JP3185529B2 - Method for producing sintered substrate for alkaline storage battery - Google Patents

Method for producing sintered substrate for alkaline storage battery

Info

Publication number
JP3185529B2
JP3185529B2 JP06181194A JP6181194A JP3185529B2 JP 3185529 B2 JP3185529 B2 JP 3185529B2 JP 06181194 A JP06181194 A JP 06181194A JP 6181194 A JP6181194 A JP 6181194A JP 3185529 B2 JP3185529 B2 JP 3185529B2
Authority
JP
Japan
Prior art keywords
oxidation
amount
sintered substrate
oxide layer
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06181194A
Other languages
Japanese (ja)
Other versions
JPH07272728A (en
Inventor
隆之 北野
光徳 織田
満 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP06181194A priority Critical patent/JP3185529B2/en
Publication of JPH07272728A publication Critical patent/JPH07272728A/en
Application granted granted Critical
Publication of JP3185529B2 publication Critical patent/JP3185529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアルカリ蓄電池用焼結基
板に用いるニッケル粉末焼結体の腐食を防止し電池寿命
性能を向上させようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention aims at preventing the corrosion of a nickel powder sintered body used for a sintered substrate for an alkaline storage battery and improving the battery life performance.

【0002】[0002]

【従来の技術】アルカリ蓄電池に用いられている焼結基
板は、粘結剤溶液とカーボニルニッケル粉末からなるス
ラリーを鉄ニッケルメッキ穿孔板に塗着した後水素還元
雰囲気中で焼結することにより製造されている。
2. Description of the Related Art A sintered substrate used in an alkaline storage battery is manufactured by applying a slurry composed of a binder solution and carbonyl nickel powder to an iron-nickel plated perforated plate and then sintering in a hydrogen reducing atmosphere. Have been.

【0003】上記のようにして得られた焼結基板は、酸
性雰囲気で腐食しやすい性質がある。焼結式Ni−Cd
電池の電極を製造するのに、一般に前記ニッケル焼結体
を、陽極は硝酸ニッケル溶液に、陰極は硝酸カドミウム
溶液に浸漬し、中間乾燥、アルカリ反応、水洗、乾燥の
工程を数回繰り返して活物質である水酸化ニッケルある
いは水酸化カドミウムを含浸している。このとき含浸液
が強い硝酸酸性であることから、含浸および中間乾燥の
工程において焼結基板は腐食し、アルカリ中で水酸化物
に変化する。腐食により生成された活物質は利用率の低
下をまねくとともに、寿命性能を劣化させるという欠点
があった。
[0003] The sintered substrate obtained as described above has a property of being easily corroded in an acidic atmosphere. Sintered Ni-Cd
In order to manufacture a battery electrode, the nickel sintered body is generally immersed in a nickel nitrate solution for the anode and a cadmium nitrate solution for the cathode, and the process of intermediate drying, alkali reaction, washing with water and drying is repeated several times. The material is impregnated with nickel hydroxide or cadmium hydroxide. At this time, since the impregnating liquid is strongly nitric acid acidic, the sintered substrate is corroded in the steps of impregnation and intermediate drying, and changes to hydroxide in alkali. The active material generated by the corrosion has a drawback that the utilization factor is reduced and the life performance is deteriorated.

【0004】そこで、上記欠点を解消するために、含浸
処理に先だって、焼結基板の表面に耐酸化性の酸化被膜
を生成させる技術が従来より提案されている。例えば、
基板表面に酸化コバルト層を設けたり、過酸化物水溶液
により酸化したり、濃硝酸に浸漬したりする技術があ
る。なかでも簡便な方法として、酸素存在下において加
熱処理する方法が特開昭59−78457号公報および
特開昭59−96659号公報に開示されている。
[0004] In order to solve the above-mentioned drawbacks, a technique for forming an oxidation-resistant oxide film on the surface of a sintered substrate prior to the impregnation process has been proposed. For example,
There are techniques for providing a cobalt oxide layer on the substrate surface, oxidizing with a peroxide aqueous solution, and dipping in concentrated nitric acid. Among them, as a simple method, a method of performing a heat treatment in the presence of oxygen is disclosed in JP-A-59-78457 and JP-A-59-96659.

【0005】[0005]

【発明が解決しようとする課題】基板表面に酸化コバル
ト層を設けたり、過酸化物水溶液により酸化したり、濃
硝酸に浸漬したりする技術は、処理工程が複雑なため時
間的なロスが大きく、極板製造工程が煩雑化する問題点
がある。
The technique of providing a cobalt oxide layer on the substrate surface, oxidizing with a peroxide aqueous solution, or immersing in a concentrated nitric acid involves a large time loss due to the complicated processing steps. In addition, there is a problem that the manufacturing process of the electrode plate becomes complicated.

【0006】そこで比較的簡便な方法として、酸素存在
下において加熱処理する方法があげられる。しかしなが
ら、この方法では、酸化量が少ないと腐食防止効果が得
られず、酸化量が多すぎると基板の導電性および基板強
度を損ない高率放電特性が低下する問題点があった。ま
た、熱処理温度が高くなると比較的短時間に酸化量が増
加するため、制御が難しくなる。また、低い温度で熱処
理してできた酸化ニッケル被膜には、低次の酸化物が含
まれそれらはアルカリ水溶液中で水酸化物に変化し、そ
の後の防食に役立たなくなる問題点があった。
Therefore, a relatively simple method is to perform a heat treatment in the presence of oxygen. However, in this method, if the amount of oxidation is small, the effect of preventing corrosion cannot be obtained, and if the amount of oxidation is too large, the conductivity and the strength of the substrate are impaired, and the high-rate discharge characteristics are deteriorated. In addition, when the heat treatment temperature is increased, the oxidation amount increases in a relatively short time, so that control becomes difficult. In addition, the nickel oxide film formed by heat treatment at a low temperature contains low-order oxides, which change into hydroxides in an alkaline aqueous solution, and have a problem that they are not useful for subsequent corrosion prevention.

【0007】[0007]

【課題を解決するための手段】本発明は、多孔質ニッケ
ル焼結基板に酸化層を形成したアルカリ蓄電池用焼結基
板の製造方法において、酸化層における酸素重量が全体
の0.5wt%〜1.5wt%でニッケルの酸化数が2
より大きい酸化層を形成する際に、少なくとも一回、9
0vol%以上の酸素存在下で加熱処理することを特徴
とする。
SUMMARY OF THE INVENTION The present invention provides a porous nickel
Sintered substrate for alkaline storage battery with oxide layer formed on sintered substrate
In the plate manufacturing method, the oxygen weight in the oxide layer
The oxidation number of nickel is 0.5 wt% to 1.5 wt% of
When forming a larger oxide layer, at least once 9
Characterized by heat treatment in the presence of 0 vol% or more oxygen
And

【0008】[0008]

【作用】酸化層における酸素重量が全体の0.5wt%
〜1.5wt%でニッケルの酸化数が2より大きい酸化
層を形成する際に、少なくとも一回、90vol%以上
の酸素存在下で加熱処理した多孔質ニッケル焼結基板
は、酸化層が緻密で強固な高次の酸化層に変化するた
め、耐食性が優れたものとなる。このような耐食性に優
れた焼結基板を用いると、導電性および電極強度の低下
が少ないため、活物質利用率が向上し、高率放電性能お
よび寿命性能の優れたアルカリ蓄電池が得られる。
[Function] The oxygen weight in the oxide layer is 0.5 wt% of the whole.
Oxidation number of nickel greater than 2 at ~ 1.5 wt%
When forming a layer, at least once, at least 90 vol%
Porous Nickel Sintered Substrate Heated in the Presence of Various Oxygen
Changes the oxide layer into a dense and strong higher-order oxide layer.
Therefore, the corrosion resistance is excellent. Excellent in such corrosion resistance
Use of sintered substrate reduces conductivity and electrode strength
Low, the utilization rate of the active material is improved,
Thus, an alkaline storage battery having excellent life performance can be obtained.

【0009】[0009]

【実施例】粘結剤溶液とカーボニルニッケル粉末からな
るスラリーを鉄ニッケルメッキ穿孔板に塗着した後水素
還元雰囲気中で焼結した焼結基板(多孔度80%)を用
意し、空気中450℃で時間を変化させて熱処理してか
ら、陽極活物質を含浸した電極を作製し、酸化量と焼結
体の腐食度および寿命回数との関係を図1に示した。こ
こで酸化量とは、酸化による重量変化を酸化する前の重
量で割って100を掛けた値で、NiがすべてNiOに
変化したとするとその酸化量は(16/58.7)×1
00=27.3%である。焼結体の腐食度とは、含浸前
の焼結基板の重量から陽極活物質を抽出した後の焼結基
板の重量を引いた値(含浸前後の焼結体の重量差)を、
含浸前の焼結基板から芯材を引いた値(元の焼結体の重
量)で割って100を掛けたものである。
EXAMPLE A sintered substrate (porosity: 80%) was prepared by applying a slurry comprising a binder solution and carbonyl nickel powder to an iron-nickel plated perforated plate and then sintering in a hydrogen reducing atmosphere. After heat-treating at a temperature of ° C. for various times, an electrode impregnated with the anode active material was prepared, and the relationship between the amount of oxidation, the degree of corrosion of the sintered body, and the number of lifetimes was shown in FIG. Here, the oxidation amount is a value obtained by dividing the weight change due to the oxidation by the weight before the oxidation and multiplying by 100. If all Ni is changed to NiO, the oxidation amount is (16 / 58.7) × 1.
00 = 27.3%. The corrosion degree of the sintered body is a value obtained by subtracting the weight of the sintered substrate after extracting the anode active material from the weight of the sintered substrate before impregnation (the difference between the weight of the sintered body before and after the impregnation)
It is obtained by dividing by the value obtained by subtracting the core material from the sintered substrate before impregnation (the weight of the original sintered body) and multiplying by 100.

【0010】寿命サイクル数を測定する時の充放電条件
としては、充電電流5CmAで充電ピーク電圧から15
mV降下したときを充電終了(以下−ΔV=15mVと
いう)、放電電流5CmAで電池電圧が1Vとなったと
きを放電終了とした。寿命サイクル数は放電容量が公称
容量の1/2以下となった時点とした。図2に高率放電
時の酸化量と活物質利用率との関係を示した。高率放電
とは、1CmA充電(−ΔV=15mV)後の20A
(約17CmA)放電とし、活物質の利用率は抽出によ
り求めた活物質量を基準にして計算により求めた。
The charge / discharge conditions for measuring the number of life cycles include a charge current of 5 CmA and a charge peak voltage of 15 CmA.
The charging was completed when the voltage dropped by mV (hereinafter referred to as −ΔV = 15 mV), and the discharging was completed when the battery voltage became 1 V at a discharge current of 5 CmA. The life cycle number was determined when the discharge capacity became 1/2 or less of the nominal capacity. FIG. 2 shows the relationship between the amount of oxidation at the time of high-rate discharge and the utilization rate of the active material. High-rate discharge is 20 A after 1 CmA charge (-ΔV = 15 mV)
(Approximately 17 CmA) discharge, and the utilization rate of the active material was determined by calculation based on the amount of active material determined by extraction.

【0011】腐食度は0.5wt%まで徐々に減少し、
その後はあまり変化しなくなる。逆に寿命は0.5wt
%まで徐々に伸び、1000サイクルを越えたところで
ピークとなり、酸化量が1.5wt%より大きくなる
と、サイクル寿命は低下していく。高率放電時の利用率
についても同様のことが言える。この原因は酸化量が多
くなるにつれて導電性が損なわれることによるものであ
る。これらの結果を総合すると酸化量0.5wt%〜
1.5wt%に制御すると非常に良好な特性を示す電池
が得られることがわかる。
[0011] The corrosion degree gradually decreases to 0.5 wt%,
After that it does not change much. Conversely, the life is 0.5wt
%, And peaks at over 1000 cycles. When the oxidation amount exceeds 1.5 wt%, the cycle life decreases. The same can be said for the utilization rate during high-rate discharge. This is due to the loss of conductivity as the amount of oxidation increases. When these results are combined, the oxidation amount is 0.5 wt% or more.
It can be seen that a battery exhibiting very good characteristics can be obtained by controlling to 1.5 wt%.

【0012】酸化量が0.5wt%〜1.5wt%の基
板を短時間で作るためには熱処理温度を上げる必要があ
るが、空気中で500℃を越えると急激に酸化時間は短
くなり、そのような高温域で例えば600℃では1分強
で最適範囲である1.5wt%を越えてしまい、酸化量
をいつも正確に制御することは困難である。そこで必要
以上に酸素を含まない気体中で加熱処理することにより
酸化量を制御した。酸素濃度が薄くなると若干酸化速度
は遅くなるが、この方法によると、例えば600℃5分
で1.0wt%の基板を得ることが可能であり、酸化量
をうまく制御できるとともに大幅に時間を短縮できる。
また、525℃〜565℃または565℃以上で加熱処
理すると、525℃〜565℃でβ−NiOに、565
℃以上でγ−NiOとになり、これらは結晶性が高いた
め、より効果的に焼結体の腐食を防止することができ
る。
In order to produce a substrate having an oxidation amount of 0.5 wt% to 1.5 wt% in a short time, it is necessary to raise the heat treatment temperature. However, when the temperature exceeds 500 ° C. in air, the oxidation time is sharply shortened. In such a high-temperature region, for example, at 600 ° C., it takes just over 1 minute to exceed the optimum range of 1.5 wt%, and it is difficult to always accurately control the oxidation amount. Therefore, the amount of oxidation was controlled by performing a heat treatment in a gas containing no oxygen more than necessary. Oxidation rate is slightly reduced as the oxygen concentration is reduced. However, according to this method, it is possible to obtain a 1.0 wt% substrate in, for example, 600 ° C. for 5 minutes. it can.
Further, when heat treatment is performed at 525 ° C to 565 ° C or at 565 ° C or higher, β-NiO is converted to β-NiO at 525 ° C to 565 ° C.
It becomes γ-NiO at a temperature of not less than ℃, and since these have high crystallinity, corrosion of the sintered body can be more effectively prevented.

【0013】また、90vol%以上の酸素雰囲気中で
350〜400℃で加熱処理すると、NiOの一部がよ
り高次の酸化物であるNi2 4 に変化する。これは、
耐酸性にすぐれているものであり、同じ1wt%の酸化
量のもので、含浸後の腐食量を約30wt%減らすこと
ができた。
Further, when heat treatment is performed at 350 to 400 ° C. in an oxygen atmosphere of 90 vol% or more, part of NiO changes to higher order oxide Ni 2 O 4 . this is,
It is excellent in acid resistance and has the same oxidation amount of 1 wt%, and the amount of corrosion after impregnation was reduced by about 30 wt%.

【0014】酸素量が90vol%に満たない雰囲気中
で加熱処理した場合、Ni3 4 に変化する割合が低
く、腐食量の減少はわずかであった。従って、酸素雰囲
気の適当な条件としては90vol%以上であると言え
る。
When the heat treatment was performed in an atmosphere in which the amount of oxygen was less than 90 vol%, the rate of change to Ni 3 O 4 was low, and the amount of corrosion was slightly reduced. Therefore, it can be said that an appropriate condition of the oxygen atmosphere is 90 vol% or more.

【0015】次に、比較のために、防食酸化処理してい
ないものをA、特開昭59−96659号公報の実施例
に示されている500℃5分間加熱処理したもの(酸化
度0.43wt%)をB、本発明の酸化量範囲となる5
00℃6分間加熱処理したもの(酸化度0.55wt
%)をC、空気中で400℃12時間加熱処理して約1
wt%酸化したものをD、500℃20分加熱処理して
約1wt%酸化したものをE、酸素量が少なくなるよう
に制御した炉中で600℃5分間加熱処理して約1wt
%酸化したものをF、空気中で450℃2時間加熱処理
したものをさらに高濃度酸素(90vol%以上)雰囲
気下において350℃で2時間熱処理したものをGとす
る。それぞれの酸化量と腐食量および寿命となったサイ
クル数を表1に示す。表1によると本発明の電池Cは従
来の酸化基板を用いたものBに比べて、倍近く寿命が伸
びている。酸化量を約1wt%にしたD,Eは従来の酸
化基板を用いたものに比べて倍近く寿命が伸びている。
さらにFに示すように高温度で酸化膜を形成したり、G
に示すように高濃度酸素(90vol%以上)雰囲気下
において熱処理すると防食効果が増大し、寿命特性は倍
以上に向上した。酸化層を施すことにより低下する可能
性のある高率放電性能(20A放電−約17C放電)は
いずれも良好な結果を示し、酸化防食した電池が特に悪
くなる傾向は見られなかった。
Next, for comparison, a sample which had not been subjected to anticorrosion oxidation treatment was subjected to a heat treatment at 500 ° C. for 5 minutes shown in Example of JP-A-59-96659 (oxidation degree: 0.1). 43 wt%) to B, which is the oxidation amount range of the present invention 5
Heat treated at 00 ° C for 6 minutes (oxidation degree 0.55wt
%) Was heated at 400 ° C. for 12 hours in C and air for about 1%.
What was oxidized by wt% was D, heat-treated at 500 ° C. for 20 minutes, and what was oxidized by about 1 wt% was E, and heat-treated at 600 ° C. for 5 minutes in a furnace controlled to reduce the amount of oxygen to about 1 wt%
% Is oxidized, F is heat-treated at 450 ° C. for 2 hours in air, and G is heat-treated at 350 ° C. for 2 hours in a high-concentration oxygen (90 vol% or more) atmosphere. Table 1 shows the amount of oxidation, the amount of corrosion, and the number of cycles at which the life was reached. According to Table 1, the life of the battery C of the present invention is nearly twice as long as that of the battery B using the conventional oxide substrate. The lifetimes of D and E having an oxidation amount of about 1 wt% are nearly double as compared with those using a conventional oxidized substrate.
Further, as shown in F, an oxide film is formed at a high temperature,
As shown in Fig. 7, when heat treatment was performed in a high-concentration oxygen (90 vol% or more) atmosphere, the anticorrosion effect was increased, and the life characteristics were more than doubled. The high rate discharge performance (20 A discharge-about 17 C discharge), which may be reduced by applying the oxide layer, showed good results, and the battery which had been oxidized and protected did not show any particular tendency.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】上述したように、本発明は、多孔質ニッ
ケル焼結基板に酸化層を形成したアルカリ蓄電池用焼結
基板の製造方法において、酸化層における酸素重量が全
体の0.5wt%〜1.5wt%でニッケルの酸化数が
2より大きい酸化層を形成する際に、少なくとも一回、
90vol%以上の酸素存在下で加熱処理することによ
り、酸化層が緻密で強固な高次の酸化層に変化するた
め、耐食性が優れたものとなり、このような耐食性に優
れた焼結基板を用いると、導電性および電極強度の低下
が少ないため、活物質利用率が向上し、高率放電性能お
よび寿命性能の優れたアルカリ蓄電池が得られる、とい
う効果を奏する。
As described above, the present invention provides a porous nip
Sinter for alkaline storage battery with oxide layer formed on Kel sintered substrate
In the substrate manufacturing method, the total weight of oxygen in the oxide layer is
The oxidation number of nickel is 0.5wt% to 1.5wt% of the body
In forming an oxide layer larger than 2, at least once,
By performing heat treatment in the presence of 90 vol% or more oxygen
The oxide layer changes to a dense and strong higher-order oxide layer.
As a result, the corrosion resistance is excellent, and such corrosion resistance is excellent.
Use of sintered substrate reduces conductivity and electrode strength
Low, the utilization rate of the active material is improved,
And an alkaline storage battery with excellent life performance can be obtained.
Has the effect of

【図面の簡単な説明】[Brief description of the drawings]

【図1】酸化量と焼結体の腐食度および寿命回数との関
係を示す図である。
FIG. 1 is a diagram showing the relationship between the amount of oxidation, the degree of corrosion of a sintered body, and the number of lifetimes.

【図2】酸化量と20A放電時の利用率との関係を示す
図である。
FIG. 2 is a diagram showing a relationship between an oxidation amount and a utilization rate at 20 A discharge.

フロントページの続き (56)参考文献 特開 昭59−121784(JP,A) 特開 平1−120762(JP,A) 特開 平5−109407(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/80 Continuation of the front page (56) References JP-A-59-121784 (JP, A) JP-A-1-120762 (JP, A) JP-A-5-109407 (JP, A) (58) Fields investigated (Int) .Cl. 7 , DB name) H01M 4/80

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多孔質ニッケル焼結基板に酸化層を形成し
アルカリ蓄電池用焼結基板の製造方法において、酸化
層における酸素重量が全体の0.5wt%〜1.5wt
%でニッケルの酸化数が2より大きい酸化層を形成する
際に、少なくとも一回、90vol%以上の酸素存在下
で加熱処理することを特徴とするアルカリ蓄電池用焼結
基板の製造方法。
1. A method for manufacturing a sintered substrate for an alkaline storage battery in which an oxide layer is formed on a porous nickel sintered substrate , wherein the weight of oxygen in the oxide layer is 0.5 wt% to 1.5 wt% of the whole.
% To form an oxide layer with nickel oxidation number greater than 2
In this case, at least once, in the presence of 90 vol% or more of oxygen
Sintering for alkaline storage batteries characterized by heat treatment
Substrate manufacturing method.
JP06181194A 1994-03-31 1994-03-31 Method for producing sintered substrate for alkaline storage battery Expired - Fee Related JP3185529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06181194A JP3185529B2 (en) 1994-03-31 1994-03-31 Method for producing sintered substrate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06181194A JP3185529B2 (en) 1994-03-31 1994-03-31 Method for producing sintered substrate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH07272728A JPH07272728A (en) 1995-10-20
JP3185529B2 true JP3185529B2 (en) 2001-07-11

Family

ID=13181852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06181194A Expired - Fee Related JP3185529B2 (en) 1994-03-31 1994-03-31 Method for producing sintered substrate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3185529B2 (en)

Also Published As

Publication number Publication date
JPH07272728A (en) 1995-10-20

Similar Documents

Publication Publication Date Title
JP2988479B1 (en) Alkaline storage battery, hydrogen storage alloy electrode and method for producing the same
JP3019094B2 (en) Method for producing electrode for alkaline storage battery
JP3185529B2 (en) Method for producing sintered substrate for alkaline storage battery
US4139423A (en) Sintered negative plate
JP3188000B2 (en) Non-sintered nickel positive electrode
JP3127725B2 (en) Sintered substrate for alkaline storage battery and method for producing the same
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP2865391B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JP3275594B2 (en) Manufacturing method of positive electrode for alkaline storage battery
JP2000173606A (en) Sintered-type nickel hydroxide positive electrode, alkaline storage battery using the positive electrode, and manufacture of sintered type nickel hydroxide positive electrode
JP3702107B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3448886B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JPH0410181B2 (en)
JP3596148B2 (en) Method for producing sintered positive electrode plate for alkaline storage battery
JP4215407B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP3414172B2 (en) Manufacturing method of hydrogen storage alloy for batteries
JP3691257B2 (en) Method for producing sintered cadmium negative electrode for alkaline storage battery
JP3238986B2 (en) Activation method of alkaline storage battery
JP3454612B2 (en) Manufacturing method of hydrogen storage alloy electrode
JP2639915B2 (en) Method for producing nickel positive electrode for alkaline storage battery
JP3322449B2 (en) Method for producing metal hydride electrode
JP2003173772A (en) Hydrogen storage alloy powder for electrode and its manufacturing method
JPS61119603A (en) Manufacture of sintered substrate for alkaline storage battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees