JPS6237874A - Manufacture of nickel hydroxide electrode of alkaline storage battery - Google Patents

Manufacture of nickel hydroxide electrode of alkaline storage battery

Info

Publication number
JPS6237874A
JPS6237874A JP60176548A JP17654885A JPS6237874A JP S6237874 A JPS6237874 A JP S6237874A JP 60176548 A JP60176548 A JP 60176548A JP 17654885 A JP17654885 A JP 17654885A JP S6237874 A JPS6237874 A JP S6237874A
Authority
JP
Japan
Prior art keywords
nickel
substrate
base plate
cobalt
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60176548A
Other languages
Japanese (ja)
Other versions
JPH0410177B2 (en
Inventor
Shinsuke Nakahori
中堀 真介
Hideki Matsui
秀樹 松井
Kazuhiro Oota
和宏 太田
Hiroyuki Isooka
磯岡 寛行
Harumi Fujiwara
藤原 治美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60176548A priority Critical patent/JPS6237874A/en
Publication of JPS6237874A publication Critical patent/JPS6237874A/en
Publication of JPH0410177B2 publication Critical patent/JPH0410177B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent weakening of a base plate due to corrosion by heat- processing a sintered nickel base plate impregnated with cobalt inorganic acid salt under the presence of oxygen to cover the base plate surface with cobalt oxide layer, before making filling operation with active material. CONSTITUTION:A sintered nickel base plate impregnated with cobalt inorganic acid salt or a sintered nickel base plate with cobalt hydroxide generated on the surface is heat-processed at 150-250 deg.C under the presence of oxygen to cover the base plate surface with cobalt oxide layer. The base plate is then impregnated with acid nickel salt and undergoes filling operation with active material accompanied by impregnation with acid nickel salt which is made active through alkali treatment or the like, to form a nickel hydroxide electrode of alkaline storage battery. The cobalt oxide layer is made to serve as a protective coat to prevent corrosion and weakening of the base plate. Thus efficiently of filling operation with active material can be improved by using acid nickel salt of high concentration at a high temperature.

Description

【発明の詳細な説明】 (イ)産業上の利用分舒 本発明は多孔性ニッケル焼結基板に硝酸ニッケルなどの
酸性ニッケル塩溶液を含浸し′、次いでアルカリ処理な
どを行なうことにより、前記基板中に活物質を充填する
アルカリ蓄電池用焼結式水酸化ニッケル電極の製造方法
に関する。
Detailed Description of the Invention (a) Industrial Application The present invention impregnates a porous nickel sintered substrate with an acidic nickel salt solution such as nickel nitrate, and then performs an alkali treatment to improve the quality of the substrate. The present invention relates to a method of manufacturing a sintered nickel hydroxide electrode for an alkaline storage battery, which is filled with an active material.

(ロ) 従来の技術 アルカリ蓄電池用水酸化ニッケル電極の製造方法として
は活物質保持体としての多孔性ニッケル焼結基板を硝酸
ニッケルなどの酸性ニッケル塩含浸液に浸漬し該基板の
孔中にニッケル塩を含浸した後、該ニッケル塩をアルカ
リ中で水酸化ニッケルに変化させることで活物質化させ
るという活物質充填操作を行なって水酸化ニッケル電極
を製造する方法がある。この活物質充填操作によるニッ
ケル焼結基板への活物質の充填量は1回の操作では充分
な充填量が得られないため数回繰り返しで行なうことで
所要の活物質量を充填しなければならない。そこで、活
物質充填の効率を上げ製造工程を簡略化するために、含
浸液に高温高濃度硝酸ニッケル水溶液などの溶融塩含浸
液を用い、少ない含浸回数で所要の活物質量を得ること
が行なわれているが、この場合当然のこととして含浸液
の腐食性は強くなり基板が侵食されて基板を構成するニ
ッケルが溶解するため極板が脆弱化し、サイクル性能の
低下を招くという欠点があった。
(b) Conventional technology A method for manufacturing nickel hydroxide electrodes for alkaline storage batteries involves immersing a porous nickel sintered substrate as an active material holder in an acidic nickel salt impregnating solution such as nickel nitrate to infiltrate the pores of the substrate with nickel salt. There is a method of manufacturing a nickel hydroxide electrode by performing an active material filling operation in which the nickel salt is impregnated with nickel salt and then converted into an active material by converting the nickel salt into nickel hydroxide in an alkali. This active material filling operation cannot fill the nickel sintered substrate with a sufficient amount of active material in one operation, so it must be repeated several times to fill the required amount of active material. . Therefore, in order to increase the efficiency of active material filling and simplify the manufacturing process, a molten salt impregnating solution such as a high-temperature, high-concentration nickel nitrate aqueous solution is used as the impregnating solution, and the required amount of active material can be obtained with a small number of impregnations. However, in this case, as a matter of course, the corrosivity of the impregnating liquid becomes strong, which erodes the substrate and dissolves the nickel that makes up the substrate, making the electrode plate brittle and causing a drop in cycle performance. .

これに対して特開昭59−78457号公報及び特開昭
59−96659号公報では、酸素存在下で高温にて二
・7ケル焼結基板の表面に耐酸化性の酸化ニッケルを生
成させ、基板の腐食を防W′する方法が提案されている
。しかしながら、この方法に於いても酸化ニッケルの生
成量が少ないと基板の腐食を充分に抑えることができず
、しかも充分な効果を得んとして酸化ニッケルの生成量
を増やすと、酸化二・ンケルは導電性の悪いものである
ので、活物質と基板との導電性が著しく損われ活物質利
用率が低下するという問題があった。
On the other hand, in JP-A-59-78457 and JP-A-59-96659, oxidation-resistant nickel oxide is generated on the surface of a 2.7 Kel sintered substrate at high temperature in the presence of oxygen. A method of preventing corrosion of the substrate W' has been proposed. However, even with this method, if the amount of nickel oxide produced is small, corrosion of the substrate cannot be sufficiently suppressed, and if the amount of nickel oxide produced is increased to obtain a sufficient effect, the amount of nickel oxide Since it has poor electrical conductivity, there is a problem in that the electrical conductivity between the active material and the substrate is significantly impaired and the active material utilization rate is reduced.

(ハ) 発明が解決しようとする問題点本発明は高温の
酸性含浸液中でのニッケル焼結基板の腐食を確実に防止
し、しかも放電特性の優れたアルカリ蓄電池用水酸化ニ
ッケル電極を得ようとするものである。
(c) Problems to be Solved by the Invention The present invention aims to provide a nickel hydroxide electrode for alkaline storage batteries that reliably prevents corrosion of nickel sintered substrates in high-temperature acidic impregnating liquid and has excellent discharge characteristics. It is something to do.

(二〉 問題点を解決するための手段 本発明のアルカリ蓄電池用水酸化ニッケル電極の製造方
法は、コバルト無機酸塩を含浸した二・シケル焼結基板
または表面に水酸化コバルトを生成したニッケル焼結基
板を、酸素存在下で150〜25〇℃で加熱処理して、
ニッケル焼結基板の表面を酸化コバルト層で被覆した後
、該基板に酸性!−ツケル塩を含浸し、次いでアルカリ
処理なとにより活物質化させる酸性ニッケル塩の含浸を
伴う活物質充填操作を行なうものである。
(2) Means for Solving the Problems The method for producing a nickel hydroxide electrode for alkaline storage batteries of the present invention is based on a di-Sikel sintered substrate impregnated with a cobalt inorganic acid salt or a nickel sintered substrate with cobalt hydroxide formed on its surface. Heat treating the substrate at 150 to 250°C in the presence of oxygen,
After coating the surface of the nickel sintered substrate with a cobalt oxide layer, the substrate is exposed to acid! - The active material filling operation involves impregnation with Tsukeru's salt and then impregnation with acidic nickel salt, which is converted into an active material by an alkali treatment or the like.

(ホ) 作用 上記酸化コバルト層は不m態膜として酸性ニッケル塩中
で保護膜の役割を果たし、高温、高濃度の酸性ニッケル
塩の含浸液中に於いても安定してニッケル焼結基板の腐
食及び脆弱化を防ぐ。また、酸化コバルトはそれ自身が
良好な導電性を有′しており、更に酸化コバルト層と活
物質との界面ではニッケル・コバルトの固溶化によって
導電性の付与がなされると考えられるため、酸4tニッ
ケル層を形成したときのような活物質の利用率の低下も
ない。
(E) Function The above cobalt oxide layer acts as a protective film in acidic nickel salt as a passivation film, and stably protects the nickel sintered substrate even in high-temperature, high-concentration acidic nickel salt impregnation solution. Prevents corrosion and weakening. In addition, cobalt oxide itself has good conductivity, and it is thought that conductivity is imparted by solid solution of nickel and cobalt at the interface between the cobalt oxide layer and the active material. There is no decrease in the utilization rate of the active material as in the case of forming a 4t nickel layer.

酸化コバル1−生成の際の加熱温度は150〜160℃
位から酸化コバルトの生成が起こるため下限は150℃
である必要がある。また230〜250℃以上になると
基板のニッケルが酸化して酸化ニッケルの一4= 生成が起こるが、250℃以下では酸化ニッケルはほと
んど生成しないため上限は250℃とする必要がある。
The heating temperature during the production of cobal oxide 1 is 150 to 160°C.
The lower limit is 150℃ because cobalt oxide is generated from
It must be. Further, when the temperature exceeds 230 to 250°C, the nickel on the substrate oxidizes and the formation of nickel oxide occurs, but below 250°C, almost no nickel oxide is generated, so the upper limit needs to be 250°C.

但し、300℃以下では酸化ニッケルの生成による悪影
響は見られない。
However, no adverse effects due to the formation of nickel oxide are observed at temperatures below 300°C.

(へ) 実施例 還元性雰囲気中で焼結して得られた多孔度的80%のニ
ッケル焼結基板を、常温比重1.25の硝酸:コバルト
水溶液中に浸漬した後、80℃で十分に乾燥し、更に1
80℃で30分間空気中で加熱処理を行ないニッケル焼
結基板の表面を酸化コバルト層で均一に且つ完全に被覆
する。次いでこの酸化コバルト層で被覆した基板を、8
0°C1比重1.75の硝酸ニッケル水溶液に30分間
浸漬し、こうして基板中に含浸した硝酸ニッケルを80
℃、25%の苛性ソーダ溶液中で活物質化する一連の活
物質充填操作を5回繰り返して本発明法による水酸化ニ
ッケル電極(A)を製作した。尚1.ヒ記方法で得られ
た酸化コバルトはX線回折により四三酸化コバルト(C
O30,4)であると同定できた。
(F) Example A nickel sintered substrate with a porosity of 80% obtained by sintering in a reducing atmosphere was immersed in a nitric acid:cobalt aqueous solution with a specific gravity of 1.25 at room temperature, and then thoroughly heated at 80°C. Dry and add 1
Heat treatment is performed in air at 80° C. for 30 minutes to uniformly and completely cover the surface of the nickel sintered substrate with a cobalt oxide layer. The substrate coated with this cobalt oxide layer was then coated with 8
The nickel nitrate impregnated into the substrate was immersed in a nickel nitrate aqueous solution with a specific gravity of 1.75 at 0°C for 30 minutes.
A nickel hydroxide electrode (A) according to the method of the present invention was manufactured by repeating a series of active material filling operations in which the active material was formed in a 25% caustic soda solution at 5°C. Note 1. The cobalt oxide obtained by the method described in
It was identified as O30,4).

また比較として、上記還元性雰囲気中で焼結して得た基
板を400°Cで20分間空気中で加熱処理を行ない表
面に酸化ニッケル被膜を形成した後、上記活物質充填操
作を行なって得た電極(B)、上記還元性雰囲気中で焼
結して得た基板を全く処理なしで用い、上記活物質充填
操作を行なって得た電極(C)及び上記還元性雰囲気中
で焼結して得た基板を実施例と同様に硝酸コバルト水溶
液に浸漬、乾燥させた後苛性ソーダ中に浸漬して基板表
面に水酸化コバルト層を形成し、この基板に上記活物質
充填操作を行なって得た電極(D)を夫々製作した。
For comparison, a substrate obtained by sintering in the reducing atmosphere described above was heated in air at 400°C for 20 minutes to form a nickel oxide film on the surface, and then the active material filling operation was performed as described above. The electrode (B) obtained by sintering in the above reducing atmosphere was used without any treatment, and the electrode (C) obtained by performing the above active material filling operation and the substrate obtained by sintering in the above reducing atmosphere were used. The obtained substrate was immersed in an aqueous cobalt nitrate solution in the same manner as in the example, dried, and then immersed in caustic soda to form a cobalt hydroxide layer on the substrate surface, and this substrate was then filled with the active material described above. Electrodes (D) were manufactured respectively.

第1図は上記本発明法による電極(A)及び比較電極(
B)乃至(D>を作製する際の活物質充填操作に於ける
、上記硝酸ニッケル水溶液中への基板の初回浸漬時の基
板電位を示す図面である。比較電極(B)及び(C)の
基板は初回浸漬時にニッケル溶解電位になってしまうの
に対し、本発明法による電極(A)の基板は腐食性の大
きい含浸液中で常に不働態電位を示し、ニッケル焼結基
板の溶解電位に到達しない耐食性の優れたものである。
Figure 1 shows the electrode (A) produced by the method of the present invention and the comparative electrode (
It is a drawing showing the substrate potential at the time of first immersion of the substrate in the above nickel nitrate aqueous solution in the active material filling operation when producing B) to (D>. While the substrate reaches the nickel dissolution potential when immersed for the first time, the substrate of the electrode (A) produced by the method of the present invention always shows a passive potential in the highly corrosive impregnating liquid, and the potential does not reach the dissolution potential of the nickel sintered substrate. It has excellent corrosion resistance.

また、第2図は初回浸漬時に良好な特性を示した本発明
法による電極(A)と比較電極(D)の1〜5回目の各
浸漬時に於ける基板電位を示した図面(浸漬回数は初回
を■、2回目を■のようにC内の数字で示した〉であり
、比較電極(D)が3回目浸漬時以降はニラゲル溶解電
位となるのに対し、本発明法による電極(A>の基板は
2回目〜5回目の硝酸ニッケル水溶液−の浸漬の際にも
不働態電位を示し、耐食性が非常に優れたものであるこ
とがわかる。
In addition, Figure 2 is a diagram showing the substrate potential during each of the first to fifth immersions of the electrode (A) produced by the method of the present invention, which showed good characteristics during the first immersion, and the comparative electrode (D) (the number of immersions is The first time is shown by the number in C, and the second time is shown by the number in C, such as ``■'', and the comparison electrode (D) has a niragel dissolution potential after the third immersion, whereas the electrode according to the present invention (A It can be seen that the substrates with > exhibited a passive potential even during the second to fifth immersion in the nickel nitrate aqueous solution, indicating that they had very excellent corrosion resistance.

更に、L配水酸化ニッケル電極(A)乃至(D)を夫々
同一条件で作製した十分に容量の大きいカドミウム負極
と組み合わせて公称容量が1.2AHのニッケルーカド
ミウム電池を製作し、これら電池の充放電サイクル特性
及び放電特性を測定した。
Furthermore, a nickel-cadmium battery with a nominal capacity of 1.2 AH was manufactured by combining the L-distributed nickel oxide electrodes (A) to (D) with a sufficiently large capacity cadmium negative electrode manufactured under the same conditions. Discharge cycle characteristics and discharge characteristics were measured.

この結果を正極に用いた電極(A>乃至(D)に符号を
対応させて第3図及び第4図に夫々示す。本発明法によ
るニラウール電極(A)は、酸化コバルト層により電極
作製時に於ける腐食性の大きい含浸液中でのニッケル焼
結基板の溶解が防止でき電極強7一 度が非常に優れていることから充放電による活物質の脱
落等が少なく、また酸化コバルト層はアルカリ溶液中で
の充放電に於いてニッケル焼結基板の腐食活物質化を防
止し基板の脆弱化を抑えるため、この電極を正極に用い
た電池は第3図に示すように良好なサイクル特性を示し
、且つ酸化コバルト層はそれ自身導電性であるため基板
表面に多量の酸化ニッケルを生成したときのように抵抗
が増すことはなく第4図に示すように良好な放電特性を
示している。
The results are shown in Figures 3 and 4, respectively, with the symbols corresponding to the electrodes (A> to (D)) used as positive electrodes. The nickel sintered substrate can be prevented from dissolving in the highly corrosive impregnating liquid, and the electrode strength of 7° is extremely high, so there is little chance of the active material falling off due to charging and discharging. In order to prevent the nickel sintered substrate from becoming a corroded active material and to suppress the weakening of the substrate during charging and discharging inside the battery, batteries using this electrode as the positive electrode exhibit good cycle characteristics as shown in Figure 3. , and since the cobalt oxide layer itself is conductive, the resistance does not increase unlike when a large amount of nickel oxide is formed on the substrate surface, and it exhibits good discharge characteristics as shown in FIG. 4.

尚、ニッケル焼結基板表面に酸化コバルト層を・ 形成
する際に、予め基板表面に薄い酸化ニッケルの被膜を形
成しておき、その表面に酸化コバルト層を形成しても同
様の効果が得られる。この場合、酸化ニッケルの被膜が
薄いので導電性は低下しない。また、実施例で示したよ
うに酸化コバルト層形成時に使用するコバルト・無機酸
塩溶液は常温で且つ低濃度であるためニッケル焼結基板
の腐食はほとんど起こらないが、上記薄い酸化ニッケル
被膜はこのコバルト無機酸塩含浸時の基板の腐食防止に
も役立つ。
In addition, when forming a cobalt oxide layer on the surface of a nickel sintered substrate, the same effect can be obtained by forming a thin nickel oxide film on the substrate surface in advance and forming a cobalt oxide layer on that surface. . In this case, the conductivity does not decrease because the nickel oxide film is thin. Furthermore, as shown in the example, the cobalt/inorganic acid salt solution used to form the cobalt oxide layer is at room temperature and has a low concentration, so corrosion of the nickel sintered substrate hardly occurs. It also helps prevent corrosion of the substrate during impregnation with cobalt inorganic salts.

(ト)発明の効果 本発明のアルカリ蓄電池用水酸化ニッケル電極の製造方
法は、コバルト無機酸塩または水酸化コバルトを0素存
在下で150〜250°Cで加熱処理することでニッケ
ル焼結基板表面を酸化コバルト層で覆った後、この基板
に酸性ニッケル塩の含浸を伴う活物質充填を行なうもの
であり、前記酸化コバルト層はそれ自身が導電性で、且
つ酸性ニッケル塩中で不働態膜として働くので、基板と
活物質との間の導電性が良好であり、醸性ニッケル塩に
よる基板の腐食による脆弱化が防止できるため、サイク
ル特性及び放電特性の優れたアルカリ蓄電池用水酸化ニ
ッケル電極を得ることができる。
(G) Effects of the Invention The method for producing a nickel hydroxide electrode for alkaline storage batteries of the present invention is to heat-treat a cobalt inorganic acid salt or cobalt hydroxide at 150 to 250°C in the presence of 0 atoms to form a nickel sintered substrate surface. After covering the substrate with a cobalt oxide layer, this substrate is filled with an active material accompanied by impregnation with an acidic nickel salt, and the cobalt oxide layer itself is conductive and acts as a passive film in the acidic nickel salt. The present invention provides a nickel hydroxide electrode for alkaline storage batteries with excellent cycle characteristics and discharge characteristics because the conductivity between the substrate and the active material is good and the substrate is prevented from becoming brittle due to corrosion caused by the oxidizing nickel salt. be able to.

また曲記加熱処理を150〜250@Cで行なったため
、酸化ニッケルの生成による悪影響はなく良好である。
Further, since the heat treatment was performed at 150 to 250@C, there was no adverse effect due to the formation of nickel oxide, and the result was good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明法による電極と比較電極作製
時に於ける硝酸ニッケル水溶液中への基板浸漬時間と基
板電位の関係を示す図面、第3図及び第4図は本発明法
による電極と比較電極を夫々用いた電池のサイクル特性
図及び放電特性図である。
Figures 1 and 2 are diagrams showing the relationship between substrate immersion time and substrate potential in a nickel nitrate aqueous solution during the production of electrodes and comparison electrodes by the method of the present invention, and Figures 3 and 4 are diagrams by the method of the present invention. FIG. 2 is a cycle characteristic diagram and a discharge characteristic diagram of a battery using an electrode and a comparison electrode, respectively.

Claims (1)

【特許請求の範囲】[Claims] (1)コバルト無機酸塩を含浸したニッケル焼結基板ま
たは表面に水酸化コバルトを生成させたニッケル焼結基
板を酸素存在下で150〜250℃で加熱処理して、ニ
ッケル焼結基板表面を酸化コバルト層で被覆した後、該
基板に酸性ニッケル塩の含浸を伴う活物質充填操作を行
なうことを特徴とするアルカリ蓄電池用水酸化ニッケル
電極の製造方法。
(1) A nickel sintered substrate impregnated with a cobalt inorganic acid salt or a nickel sintered substrate with cobalt hydroxide formed on the surface is heat-treated at 150 to 250°C in the presence of oxygen to oxidize the surface of the nickel sintered substrate. A method for manufacturing a nickel hydroxide electrode for an alkaline storage battery, which comprises coating the substrate with a cobalt layer and then performing an active material filling operation involving impregnation of the substrate with an acidic nickel salt.
JP60176548A 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery Granted JPS6237874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60176548A JPS6237874A (en) 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60176548A JPS6237874A (en) 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6237874A true JPS6237874A (en) 1987-02-18
JPH0410177B2 JPH0410177B2 (en) 1992-02-24

Family

ID=16015507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60176548A Granted JPS6237874A (en) 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6237874A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216268A (en) * 1987-03-03 1988-09-08 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery
JPS63314763A (en) * 1987-06-17 1988-12-22 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery
JPH02112165A (en) * 1988-10-19 1990-04-24 Sanyo Electric Co Ltd Alkaline storage battery
FR2687507A1 (en) * 1992-02-18 1993-08-20 Hughes Aircraft Co Nickel electrode on which there is a cobalt oxide passivation layer, method for its production and its use in an electrical accumulator cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216268A (en) * 1987-03-03 1988-09-08 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery
FR2611988A1 (en) * 1987-03-03 1988-09-09 Sanyo Electric Co PROCESS FOR MANUFACTURING A NICKEL HYDROXIDE ELECTRODE
US4844948A (en) * 1987-03-03 1989-07-04 Sanyo Electric Co., Ltd. Method of manufacturing nickel hydroxide electrode for alkaline storage cell
JPH0550099B2 (en) * 1987-03-03 1993-07-28 Sanyo Electric Co
JPS63314763A (en) * 1987-06-17 1988-12-22 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery
JPH0550100B2 (en) * 1987-06-17 1993-07-28 Sanyo Electric Co
JPH02112165A (en) * 1988-10-19 1990-04-24 Sanyo Electric Co Ltd Alkaline storage battery
US5079110A (en) * 1988-10-19 1992-01-07 Sanyo Electric Co., Ltd. Alkaline storage cell
FR2687507A1 (en) * 1992-02-18 1993-08-20 Hughes Aircraft Co Nickel electrode on which there is a cobalt oxide passivation layer, method for its production and its use in an electrical accumulator cell

Also Published As

Publication number Publication date
JPH0410177B2 (en) 1992-02-24

Similar Documents

Publication Publication Date Title
JPH0550099B2 (en)
JPS6237874A (en) Manufacture of nickel hydroxide electrode of alkaline storage battery
JP3412451B2 (en) Nickel sintered substrate for positive electrode of alkaline storage battery, method for producing the same, and alkaline storage battery
JPH0570907B2 (en)
JPS6237875A (en) Manufacture of nickel hydroxide electrode of alkaline storage battery
JP2865391B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery
JPH0410179B2 (en)
JPH0475255A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JPH0589876A (en) Manufacture of ni electrode for alkaline storage battery
JP3275594B2 (en) Manufacturing method of positive electrode for alkaline storage battery
JPS6261271A (en) Manufacture of sintered nickel electrode for alkaline storage battery
JP3127725B2 (en) Sintered substrate for alkaline storage battery and method for producing the same
JP3625681B2 (en) Method for producing nickel electrode for alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP3353617B2 (en) Manufacturing method of sintered electrode plate for alkaline storage battery
JP3941341B2 (en) Alkaline battery and nickel plate
JPS6074262A (en) Manufacture of nickel electrode
JPS59165370A (en) Manufacture of cathode plate for alkaline storage battery
JPH0433109B2 (en)
JPH07335212A (en) Sintered nickel electrode plate for alkaline storage battery, and its manufacture
JPH1154116A (en) Alkaline storage battery nickel sintered base plate, alkaline storage battery nickel electrode plate and manufacture thereof
JPS62186465A (en) Organic solvent cell
JPH0241865B2 (en)
JPS6266572A (en) Manufacture of sintered substrate for alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term