JPH0410177B2 - - Google Patents

Info

Publication number
JPH0410177B2
JPH0410177B2 JP60176548A JP17654885A JPH0410177B2 JP H0410177 B2 JPH0410177 B2 JP H0410177B2 JP 60176548 A JP60176548 A JP 60176548A JP 17654885 A JP17654885 A JP 17654885A JP H0410177 B2 JPH0410177 B2 JP H0410177B2
Authority
JP
Japan
Prior art keywords
nickel
substrate
active material
cobalt
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60176548A
Other languages
Japanese (ja)
Other versions
JPS6237874A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60176548A priority Critical patent/JPS6237874A/en
Publication of JPS6237874A publication Critical patent/JPS6237874A/en
Publication of JPH0410177B2 publication Critical patent/JPH0410177B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は多孔性ニツケル焼結基板に硝酸ニツケ
ルなどの酸性ニツケル塩溶液を含浸し、次いでア
ルカリ処理などを行なうことにより、前記基板中
に活物質を充填するアルカリ蓄電池用焼結式水酸
化ニツケル電極の製造方法に関する。
[Detailed Description of the Invention] (a) Industrial Application Field The present invention impregnates a porous nickel sintered substrate with an acidic nickel salt solution such as nickel nitrate, and then performs an alkali treatment, etc. The present invention relates to a method for manufacturing a sintered nickel hydroxide electrode for alkaline storage batteries filled with an active material.

(ロ) 従来の技術 アルカリ蓄電池用水酸化ニツケル電極の製造方
法としては活物質保持体としての多孔性ニツケル
焼結基板を硝酸ニツケルなどの酸性ニツケル塩含
浸液に浸漬し該基板の孔中にニツケル塩を含浸し
た後、該ニツケル塩をアルカリ中で水酸化ニツケ
ルに変化させることで活物質化させるという活物
質充填操作を行なつて水酸化ニツケル電極を製造
する方法がある。この活物質充填操作によるニツ
ケル焼結基板への活物質の充填量は1回の操作で
は充分な充填量が得られないため数回繰り返して
行なうことで所要の活物質量を充填しなければな
らない。そこで、活物質充填の効率を上げ製造工
程を簡略化するために、含浸液に高温高濃度硝酸
ニツケル水溶液などの溶融塩含浸液を用い、少な
い含浸回数で所要の活物質量を得ることが行なわ
れているが、この場合当然のこととして含浸液の
腐食性は強くなり基板が侵食されて基板を構成す
るニツケルが溶解するため極板が脆弱化し、サイ
クル性能の低下を招くという欠点があつた。
(b) Prior art A method for producing a nickel hydroxide electrode for an alkaline storage battery is to immerse a porous sintered nickel substrate as an active material holder in an acidic nickel salt impregnating solution such as nickel nitrate, thereby injecting the nickel salt into the pores of the substrate. There is a method of manufacturing a nickel hydroxide electrode by performing an active material filling operation in which the nickel salt is impregnated with nickel salt and then converted into an active material by changing the nickel salt into nickel hydroxide in an alkali. Since a sufficient amount of active material cannot be filled into the nickel sintered substrate by this active material filling operation in one operation, the required amount of active material must be filled by repeating the process several times. . Therefore, in order to increase the efficiency of filling the active material and simplify the manufacturing process, a molten salt impregnating liquid such as a high-temperature, high-concentration nickel nitrate aqueous solution is used as the impregnating liquid, and the required amount of active material can be obtained with a small number of impregnations. However, in this case, as a matter of course, the corrosivity of the impregnating liquid becomes strong, which erodes the substrate and dissolves the nickel that makes up the substrate, making the electrode plate brittle and causing a reduction in cycle performance. .

これに対して特開昭59−78457号公報及び特開
昭59−96659号公報では、酸素存在下で高温にて
ニツケル焼結基板の表面に耐酸化性の酸化ニツケ
ルを生成させ、基板の腐食を防止する方法が提案
されている。しかしながら、この方法に於いても
酸化ニツケルの生成量が少ないと基板の腐食を充
分に抑えることができず、しかも充分な効果を得
んとして酸化ニツケルの生成量を増やすと、酸化
ニツケルは導電性の悪いものであるので、活物質
と基板との導電性が著しく損われ活物質利用率が
低下するという問題があつた。
On the other hand, in JP-A-59-78457 and JP-A-59-96659, oxidation-resistant nickel oxide is generated on the surface of a nickel sintered substrate at high temperature in the presence of oxygen, thereby preventing corrosion of the substrate. Methods have been proposed to prevent this. However, even with this method, if the amount of nickel oxide produced is small, corrosion of the substrate cannot be sufficiently suppressed, and if the amount of nickel oxide produced is increased to obtain a sufficient effect, nickel oxide becomes conductive. Since the conductivity between the active material and the substrate is poor, there is a problem that the conductivity between the active material and the substrate is significantly impaired and the active material utilization rate is reduced.

(ハ) 発明が解決しようとする問題点 本発明は高温の酸性含浸液中でのニツケル焼結
基板の腐食を確実に防止し、しかも放電特性の優
れたアルカリ蓄電池用水酸化ニツケル電極を得よ
うとするものである。
(c) Problems to be Solved by the Invention The present invention aims to provide a nickel hydroxide electrode for alkaline storage batteries that reliably prevents corrosion of a sintered nickel substrate in a high-temperature acidic impregnation solution and has excellent discharge characteristics. It is something to do.

(ニ) 問題点を解決するための手段 本発明のアルカリ蓄電池用水酸化ニツケル電極
の製造方法は、コバルト無機酸塩を含浸したニツ
ケル焼結基板または表面に水酸化コバルトを生成
したニツケル焼結基板を、酸素存在下で150〜250
℃で加熱処理して、ニツケル焼結基板の表面を酸
化コバルト層で被覆した後、該基板に酸性ニツケ
ル塩を含浸し、次いでアルカリ処理などにより活
物質化させる酸性ニツケル塩の含浸を伴う活物質
充填操作を行なうものである。
(d) Means for Solving the Problems The method for manufacturing a nickel hydroxide electrode for alkaline storage batteries of the present invention uses a nickel sintered substrate impregnated with a cobalt inorganic acid salt or a nickel sintered substrate on which cobalt hydroxide is formed. , 150-250 in the presence of oxygen
After the surface of the sintered nickel substrate is coated with a cobalt oxide layer by heat treatment at ℃, the substrate is impregnated with an acidic nickel salt, and then the active material is made into an active material by an alkali treatment etc. This is used for filling operations.

(ホ) 作用 上記酸化コバルト層は不働態膜として酸性ニツ
ケル塩中で保護膜の役割を果たし、高温、高濃度
の酸性ニツケル塩の含浸液中に於いても安定して
ニツケル焼結基板の腐食及び脆弱化を防ぐ。ま
た、酸化コバルトはそれ自身が良好な導電性を有
しており、更に酸化コバルト層と活物質との界面
ではニツケル・コバルトの固溶化によつて導電性
の付与がなされると考えられるため、酸化ニツケ
ル層を形成したときのような活物質の利用率の低
下もない。
(E) Effect The above cobalt oxide layer acts as a protective film in the acidic nickel salt as a passive film, and stably prevents corrosion of the nickel sintered substrate even in the impregnation solution of the acidic nickel salt at high temperature and high concentration. and prevent vulnerability. In addition, cobalt oxide itself has good conductivity, and it is thought that conductivity is imparted to the interface between the cobalt oxide layer and the active material by solid solution of nickel and cobalt. There is no decrease in the utilization rate of the active material, unlike when a nickel oxide layer is formed.

酸化コバルト生成の際の加熱温度は150〜160℃
位から酸化コバルトの生成が起こるため下限は
150℃である必要がある。また230〜250℃以上に
なると基板のニツケルが酸化して酸化ニツケルの
生成が起こるが、250℃以下では酸化ニツケルは
ほとんど生成しないため上限は250℃とする必要
がある。但し、300℃如下では酸化ニツケルの生
成による悪影響は見られない。
Heating temperature during cobalt oxide production is 150-160℃
The lower limit is
It needs to be 150℃. Further, when the temperature exceeds 230 to 250°C, nickel on the substrate oxidizes and nickel oxide is generated, but below 250°C, almost no nickel oxide is generated, so the upper limit needs to be 250°C. However, no adverse effects due to the formation of nickel oxide are observed at temperatures as low as 300°C.

(ヘ) 実施例 還元性雰囲気で焼結して得られた多孔度約80%
のニツケル焼結基板を、常温比重1.25の硝酸コバ
ルト水溶液中に浸漬した後、80℃で十分に乾燥
し、更に180℃で30分間空気中で加熱処理を行な
いニツケル焼結基板の表面を酸化コバルト層で均
一に且つ完全に被覆する。次いでこの酸化コバル
ト層で被覆した基板を、80℃、比重1.75の硝酸ニ
ツケル水溶液に30分間浸漬し、こうして基板中に
含浸した硝酸ニツケルを80℃、25%の苛性ソーダ
溶液中で活物質化する一連の活物質充填操作を5
回繰り返して本発明法による水酸化ニツケル電極
(A)を製作した。尚、上記方法で得られた酸化コバ
ルトはX線回析により四三酸化コバルト
(C03O4)であると同定できた。
(F) Example: Porosity of approximately 80% obtained by sintering in a reducing atmosphere
The nickel sintered substrate was immersed in a cobalt nitrate aqueous solution with a specific gravity of 1.25 at room temperature, thoroughly dried at 80℃, and then heat-treated in air at 180℃ for 30 minutes to coat the surface of the nickel sintered substrate with cobalt oxide. Cover evenly and completely with the layer. Next, the substrate coated with this cobalt oxide layer was immersed for 30 minutes at 80°C in a nickel nitrate aqueous solution with a specific gravity of 1.75, and the nickel nitrate thus impregnated into the substrate was turned into an active material in a 25% caustic soda solution at 80°C. 5 active material filling operations
The nickel hydroxide electrode produced by the method of the present invention was repeated several times.
(A) was produced. The cobalt oxide obtained by the above method was identified as tricobalt tetroxide (C 03 O 4 ) by X-ray diffraction.

また比較として、上記還元性雰囲気中で焼結し
て得た基板を400℃で20分間空気中で加熱処理を
行ない表面に酸化ニツケル被膜を形成した後、上
記活物質充填操作を行なつて得た電極(B)、上記還
元性雰囲気中で焼結して得た基板を全く処理なし
で用い、上記活物質充填操作を行なつて得た電極
(C)及び上記還元性雰囲気中で焼結して得た基板を
実施例と同様に硝酸コバルト水溶液に浸漬、乾燥
させた後苛性ソーダ中に浸漬して基板表面に水酸
化コバルト層を形成し、この基板に上記活物質充
填操作を行なつて得た電極(D)を夫々製作した。
For comparison, the substrate obtained by sintering in the reducing atmosphere described above was heat-treated in air at 400°C for 20 minutes to form a nickel oxide film on the surface, and then the active material filling operation described above was performed. electrode (B) obtained by using the substrate obtained by sintering in the above reducing atmosphere without any treatment and carrying out the above active material filling operation.
(C) and the substrate obtained by sintering in the above reducing atmosphere are immersed in an aqueous cobalt nitrate solution in the same manner as in the example, dried, and then immersed in caustic soda to form a cobalt hydroxide layer on the substrate surface, Electrodes (D) obtained by carrying out the above-mentioned active material filling operation on this substrate were manufactured.

第1図は上記本発明法による電極(A)及び比較電
極(B)乃至(D)を作製する際の活物質充填操作に於け
る、上記硝酸ニツケル水溶液中への基板の初回浸
漬時の基板電位を示す図面である。比較電極(B)及
び(C)の基板は初回浸漬時にニツケル溶解電位にな
つてしまうのに対し、本発明法による電極(A)の基
板は腐食性の大きい含浸液中で常に不働態電位を
示し、ニツケル焼結基板の溶解電位に到達しない
耐食性の優れたものである。また、第2図は初回
浸漬時に良好な特性を示した本発明法による電極
(A)と比較電極(D)の1〜5回目の各浸漬時に於ける
基板電位を示した図面(浸漬回数は初回を、2
回目をのように○内の数字で示した)であり、
比較電極(D)が3回目浸漬時以降はニツケル溶解電
位となるのに対し、本発明法による電極(A)の基板
は2回目〜5回目の硝酸ニツケル水溶液への浸漬
の際にも不働態電位を示し、耐食性が非常に優れ
たものであることがわかる。
Figure 1 shows the substrate at the time of initial immersion into the nickel nitrate aqueous solution in the active material filling operation when producing the electrode (A) and reference electrodes (B) to (D) by the method of the present invention. It is a drawing showing potential. While the substrates of reference electrodes (B) and (C) reach the nickel dissolution potential during the first immersion, the substrate of the electrode (A) prepared by the method of the present invention always maintains a passive potential in the highly corrosive impregnating liquid. It has excellent corrosion resistance that does not reach the melting potential of nickel sintered substrates. In addition, Figure 2 shows the electrode produced by the method of the present invention, which showed good characteristics during the first immersion.
A drawing showing the substrate potential during each of the 1st to 5th immersion of (A) and the reference electrode (D) (the number of immersions is the first time, the second
(The number of times is indicated by the number inside the circle),
While the reference electrode (D) has a nickel dissolution potential after the third immersion, the substrate of the electrode (A) according to the method of the present invention remains passive even during the second to fifth immersion in the nickel nitrate aqueous solution. It can be seen that the corrosion resistance is very good.

更に、上記水酸化ニツケル電極(A)乃至(D)を夫々
同一条件で作製した十分に容量の大きいカドミウ
ム負極と組み合わせて公称容量が1.2AHのニツケ
ル−カドミウム電池を製作し、これら電池の充放
電サイクル特性及び放電特性を測定した。この効
果を正極に用いた電極(A)乃至(D)に符号を対応させ
て第3図及び第4図に夫々示す。本発明法による
ニツケル電極(A)は、酸化コバルト層により電極作
製時に於ける腐食製の大きい含浸液中でのニツケ
ル焼結基板の溶解が防止でき電極強度が非常に優
れていることから充放電による活物質の脱落等が
少なく、また酸化コバルト層はアルカリ溶液中で
の充放電に於いてニツケル焼結基板の腐食活物質
化を防止し基板の脆弱化を抑えるため、この電極
を正極に用いた電池は第3図に示すように良好な
サイクル特性を示し、且つ酸化コバルト層はそれ
自身導電性であるため基板表面に多量の酸化ニツ
ケルを生成したときのように抵抗が増すことはな
く第4図に示すように良好な放電特性を示してい
る。
Furthermore, a nickel-cadmium battery with a nominal capacity of 1.2 AH was manufactured by combining the above-mentioned nickel hydroxide electrodes (A) to (D) with a sufficiently large cadmium negative electrode manufactured under the same conditions, and the charging and discharging of these batteries was performed. Cycle characteristics and discharge characteristics were measured. This effect is shown in FIGS. 3 and 4, respectively, with the symbols corresponding to the electrodes (A) to (D) used as positive electrodes. The nickel electrode (A) made by the method of the present invention has a cobalt oxide layer that prevents the sintered nickel substrate from dissolving in the corrosive impregnating liquid during electrode production, and has excellent electrode strength, which makes it easy to charge and discharge. The cobalt oxide layer prevents the nickel sintered substrate from becoming a corroded active material during charging and discharging in an alkaline solution, thereby suppressing the weakening of the substrate. As shown in Figure 3, the battery exhibited good cycle characteristics, and since the cobalt oxide layer itself is conductive, the resistance did not increase as would occur when a large amount of nickel oxide was formed on the substrate surface. As shown in Figure 4, it shows good discharge characteristics.

尚、ニツケル焼結基板表面に酸化コバルト層を
形成する際に、予め基板表面に薄い酸化ニツケル
の被膜を形成しておき、その表面に酸化コバルト
層を形成しても同様の効果が得られる。この場
合、酸化ニツケルの被膜が薄いので導電性は低下
しない。また、実施例で示したように酸化コバル
ト層形成時に使用するコバルト無機酸塩溶液は常
温で且つ低濃度であるためニツケル焼結基板の腐
食はほとんど起こらないが、上記薄い酸化ニツケ
ル被膜はこのコバルト無機酸塩含浸時の基板の腐
食防止にも役立つ。
Incidentally, when forming the cobalt oxide layer on the surface of the nickel sintered substrate, the same effect can be obtained by forming a thin nickel oxide film on the substrate surface in advance and forming the cobalt oxide layer on the surface. In this case, the conductivity does not decrease because the nickel oxide film is thin. In addition, as shown in the example, the cobalt inorganic acid salt solution used when forming the cobalt oxide layer is at room temperature and has a low concentration, so corrosion of the nickel sintered substrate hardly occurs. It also helps prevent corrosion of the substrate when impregnated with inorganic acid salts.

(ト) 発明の効果 本発明のアルカリ蓄電地用水酸化ニツケル電極
の製造方法は、コバルト無機酸塩または水酸化コ
バルトを酸素存在下で150〜250℃で加熱処理する
ことでニツケル焼結基板表面を酸化コバルト層で
覆つた後、この基板に酸性ニツケル塩の含浸を伴
う活物質充填を行なうものであり、前記酸化コバ
ルト層はそれ自身が導電性で、且つ酸性ニツケル
塩中で不働態膜として働くので、基板と活物質と
の間の導電性が良好であり、酸性ニツケル塩によ
る基板の腐食による脆弱化が防止できるため、サ
イクル特性及び放電特性の優れたアルカリ蓄電池
用水酸化ニツケル電極を得ることができる。
(G) Effects of the Invention The method for manufacturing a nickel hydroxide electrode for an alkaline power storage device of the present invention heat-treats a cobalt inorganic acid salt or cobalt hydroxide at 150 to 250°C in the presence of oxygen to form a nickel sintered substrate surface. After being covered with a cobalt oxide layer, this substrate is filled with an active material accompanied by impregnation with an acidic nickel salt, and the cobalt oxide layer itself is conductive and acts as a passive film in the acidic nickel salt. Therefore, the conductivity between the substrate and the active material is good, and the weakening caused by corrosion of the substrate due to acidic nickel salt can be prevented, making it possible to obtain a nickel hydroxide electrode for alkaline storage batteries with excellent cycle characteristics and discharge characteristics. can.

また前記加熱処理を150〜250℃で行なつたた
め、酸化ニツケルの生成による悪影響はなく良好
である。
Furthermore, since the heat treatment was carried out at 150 to 250°C, there was no adverse effect due to the formation of nickel oxide, which was good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明法による電極と比較
電極作製時に於ける硝酸ニツケル水溶液中への基
板浸漬時間と基板電位の関係を示す図面、第3図
及び第4図は本発明法でよる電極と比較電極を
夫々用いた電池のサイクル特性図及び放電特性図
である。
Figures 1 and 2 are diagrams showing the relationship between substrate immersion time and substrate potential in a nickel nitrate aqueous solution during the production of electrodes and comparison electrodes by the method of the present invention, and Figures 3 and 4 are diagrams showing the relationship between substrate potential and electrodes produced by the method of the present invention. FIG. 3 is a cycle characteristic diagram and a discharge characteristic diagram of a battery using a conventional electrode and a comparative electrode, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 コバルト無機酸塩を含浸したニツケル焼結基
板または表面に水酸化コバルトを生成させたニツ
ケル焼結基板を酸素存在下で150〜250℃で加熱処
理して、ニツケル焼結基板表面を酸化コバルト層
で被覆した後、該基板に酸性ニツケル塩の含浸を
伴う活物質充填操作を行なうことを特徴とするア
ルカリ蓄電池用水酸化ニツケル電極の製造方法。
1 A nickel sintered substrate impregnated with a cobalt inorganic acid salt or a nickel sintered substrate whose surface has cobalt hydroxide formed is heat-treated at 150 to 250°C in the presence of oxygen to form a cobalt oxide layer on the surface of the nickel sintered substrate. 1. A method for producing a nickel hydroxide electrode for an alkaline storage battery, which comprises coating the substrate with an active material and then performing an active material filling operation involving impregnation of the substrate with an acidic nickel salt.
JP60176548A 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery Granted JPS6237874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60176548A JPS6237874A (en) 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60176548A JPS6237874A (en) 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6237874A JPS6237874A (en) 1987-02-18
JPH0410177B2 true JPH0410177B2 (en) 1992-02-24

Family

ID=16015507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60176548A Granted JPS6237874A (en) 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6237874A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63216268A (en) * 1987-03-03 1988-09-08 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery
JPS63314763A (en) * 1987-06-17 1988-12-22 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery
JP2609911B2 (en) * 1988-10-19 1997-05-14 三洋電機株式会社 Alkaline storage battery
US5248510A (en) * 1992-02-18 1993-09-28 Hughes Aircraft Company Cobalt oxide passivation of nickel battery electrode substrates

Also Published As

Publication number Publication date
JPS6237874A (en) 1987-02-18

Similar Documents

Publication Publication Date Title
JP5598027B2 (en) Aluminum porous material and method for producing the same, and electricity storage device using aluminum porous material as electrode current collector
JPH0550099B2 (en)
CN117410437B (en) Antimony-based electrode and preparation method and application thereof
JPH0773871A (en) Bipolar plate for lead-acid battery
JPH0410177B2 (en)
JP3412451B2 (en) Nickel sintered substrate for positive electrode of alkaline storage battery, method for producing the same, and alkaline storage battery
JPH0410178B2 (en)
JPH0570907B2 (en)
JPH0410179B2 (en)
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JPH0475255A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JP2865391B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery
JPH0589876A (en) Manufacture of ni electrode for alkaline storage battery
JP2951940B2 (en) Electrode for alkaline storage battery, method for producing the same, and alkaline storage battery
JP3275594B2 (en) Manufacturing method of positive electrode for alkaline storage battery
JP3625681B2 (en) Method for producing nickel electrode for alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
JPH065617B2 (en) Method for manufacturing sintered nickel electrode for alkaline storage battery
CN116387646A (en) Zinc cathode, preparation method thereof and water-based zinc-based electrochemical energy storage device
JP2529308B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3353617B2 (en) Manufacturing method of sintered electrode plate for alkaline storage battery
JPH0410176B2 (en)
JPH0241865B2 (en)
JPH1154116A (en) Alkaline storage battery nickel sintered base plate, alkaline storage battery nickel electrode plate and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term