011]
As a comparison, a comparative battery B and a positive electrode plate which were the same as the battery A of the present invention except that a positive electrode plate filled with an active material without performing oxidation treatment after forming a cobalt / nickel mixed hydroxide were used. Comparative Battery C, which was the same as Battery A of the present invention except that a sintered substrate not performing the above process was used, without forming the mixed hydroxide, the surface of the heat-treated sintered substrate was mainly made of nickel hydroxide. Battery D similar to Battery A of the present invention except that a positive electrode plate filled with an active material was used, and Comparative Battery D similar to Comparative Battery D except that a sintered substrate not subjected to heat treatment was used for the positive electrode plate. A comparative battery E was manufactured.
[0012]
These batteries were initially charged at 25 ° C. at 0.1 CmA (160 mA) for 15 hours and then discharged at 1 CmA (1600 mA) to 1V. Further, the battery was charged and discharged at 1 CmA for 1.2 hours and discharged at 0.2 CmA (320 mA) for 5 cycles. The battery in the discharged state was left in a constant temperature room at 45 ° C. for 90 days. After standing, the battery was returned to an atmosphere of 25 ° C., and after 3 hours, charging and discharging were repeated 5 cycles under the same conditions as before standing.
[0013]
FIG. 1 shows a change in open circuit voltage of each battery during standing at 45 ° C. After forming a cobalt-nickel mixed hydroxide on a nickel sintered body of a sintered substrate provided with a passive oxide film, the open-circuit voltage of the battery A of the present invention using the positive electrode plate subjected to the oxidation treatment was measured. The decrease was small and a high value of 1 V or more was shown even after 90 days of standing.
[0014]
On the other hand, the open circuit voltage of the comparative battery B using the positive electrode plate not subjected to the oxidation treatment of the mixed hydroxide was 1 V or more on the 90th day of standing, but was lower than that of the battery A of the present invention. The open circuit voltage of the comparative battery C using the positive electrode plate in which the mixed hydroxide was formed on the surface of the nickel sintered body of the sintered substrate to which the passive oxide film was not applied was significantly reduced around the 50th day of standing. Then, the voltage became about 0.2 V on the 90th day of standing. In addition, the open-circuit voltages of the comparative batteries D and E using the positive electrode plate in which the mixed hydroxide was not formed on the surface of the nickel sintered body of the sintered substrate significantly decreased from around the 20th day of standing, The eye value was about 0.6 V in Comparative Battery D in which only the passive oxide film was applied to the nickel sintered body, and about 0 V in Comparative Battery E in which neither the passive oxide film nor the mixed hydroxide was formed. 0.2V.
[0015]
That is, the effect of suppressing the decrease in the open-circuit voltage during standing by only applying the passive oxide film to the nickel sintered body of the positive electrode sintered substrate is small, and the cobalt / nickel mixed hydroxide Even when a product was formed, the voltage drop could not be suppressed unless the passive oxide film was provided. Further, even when a positive electrode plate which does not undergo oxidation treatment even when the mixed hydroxide is formed on the surface of the nickel sintered body provided with the passive oxide film is used, the effect of suppressing the voltage drop is insufficient. Was. On the other hand, after forming a cobalt-nickel mixed hydroxide on the surface of the nickel sintered body of the sintered substrate provided with the passivation oxide film, the oxidation-treated positive electrode plate is used for the first time during standing. Can be suppressed over a long period of time.
[0016]
When the oxidation treatment of the mixed hydroxide was not performed, a part of the mixed hydroxide was eluted in the impregnating liquid as an acidic solution in the step of impregnating the active material. This causes a change in the composition and the concentration of the impregnating solution, and thus causes a problem that it is difficult to control the formation amount of the mixed hydroxide and the concentration of the impregnating solution. The method for manufacturing a positive electrode plate according to the present invention can solve these problems.
[0017]
Next, in order to examine the effect of the composition of the cobalt / nickel mixed hydroxide on the standing performance, the cobalt / nickel mixed hydroxide having various compositions was used using a 2.5M nitrate aqueous solution in which the molar ratio of cobalt and nickel was appropriately adjusted. Various batteries were manufactured in the same manner as the battery A of the present invention except that a hydroxide was formed. FIG. 2 shows the open circuit voltage of each battery after being left at 45 ° C. for 90 days when the same experiment as described above was performed using these batteries.
[0018]
When the compound formed on the surface of the nickel sintered body of the positive electrode sintered substrate was nickel or cobalt alone, the open circuit voltages after standing were as low as about 0.55 V and about 0.80 V, respectively. On the other hand, when the cobalt / nickel mixed hydroxide is formed, the voltage drop is suppressed, and particularly when the molar ratio of cobalt to nickel in the mixed hydroxide is 20:80 to 97: 3, the voltage drop is 45%. A remarkable effect was obtained in that the open-circuit voltage after standing at 90 ° C. for 90 days showed 1 V or more. The reason for this is not clear, but it is considered that the addition of nickel to the compound on the surface of the nickel sintered body amplifies the effect of the so-called cobalt oxyhydroxide to form a network.
[0019]
FIG. 3 shows the relationship between the composition of the cobalt / nickel mixed hydroxide formed on the surface of the nickel sintered body of the sintered substrate and the capacity recovery rate in this test. Here, the capacity recovery rate of each battery was defined as capacity recovery rate (%) = {discharge capacity at 5th cycle after standing (mAh) / discharge capacity before standing (mAh)} × 100. When the proportion of cobalt in the mixed hydroxide was 20 mol% or more, the capacity recovery rate showed a high value exceeding 95%, and a battery with a small irreversible capacity decrease upon standing could be obtained.
[0020]
Furthermore, in order to investigate the effect of the amount of cobalt / nickel mixed hydroxide formed on the surface of the nickel sintered body on the standing performance, the molar ratio of cobalt to nickel was fixed at 70:30 and adjusted to various concentrations. Various batteries having different amounts of cobalt / nickel mixed hydroxide formed on the surface of the nickel sintered body of the positive electrode sintered substrate were manufactured in the same manner as the battery A of the present invention except for using the nitrate aqueous solution thus prepared. In addition, the number of times of impregnation was appropriately adjusted so that the theoretical capacity of the active material mainly composed of nickel hydroxide in each battery was approximately equal.
[0021]
FIG. 4 shows the open-circuit voltage of each battery after being left at 45 ° C. for 90 days when the same experiment as described above was performed using these batteries. In this case, when the ratio of the mixed hydroxide on the surface of the nickel sintered body to the active material mainly composed of nickel hydroxide was 1 wt% or more, the open circuit voltage after standing showed a high value of 1 V or more. However, if the amount of the mixed hydroxide formed is too large, the residual porosity of the positive electrode plate is reduced, so that there is a problem that an active material for obtaining a sufficient discharge capacity cannot be filled, which is not practical. Therefore, the ratio of the cobalt / nickel mixed hydroxide formed on the surface of the nickel sintered body to the active material mainly containing nickel hydroxide is practically limited to 1 to 15 wt%.
[0022]
In the positive electrode plate according to the present invention shown in the examples, a method of applying heat treatment in air as a method of applying a passive oxide film to a nickel sintered body of a sintered substrate has been described. Metal nickel may be oxidized using a conventional method, or a method of attaching an oxide is also effective. The method of chemically oxidizing cobalt-nickel mixed hydroxide formed on the surface of sintered nickel body using potassium permanganate aqueous solution was shown, but electrochemical anodic oxidation in alkaline aqueous solution was performed. The same effect was obtained by the method of (1). As a method for filling the active material, not only a chemical impregnation method but also an electrochemical impregnation method can be used.
[0023]
Needless to say, the effects of the present invention are not limited to nickel-cadmium batteries, but are also effective in alkaline storage batteries using a hydrogen storage alloy, zinc, iron, or the like for the negative electrode.
[0024]
【The invention's effect】
The sintered positive electrode plate for an alkaline storage battery according to the present invention can suppress a decrease in the open circuit voltage of the battery due to long-term storage, and provides a battery excellent in storage performance with small irreversible capacity reduction. The target value is extremely large.
[Brief description of the drawings]
FIG. 1 is a diagram showing a change in open circuit voltage when each battery is left. FIG. 2 is a diagram showing a relationship between the composition of a cobalt / nickel mixed hydroxide in a positive electrode plate and the open circuit voltage after the battery is left. FIG. 3 is a diagram showing the relationship between the composition of the cobalt / nickel mixed hydroxide in the positive electrode plate and the capacity recovery rate after standing. FIG. Diagram showing the relationship between the ratio and the open circuit voltage after leaving the battery

Claims (2)

焼結ニッケル基板のニッケル焼結体に不働態酸化物皮膜を付与した後、コバルトとニッケルのモル比が20:80〜97:3であるコバルト・ニッケル混合水酸化物を形成し、ついでそれを酸化処理した後に水酸化ニッケルを主体とする活物質を含浸することを特徴とするアルカリ蓄電池用焼結式正極板の製造方法。After applying a passive oxide film to the nickel sintered body of the sintered nickel substrate, a cobalt / nickel mixed hydroxide having a molar ratio of cobalt to nickel of 20:80 to 97: 3 is formed. A method for producing a sintered positive electrode plate for an alkaline storage battery, comprising impregnating an active material mainly composed of nickel hydroxide after an oxidation treatment. 前記水酸化ニッケルを主体とする活物質に対する前記コバルト・ニッケル混合水酸化物の割合が、1〜15wt%であることを特徴とする請求項1記載のアルカリ蓄電池用焼結式正極板の製造方法。2. The method for producing a sintered positive electrode plate for an alkaline storage battery according to claim 1, wherein a ratio of the cobalt / nickel mixed hydroxide to the active material mainly containing the nickel hydroxide is 1 to 15 wt%. .
JP6172796A 1996-02-23 1996-02-23 Method for producing sintered positive electrode plate for alkaline storage battery Expired - Fee Related JP3596148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6172796A JP3596148B2 (en) 1996-02-23 1996-02-23 Method for producing sintered positive electrode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6172796A JP3596148B2 (en) 1996-02-23 1996-02-23 Method for producing sintered positive electrode plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH09231966A JPH09231966A (en) 1997-09-05
JP3596148B2 true JP3596148B2 (en) 2004-12-02

Family

ID=13179544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6172796A Expired - Fee Related JP3596148B2 (en) 1996-02-23 1996-02-23 Method for producing sintered positive electrode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3596148B2 (en)

Also Published As

Publication number Publication date
JPH09231966A (en) 1997-09-05

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
US6632568B1 (en) Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
JP4710225B2 (en) Method for producing nickel electrode material
JP3931518B2 (en) Nickel-hydrogen secondary battery
JP3363670B2 (en) Non-sintered nickel electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP4017302B2 (en) Alkaline storage battery and method for manufacturing the same
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP3596148B2 (en) Method for producing sintered positive electrode plate for alkaline storage battery
US5547784A (en) Alkaline storage battery and method for producing the same
JP2011249238A (en) Power storage device with proton as insertion species
JP3719284B2 (en) Positive plate for alkaline storage battery
JP2584280B2 (en) Alkaline storage battery and method of manufacturing the same
JP2926732B2 (en) Alkaline secondary battery
JP3639494B2 (en) Nickel-hydrogen storage battery
JPH09320579A (en) Alakali storage battery sintered positive electrode plate and its manufacture
JPH09320580A (en) Alkali storage battery sintered positive electrode plate and its manufacture
JP4147748B2 (en) Nickel positive electrode and nickel-hydrogen storage battery
JPH09320581A (en) Positive plate for alkaline storage battery
JPS62285360A (en) Negative electrode for alkaline storage battery
US6613107B2 (en) Method of producing nickel electrode for alkaline storage batteries
JP3238986B2 (en) Activation method of alkaline storage battery
JPH0410181B2 (en)
JPH09320582A (en) Positive plate for alkaline storage battery
JP3573885B2 (en) Method for producing nickel hydroxide active material for alkaline storage battery and alkaline storage battery
JP3185529B2 (en) Method for producing sintered substrate for alkaline storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees