JP2865391B2 - Method for producing nickel hydroxide electrode for alkaline storage battery - Google Patents

Method for producing nickel hydroxide electrode for alkaline storage battery

Info

Publication number
JP2865391B2
JP2865391B2 JP2191131A JP19113190A JP2865391B2 JP 2865391 B2 JP2865391 B2 JP 2865391B2 JP 2191131 A JP2191131 A JP 2191131A JP 19113190 A JP19113190 A JP 19113190A JP 2865391 B2 JP2865391 B2 JP 2865391B2
Authority
JP
Japan
Prior art keywords
nickel
substrate
cobalt
electrode
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2191131A
Other languages
Japanese (ja)
Other versions
JPH0475257A (en
Inventor
浩三 大槻
憲俊 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2191131A priority Critical patent/JP2865391B2/en
Publication of JPH0475257A publication Critical patent/JPH0475257A/en
Application granted granted Critical
Publication of JP2865391B2 publication Critical patent/JP2865391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、多孔性ニッケル焼結基板に硝酸ニッケルな
どの酸性ニッケル塩を含浸し、次いでアルカリ処理など
を行うことにより、前記基板中に活物質を充填するアル
カリ蓄電池用水酸化ニッケル電極の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Industrial Field of the Invention The present invention relates to a method for impregnating a porous nickel sintered substrate with an acidic nickel salt such as nickel nitrate, and then subjecting the substrate to an alkali treatment or the like. The present invention relates to a method for producing a nickel hydroxide electrode for an alkaline storage battery filled with an active material.

(ロ) 従来の技術 アルカリ蓄電池用水酸化ニッケル電極の製造方法とし
ては、活物質保持体としての多孔性ニッケル焼結基板を
硝酸ニッケルなどの酸性ニッケル塩含浸液に浸漬し、そ
の基板の孔中にニッケル塩を含浸した後、このニッケル
塩をアルカリ中で水酸化ニッケルに変化させることで活
物質化させるという活物質充填操作を行って水酸化ニッ
ケル電極を製造する方法がある。この活物質充填操作で
は、一回の操作で十分な量の活物質をニッケル焼結基板
に充填できないため、数回繰り返して行うことで所要の
活物質量を充填しなければならない。そこで、活物質の
充填効率を上げ、製造工程を簡略化するために、含浸液
に高温高濃度硝酸ニッケル水溶液などの溶融塩含浸液を
用い、少ない含浸回数で所要の活物質量を得ることが行
われているが、この場合、当然のこととして含浸液の腐
食性は強くなり、基板が浸食され、ニッケルが溶解する
ため極板が脆弱化し、サイクル性能の低下を招くという
欠点があった。
(B) Conventional technology As a method for manufacturing a nickel hydroxide electrode for an alkaline storage battery, a porous nickel sintered substrate as an active material holding body is immersed in an acidic nickel salt impregnating liquid such as nickel nitrate, and is placed in a hole of the substrate. There is a method of manufacturing a nickel hydroxide electrode by performing an active material filling operation in which a nickel salt is impregnated and then converted into an active material by converting the nickel salt into nickel hydroxide in an alkali. In this active material filling operation, a sufficient amount of the active material cannot be filled in the nickel sintered substrate by one operation, and therefore, the necessary amount of the active material must be filled by repeating the operation several times. Therefore, in order to increase the filling efficiency of the active material and to simplify the manufacturing process, it is necessary to use a molten salt impregnating liquid such as a high-temperature high-concentration nickel nitrate aqueous solution as the impregnating liquid to obtain a required amount of the active material with a small number of impregnations. However, in this case, the impregnating solution has a strong corrosiveness, and the substrate is eroded, and nickel is dissolved, so that the electrode plate becomes brittle and the cycle performance deteriorates.

これに対して、多孔性ニッケル焼結基板を硝酸コバル
ト水溶液に浸漬した後、150℃以上の温度で熱処理すれ
ば、硝酸コバルトが四三酸化コバルトに変化し、基板の
耐食性を向上させることができる。しかし硝酸コバルト
を150℃以上に加熱した場合、硝酸コバルトが分解し、
硝酸ガスが発生する。このため、工程管理が難しく、ま
た熱処理温度が高温になることから、工程に要するコス
トもさらに必要となってしまう。
On the other hand, if the porous nickel sintered substrate is immersed in an aqueous solution of cobalt nitrate and then heat-treated at a temperature of 150 ° C. or higher, the cobalt nitrate changes into cobalt tetroxide, and the corrosion resistance of the substrate can be improved. . However, when cobalt nitrate is heated above 150 ° C, cobalt nitrate is decomposed,
Nitric acid gas is generated. Therefore, it is difficult to control the process, and the heat treatment temperature becomes high, so that the cost required for the process is further increased.

又、特開昭62−37875号公報では、多孔性ニッケル焼
結基板を硝酸コバルト水溶液に浸漬した後、80℃で充分
乾燥し、次いで水酸化ナトリウム水溶液中に浸漬させて
水酸化コバルトを生成させ、次いで陽極酸化を行い前記
水酸化コバルトを酸化コバルトに変化させて、多孔性ニ
ッケル焼結基板表面を酸化コバルト層で被覆し、基板の
腐食を防止する方法が提案されている。しかし、硝酸コ
バルト水溶液に浸漬後の乾燥温度が、活物質含浸後の電
極性能に大きく影響を与え、上記温度で乾燥した場合に
おいても、まだ十分な効果を得ることはできなかった。
In JP-A-62-37875, a porous nickel sintered substrate is immersed in an aqueous solution of cobalt nitrate, dried sufficiently at 80 ° C., and then immersed in an aqueous solution of sodium hydroxide to produce cobalt hydroxide. Then, a method has been proposed in which the cobalt hydroxide is changed to cobalt oxide by performing anodic oxidation to coat the surface of the porous nickel sintered substrate with a cobalt oxide layer to prevent corrosion of the substrate. However, the drying temperature after immersion in the aqueous solution of cobalt nitrate has a great effect on the electrode performance after the impregnation of the active material, and even when the electrode is dried at the above temperature, a sufficient effect has not yet been obtained.

(ハ) 発明が解決しようとする課題 本発明は、多孔性ニッケル焼結基板を硝酸コバルト水
溶液に浸漬した後の乾燥温度の最適値を見い出し、電池
容量が大きく、作動電圧の高い放電特性を示すアルカリ
蓄電池用水酸化ニッケル電極を得ることのできる製造方
法を提供しようとするものである。
(C) Problems to be Solved by the Invention The present invention finds an optimum value of a drying temperature after immersing a porous nickel sintered substrate in an aqueous solution of cobalt nitrate, and shows a discharge characteristic with a large battery capacity and a high operating voltage. An object of the present invention is to provide a manufacturing method capable of obtaining a nickel hydroxide electrode for an alkaline storage battery.

(ニ) 課題を解決するための手段 本発明のアルカリ蓄電池用水酸化ニッケル電極の製造
方法は、多孔性ニッケル焼結基板をコバルト塩溶液に浸
漬し、90℃〜100℃の温度で乾燥を行った後、アルカリ
液で処理して水酸化コバルトを生成させ、この水酸化コ
バルトを酸化した後、前記基板に酸性ニッケル塩の含浸
を伴う活物質充填操作を行うものである。
(D) Means for Solving the Problems In the method for producing a nickel hydroxide electrode for an alkaline storage battery of the present invention, a porous nickel sintered substrate is immersed in a cobalt salt solution and dried at a temperature of 90 ° C to 100 ° C. Thereafter, the substrate is treated with an alkaline solution to generate cobalt hydroxide, and after oxidizing the cobalt hydroxide, the substrate is subjected to an active material filling operation involving impregnation with an acidic nickel salt.

(ホ) 作用 多孔性ニッケル焼結基板を硝酸コバルト水溶液に浸漬
した後、90℃〜100℃の温度領域で乾燥し、アルカリ水
溶液で処理した場合には、前記乾燥温度以外で得られた
ニッケル極板に比べ、本発明のニッケル極板は高容量で
作動電圧が高くなる。
(E) Action After the porous nickel sintered substrate is immersed in an aqueous solution of cobalt nitrate, dried in a temperature range of 90 ° C to 100 ° C, and treated with an aqueous alkaline solution, the nickel electrode obtained at a temperature other than the above drying temperature Compared with the plate, the nickel plate of the present invention has a higher capacity and a higher operating voltage.

(ヘ) 実施例 〔実施例〕 多孔性ニッケル焼結基板を比重約1.4の硝酸コバルト
水溶液に浸漬した後、前記基板を90℃及び100℃の各温
度で乾燥させ、次いで水酸化ナトリウム水溶液に浸漬し
て水酸化コバルトを生成させる。こうして水酸化コバル
トを生成させた基板を陽極として、水酸化カリウムから
なるアルカリ水溶液中において、基板表面に生成した水
酸化コバルトの理論容量の150%の電気量を30分かけて
与えることによって、前記水酸化コバルトを酸化コバル
トに変化させ、多孔性ニッケル焼結基板の表面を酸化コ
バルト層で被覆した。
(F) Example [Example] After immersing a porous nickel sintered substrate in an aqueous solution of cobalt nitrate having a specific gravity of about 1.4, the substrate was dried at 90 ° C and 100 ° C, and then immersed in an aqueous solution of sodium hydroxide. To produce cobalt hydroxide. By using the substrate on which the cobalt hydroxide was generated in this manner as an anode and applying an amount of electricity of 150% of the theoretical capacity of the generated cobalt hydroxide to the substrate surface in an alkaline aqueous solution of potassium hydroxide over 30 minutes, The cobalt hydroxide was changed to cobalt oxide, and the surface of the porous nickel sintered substrate was covered with a cobalt oxide layer.

この後、前記基板を80℃、比重1.75の硝酸ニッケル水
溶液に浸漬し、基板中に含浸した硝酸ニッケルを水酸化
ナトリウム水溶液中で水酸化ニッケルに変化させ活物質
化する一連の活物質充填操作を5回繰り返し行いニッケ
ル正極を作製した。
Thereafter, the substrate is immersed in an aqueous solution of nickel nitrate having a specific gravity of 1.75 ° C. at 80 ° C., and a series of active material filling operations for converting nickel nitrate impregnated in the substrate to nickel hydroxide in an aqueous solution of sodium hydroxide to form an active material are performed. This was repeated five times to produce a nickel positive electrode.

次いで、上記ニッケル正極を、正極より十分に容量の
大きいカドミウム負極と組み合わせ、電解液に水酸化カ
リウム水溶液を用いて公称容量1200mAHのニッケル−カ
ドミウム電池を作製した。こうして作製した電池のう
ち、前記硝酸コバルトへの浸漬後の乾燥温度が90℃のも
のを本発明電池A、また100℃ものを本発明電池Bとす
る。
Next, the nickel positive electrode was combined with a cadmium negative electrode having a sufficiently larger capacity than the positive electrode, and a nickel-cadmium battery having a nominal capacity of 1200 mAH was prepared using an aqueous solution of potassium hydroxide as an electrolytic solution. Of the batteries thus produced, those having a drying temperature of 90 ° C. after immersion in the above-mentioned cobalt nitrate are referred to as Battery A of the present invention, and those having a drying temperature of 100 ° C. are referred to as Battery B of the present invention.

〔比較例〕(Comparative example)

前記実施例において、正極作製時に行う硝酸コバルト
水溶液への基板浸漬後の乾燥温度を60℃、80℃及び120
℃に代え、その他の条件は前記実施例と同一で電池を作
製し、こうして作製した電池を夫々比較電池C、D及び
Eとする。
In the above example, the drying temperature after immersion of the substrate in an aqueous solution of cobalt nitrate performed during the preparation of the positive electrode was 60 ° C., 80 ° C. and 120 ° C.
A battery was prepared in the same manner as in the above example except that the temperature was changed to ° C., and the batteries thus prepared were referred to as comparative batteries C, D, and E, respectively.

上記電池A乃至Eを、公称容量の0.1Cの電流(120m
A)で16時間充電した後、公称容量の1Cの電流(1200m
A)で電池電圧が1.0Vになるまで放電し、このときの各
電池の放電曲線を第1図に示す。図中、A乃至Eは夫々
電池A乃至Eに符号を対応させて示している。また、第
1表に各電池の電池容量と平均作動電圧を示す。
The batteries A to E are supplied with a current of 0.1 C of nominal capacity (120 m
A) After charging for 16 hours, the nominal capacity of 1C current (1200m
In FIG. 1A, the battery was discharged until the battery voltage reached 1.0 V. The discharge curve of each battery at this time is shown in FIG. In the drawing, reference numerals A to E correspond to batteries A to E, respectively. Table 1 shows the battery capacity and average operating voltage of each battery.

第1図及び第1表から、本発明電池A及びBは比較電
池C、D及びEに比べて、電池容量が大きく、平均作動
電圧も高くなっており、優れた放電特性を示しているこ
とがわかる。
From FIG. 1 and Table 1, it can be seen that the batteries A and B of the present invention have larger battery capacity and higher average operating voltage than the comparative batteries C, D and E, and show excellent discharge characteristics. I understand.

(ト) 発明の効果 本発明のアルカリ蓄電池用水酸化ニッケル電極の製造
方法は、多孔性ニッケル焼結基板をコバルト塩溶液に浸
漬後、90℃〜100℃の温度で乾燥するものであり、電池
容量が大きく、平均作動電圧も高く、優れた放電特性を
示すアルカリ蓄電池用水酸化ニッケル電極を提供するこ
とができる。
(G) Effect of the Invention The method for producing a nickel hydroxide electrode for an alkaline storage battery of the present invention comprises immersing a porous nickel sintered substrate in a cobalt salt solution and then drying the substrate at a temperature of 90 ° C to 100 ° C. It is possible to provide a nickel hydroxide electrode for an alkaline storage battery, which has a high average operating voltage and excellent discharge characteristics.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明法による電極と比較電極を各々用いた電
池の放電曲線を示した図である。 A,B……本発明電池、C,D,E……比較電池。
FIG. 1 is a view showing a discharge curve of a battery using an electrode according to the present invention and a comparative electrode. A, B: battery of the present invention, C, D, E: comparative battery.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 4/32 H01M 4/66 H01M 4/80──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/32 H01M 4/66 H01M 4/80

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多孔性ニッケル焼結基板をコバルト塩溶液
に浸漬し、90℃〜100℃の温度で乾燥を行った後、アル
カリ液で処理して水酸化コバルトを生成させ、この水酸
化コバルトを酸化した後、前記基板に酸性ニッケル塩の
含浸を伴う活物質充填操作を行うことを特徴とするアル
カリ蓄電池用水酸化ニッケル電極の製造方法。
1. A porous nickel sintered substrate is immersed in a cobalt salt solution, dried at a temperature of 90.degree. C. to 100.degree. C., and treated with an alkaline solution to produce cobalt hydroxide. Oxidizing the substrate, and then performing an active material filling operation involving impregnation of the substrate with an acidic nickel salt.
JP2191131A 1990-07-18 1990-07-18 Method for producing nickel hydroxide electrode for alkaline storage battery Expired - Fee Related JP2865391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2191131A JP2865391B2 (en) 1990-07-18 1990-07-18 Method for producing nickel hydroxide electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2191131A JP2865391B2 (en) 1990-07-18 1990-07-18 Method for producing nickel hydroxide electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH0475257A JPH0475257A (en) 1992-03-10
JP2865391B2 true JP2865391B2 (en) 1999-03-08

Family

ID=16269395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2191131A Expired - Fee Related JP2865391B2 (en) 1990-07-18 1990-07-18 Method for producing nickel hydroxide electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2865391B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5248510A (en) * 1992-02-18 1993-09-28 Hughes Aircraft Company Cobalt oxide passivation of nickel battery electrode substrates
US6805785B2 (en) 2001-08-01 2004-10-19 Matsushita Electric Industrial Co., Ltd. Production method of sintered-type nickel positive electrode for alkaline secondary battery

Also Published As

Publication number Publication date
JPH0475257A (en) 1992-03-10

Similar Documents

Publication Publication Date Title
JPH0550099B2 (en)
JP2865391B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery
US3779810A (en) Method of making a nickel positive electrode for an alkaline battery
US4139423A (en) Sintered negative plate
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3275594B2 (en) Manufacturing method of positive electrode for alkaline storage battery
JP3702107B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPS6237874A (en) Manufacture of nickel hydroxide electrode of alkaline storage battery
JP2639915B2 (en) Method for producing nickel positive electrode for alkaline storage battery
JPH0570907B2 (en)
JP3941341B2 (en) Alkaline battery and nickel plate
JPH0410181B2 (en)
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP3127725B2 (en) Sintered substrate for alkaline storage battery and method for producing the same
JP3695982B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP4301778B2 (en) Method for producing sintered nickel positive electrode for alkaline secondary battery
JPH0475255A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JP3185529B2 (en) Method for producing sintered substrate for alkaline storage battery
WO2001075993A1 (en) Nickel positive electrode plate and alkaline storage battery
JPH0433109B2 (en)
JPS6261271A (en) Manufacture of sintered nickel electrode for alkaline storage battery
JPS60225356A (en) Method of manufacturing nickel positive electrode for alkaline storage battery
JPH0241865B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees