JPH0410178B2 - - Google Patents

Info

Publication number
JPH0410178B2
JPH0410178B2 JP60176550A JP17655085A JPH0410178B2 JP H0410178 B2 JPH0410178 B2 JP H0410178B2 JP 60176550 A JP60176550 A JP 60176550A JP 17655085 A JP17655085 A JP 17655085A JP H0410178 B2 JPH0410178 B2 JP H0410178B2
Authority
JP
Japan
Prior art keywords
nickel
substrate
active material
electrode
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60176550A
Other languages
Japanese (ja)
Other versions
JPS6237875A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60176550A priority Critical patent/JPS6237875A/en
Publication of JPS6237875A publication Critical patent/JPS6237875A/en
Publication of JPH0410178B2 publication Critical patent/JPH0410178B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は多孔性ニツケル焼結基板に硝酸ニツケ
ルなどの酸性ニツケル塩を含浸し、次いでアルカ
リ処理などを行なうことにより、前記基板中に活
物質を充填するアルカリ蓄電池用焼結式水酸化ニ
ツケル電極の製造方法に関する。
[Detailed Description of the Invention] (a) Industrial Application Field The present invention impregnates a porous nickel sintered substrate with an acidic nickel salt such as nickel nitrate, and then performs an alkali treatment to create an active material in the substrate. The present invention relates to a method for manufacturing a sintered nickel hydroxide electrode for alkaline storage batteries filled with a substance.

(ロ) 従来の技術 アルカリ蓄電池用水酸化ニツケル電極の製造方
法としては活物質保持体としての多孔性ニツケル
焼結基板を硝酸ニツケルなどの酸性ニツケル塩含
浸液に浸漬し該基板の孔中にニツケル塩を含浸し
た後、該ニツケル塩をアルカリ中で水酸化ニツケ
ルに変化させることで活物質化させるという活物
質充填操作を行なつて水酸化ニツケル電極を製造
する方法がある。この活物質充填操作によるニツ
ケル焼結基板への活物質の充填量は1回の操作で
は十分な充填量か得られないため数回繰り返して
行なうことで所要の活物質量を充填しなければな
らない。そこで、活物質充填の効率を上げ製造工
程を簡略化するために、含浸液に高温高濃度硝酸
ニツケル水溶液などの溶融塩含浸液を用い、少な
い含浸回数で所要の活物質量を得ることが行なわ
れているがこの場合当然のこととして含浸液の腐
食性は強くなり基板が侵食されて基板を構成する
ニツケルが溶解するため極板が脆弱化し、サイタ
ル性能の低下を招くという欠点があつた。
(b) Prior art A method for producing a nickel hydroxide electrode for an alkaline storage battery is to immerse a porous sintered nickel substrate as an active material holder in an acidic nickel salt impregnating solution such as nickel nitrate, thereby injecting the nickel salt into the pores of the substrate. There is a method of manufacturing a nickel hydroxide electrode by performing an active material filling operation in which the nickel salt is impregnated with nickel salt and then converted into an active material by changing the nickel salt into nickel hydroxide in an alkali. This active material filling operation cannot fill the nickel sintered substrate with a sufficient amount of active material in one operation, so it must be repeated several times to fill the required amount of active material. . Therefore, in order to increase the efficiency of filling the active material and simplify the manufacturing process, a molten salt impregnating liquid such as a high-temperature, high-concentration nickel nitrate aqueous solution is used as the impregnating liquid, and the required amount of active material can be obtained with a small number of impregnations. However, in this case, as a matter of course, the impregnating liquid became highly corrosive, corroding the substrate, and dissolving the nickel that made up the substrate, making the electrode plate brittle and causing a decline in cylindrical performance.

これに対して特開昭59−78457号公報及び特開
昭59−96659号公報では、酸素存在下で高温にて
ニツケル焼結基板の表面に耐酸化性の酸化ニツケ
ルを生成させ、基板の腐食を防止する方法が提案
されている。しかしながら、この方法に於いても
酸化ニツケルの生成量が少ないと基板の腐食を充
分に抑えることができず、しかも充分な効果を得
んとして酸化ニツケルの生成量を増やすと、酸化
ニツケルは導電性の悪いものであるので、活物質
と基板との導電性が著しく損われ活物質利用率が
低下するという問題があつた。
On the other hand, in JP-A-59-78457 and JP-A-59-96659, oxidation-resistant nickel oxide is generated on the surface of a nickel sintered substrate at high temperature in the presence of oxygen, thereby preventing corrosion of the substrate. Methods have been proposed to prevent this. However, even with this method, if the amount of nickel oxide produced is small, corrosion of the substrate cannot be sufficiently suppressed, and if the amount of nickel oxide produced is increased to obtain a sufficient effect, nickel oxide becomes conductive. Since the conductivity between the active material and the substrate is poor, there is a problem that the conductivity between the active material and the substrate is significantly impaired and the active material utilization rate is reduced.

(ハ) 発明が解決しようとする問題点 本発明は高温の酸性含浸液中でのニツケル焼結
基板の腐食を確実に防止し、しかも放電特性の優
れたアルカリ蓄電池用水酸化ニツケル電極を得よ
うとするものである。
(c) Problems to be Solved by the Invention The present invention aims to provide a nickel hydroxide electrode for alkaline storage batteries that reliably prevents corrosion of a sintered nickel substrate in a high-temperature acidic impregnation solution and has excellent discharge characteristics. It is something to do.

(ニ) 問題点を解決するための手段 本発明のアルカリ蓄電池用水酸化ニツケル電極
の製造方法は、ニツケル焼結基板表面に水酸化コ
バルトを生成させ、次いで陽極酸化を行なうこと
で前記水酸化コバルトを酸化コバルトに変化させ
てニツケル焼結基板表面を酸化コバルト層で被覆
した後、該基板に酸性ニツケル塩の含浸を伴う活
物質充填操作を行なうものである。
(d) Means for Solving the Problems The method of manufacturing a nickel hydroxide electrode for an alkaline storage battery of the present invention involves producing cobalt hydroxide on the surface of a sintered nickel substrate, and then anodizing the cobalt hydroxide. After the surface of the nickel sintered substrate is coated with a cobalt oxide layer by changing it to cobalt oxide, an active material filling operation involving impregnation of the substrate with an acidic nickel salt is performed.

(ホ) 作用 上記酸化コバルト層は不働態膜として酸性ニツ
ケル塩中で保護膜の役割を果たし、高温、高濃度
の酸性ニツケル塩の含浸液中に於いても安定して
ニツケル焼結基板の腐食及び脆弱化を防ぐ。ま
た、酸化コバルトはそれ自身が良好な導電性を有
しており、更に酸化コバルト層と活物質との界面
ではニツケル・コバルトの固溶化によつて導電性
の付与がなされると考えられるため、酸化ニツケ
ル層を形成したときのような活物質の利用率の低
下もない。
(E) Effect The above cobalt oxide layer acts as a protective film in the acidic nickel salt as a passive film, and stably prevents corrosion of the nickel sintered substrate even in the impregnation solution of the acidic nickel salt at high temperature and high concentration. and prevent vulnerability. In addition, cobalt oxide itself has good conductivity, and it is thought that conductivity is imparted to the interface between the cobalt oxide layer and the active material by solid solution of nickel and cobalt. There is no decrease in the utilization rate of the active material, unlike when a nickel oxide layer is formed.

(ヘ) 実施例 還元性雰囲気中で焼結して得られた多孔度約80
%のニツケル焼結基板を、常温、比重1.25の硝酸
コバルト水溶液中に浸漬した後、80℃で十分に乾
燥し、次いで苛性ソーダ溶液中に浸漬して基板表
面に水酸化コバルト層を生成させ、更に苛性カリ
からなるアルカリ水溶液中で基板を陽極にして基
板表面に生成させた水酸化コバルト量の理論容量
の150%の電気量を30分間かけて与え、水酸化コ
バルトを酸化コバルトに変化させニツケル焼結基
板の表面を酸化コバルト層で均一に且つ完全に被
覆する。次いでこの酸化コバルト層で被覆した基
板を、80℃、比重1.75の硝酸ニツケル水溶液に30
分間浸漬し、こうして基板中に含浸した硝酸ニツ
ケルを80℃、25%の苛性ソーダ溶液中で活物質化
する一連の活物質充填操作を5回繰り返して本発
明法による水酸化ニツケル電極(A)を製作した。
(F) Example: Porosity of approximately 80 obtained by sintering in a reducing atmosphere
% nickel sintered substrate is immersed in a cobalt nitrate aqueous solution with a specific gravity of 1.25 at room temperature, thoroughly dried at 80°C, then immersed in a caustic soda solution to form a cobalt hydroxide layer on the substrate surface, and then Using the substrate as an anode in an alkaline aqueous solution consisting of caustic potash, an amount of electricity of 150% of the theoretical capacity of the amount of cobalt hydroxide generated on the surface of the substrate is applied for 30 minutes to change the cobalt hydroxide to cobalt oxide and sinter the nickel. The surface of the substrate is uniformly and completely coated with a cobalt oxide layer. Next, the substrate coated with this cobalt oxide layer was soaked in a nickel nitrate aqueous solution with a specific gravity of 1.75 at 80°C for 30 minutes.
A series of active material filling operations in which the nickel nitrate impregnated into the substrate is turned into an active material in a 25% caustic soda solution at 80°C is repeated five times to form a nickel hydroxide electrode (A) according to the method of the present invention. Manufactured.

また比較として、上記還元性雰囲気中で焼結し
て得た基板を400℃で20分間空気中で加熱処理を
行ない表面に酸化ニツケル被膜を形成した後、上
記活物質充填操作を行なつて得た電極(B)、上記還
元性雰囲気中で焼結して得た基板を全く処理なし
で用い、上記活物質充填操作を行なつて得た電極
(C)及び上記実施例で得た水酸化コバルトを表面に
生成させた基板を酸化処理なしで用い、上記活物
質充填操作を行なつて得た電極(D)を夫々製作し
た。
For comparison, the substrate obtained by sintering in the reducing atmosphere described above was heat-treated in air at 400°C for 20 minutes to form a nickel oxide film on the surface, and then the active material filling operation described above was performed. electrode (B) obtained by using the substrate obtained by sintering in the above reducing atmosphere without any treatment and carrying out the above active material filling operation.
Electrodes (C) and electrodes (D) obtained by performing the active material filling operation described above were prepared using the substrates obtained in the above examples on which cobalt hydroxide was produced without oxidation treatment.

第1図は上記本発明法による電極(A)及び比較電
極(B)乃至(D)を作製する際の活物質充填操作に於け
る、上記硝酸ニツケル水溶液中への基板の初回浸
漬時の基板電位を示す図面である。比較電極(B)及
び(C)の基板が初回浸漬時にニツケル溶解電位にな
つてしまうのに対し、本発明法による電極(A)の基
板は腐食性の大きい含浸液中で常に不働態電位を
示し、ニツケル焼結基板の溶解電位に到達しない
耐食性の優れたものである。また、第2図は初回
浸漬時に良好な特性を示した本発明法による電極
(A)と比較電極(D)の1〜5回目の各浸漬時に於ける
基板電位を示した図面(浸漬回数は初回を、2
回目をのように○内の数字で示した)であり、
比較電極(D)が3回目浸漬時以降はニツケル溶解電
位となるのに対し、本発明法による電極(A)の基板
は2回目〜5回目の硝酸ニツケル水溶液への浸漬
の際にも不働態電位を示し、耐食性が非常に優れ
たものであることがわかる。
Figure 1 shows the substrate at the time of initial immersion into the nickel nitrate aqueous solution during the active material filling operation when producing the electrode (A) and reference electrodes (B) to (D) by the method of the present invention. It is a drawing showing potential. While the substrates of reference electrodes (B) and (C) reach the nickel dissolution potential during the first immersion, the substrate of the electrode (A) prepared by the method of the present invention always maintains a passive potential in the highly corrosive impregnating liquid. It has excellent corrosion resistance that does not reach the melting potential of nickel sintered substrates. In addition, Figure 2 shows the electrode produced by the method of the present invention, which showed good characteristics during the first immersion.
A drawing showing the substrate potential during each of the 1st to 5th immersion of (A) and the reference electrode (D) (the number of immersions is the first time, the second
(The number of times is indicated by the number inside the circle),
While the reference electrode (D) has a nickel dissolution potential after the third immersion, the substrate of the electrode (A) according to the method of the present invention remains passive even during the second to fifth immersion in the nickel nitrate aqueous solution. It can be seen that the corrosion resistance is very good.

更に上記水酸化ニツケル電極(A)乃至(D)を夫々同
一条件で製作した十分に容量の大きいカドミウム
負極と組み合わせて公称容量が1.2AHのニツケル
−カドミウム電池を製作し、これら電池の充放電
サイクル特性及び放電特性を測定した。この結果
を正極に用いた電極(A)乃至(D)に符号を対応させて
第3図及び第4図に夫々示す。本発明法によるニ
ツケル電極(A)は、酸化コバルト層により電極作製
時に於ける腐食性の大きい含浸液中でのニツケル
焼結基板の溶解が防止でき電極強度が非常に優れ
ていることから充放電による活物質の脱落等が少
なく、また酸化コバルト層はアルカリ水溶液中で
の充放電に於いてニツケル焼結基板の腐食活物質
化を防止し基板の脆弱化を抑えるため、この電極
を正極に用いた電池は第3図に示すように良好な
サイクル特性を示し、且つ酸化コバルト層はそれ
自身導電性でるため基板表面に多量の酸化ニツケ
ルを生成したときのように抵抗が増すことはなく
第4図に示すように良好な放電特性を示してい
る。
Furthermore, a nickel-cadmium battery with a nominal capacity of 1.2 AH was manufactured by combining the above-mentioned nickel hydroxide electrodes (A) to (D) with a cadmium negative electrode of sufficiently large capacity manufactured under the same conditions, and the charge/discharge cycles of these batteries were The characteristics and discharge characteristics were measured. The results are shown in FIGS. 3 and 4, respectively, with the symbols corresponding to the electrodes (A) to (D) used as positive electrodes. The nickel electrode (A) made by the method of the present invention has a cobalt oxide layer that prevents the sintered nickel substrate from dissolving in the highly corrosive impregnating liquid during electrode fabrication, and has excellent electrode strength. The cobalt oxide layer prevents the nickel sintered substrate from becoming a corroded active material during charging and discharging in an alkaline aqueous solution, thereby suppressing the weakening of the substrate. As shown in Figure 3, the battery exhibited good cycle characteristics, and since the cobalt oxide layer itself is conductive, the resistance did not increase as when a large amount of nickel oxide was formed on the substrate surface. As shown in the figure, it shows good discharge characteristics.

尚、ニツケル焼結基板表面に酸化コバルト層を
形成する際に、予め基板表面に薄い酸化ニツケル
の被膜を形成しておき、その表面に酸化コバルト
層を形成しても同様の効果が得られる。この場
合、酸化ニツケルの被膜が薄いので導電性は低下
しない。また、実施例で示したように酸化コバル
ト層形成時に使用するコバルト無機酸塩溶液は常
温で且つ低濃度であるためニツケル焼結基板の腐
食はほとんど起こらないが、上記薄い酸化ニツケ
ル被膜はこのコバルト無機酸塩溶液含浸時の基板
の腐食防止にも役立つ。
Incidentally, when forming the cobalt oxide layer on the surface of the nickel sintered substrate, the same effect can be obtained by forming a thin nickel oxide film on the substrate surface in advance and forming the cobalt oxide layer on the surface. In this case, the conductivity does not decrease because the nickel oxide film is thin. In addition, as shown in the example, the cobalt inorganic acid salt solution used when forming the cobalt oxide layer is at room temperature and has a low concentration, so corrosion of the nickel sintered substrate hardly occurs. It also helps prevent corrosion of the substrate during impregnation with an inorganic acid salt solution.

(ト) 発明の効果 本発明のアルカリ蓄電池用水酸化ニツケル電極
の製造方法は、ニツケル焼結基板表面に水酸化コ
バルトを生成させ、次いで陽極酸化を行なうこと
で前記水酸化コバルトを酸化コバルトに変化させ
てニツケル焼結基板表面を酸化コバルト層で被覆
した後、この基板に酸性ニツケル塩の含浸を伴う
活物椎充填を行なうものであり、前記酸化コバル
ト層はそれ自身が導電性で、且つ酸性ニツケル塩
中で不働態膜として働くので、基板と活物質との
間の導電性が良好であり、酸性ニツケル塩による
基板の腐食による脆弱化が防止できるため、サイ
クル特性及び放電特性の優れたアルカリ蓄電池用
水酸化ニツケル電極を得ることができる。
(g) Effects of the Invention The method for manufacturing a nickel hydroxide electrode for an alkaline storage battery of the present invention involves generating cobalt hydroxide on the surface of a sintered nickel substrate, and then converting the cobalt hydroxide into cobalt oxide by performing anodic oxidation. After the surface of the nickel sintered substrate is coated with a cobalt oxide layer, this substrate is filled with active material by impregnating it with an acidic nickel salt. Since it acts as a passive film in salt, it has good conductivity between the substrate and active material, and prevents the substrate from becoming brittle due to corrosion caused by acidic nickel salts, making it an alkaline storage battery with excellent cycle and discharge characteristics. A nickel hydroxide electrode for use can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明法による電極と、比
較電極作製時に於ける硝酸ニツケル水溶液中への
基板浸漬時間と基板電位の関係を示す図面、第3
図及び第4図は本発明法による電極と比較電極を
夫々用いた電池のサイクル特性図及び放電特性図
である。
Figures 1 and 2 are drawings showing the relationship between the substrate potential and the immersion time of the substrate in a nickel nitrate aqueous solution during the preparation of the electrode according to the method of the present invention and the comparison electrode;
FIG. 4 is a cycle characteristic diagram and a discharge characteristic diagram of a battery using an electrode according to the present invention and a comparative electrode, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 ニツケル焼結基板表面に水酸化コバルトを生
成させ、次いで陽極酸化を行なうことで前記水酸
化コバルトを酸化コバルトに変化させてニツケル
焼結基板表面を酸化コバルト層で被覆した後、該
基板に酸性ニツケル塩の含浸を伴う活物質充填操
作を行なうことを特徴とするアルカリ蓄電池用水
酸化ニツケル電極の製造方法。
1 Cobalt hydroxide is generated on the surface of the nickel sintered substrate, and then the cobalt hydroxide is changed to cobalt oxide by anodizing, the surface of the nickel sintered substrate is coated with a cobalt oxide layer, and then the substrate is acidified. A method for producing a nickel hydroxide electrode for an alkaline storage battery, comprising performing an active material filling operation accompanied by impregnation with a nickel salt.
JP60176550A 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery Granted JPS6237875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60176550A JPS6237875A (en) 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60176550A JPS6237875A (en) 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6237875A JPS6237875A (en) 1987-02-18
JPH0410178B2 true JPH0410178B2 (en) 1992-02-24

Family

ID=16015542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60176550A Granted JPS6237875A (en) 1985-08-10 1985-08-10 Manufacture of nickel hydroxide electrode of alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6237875A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6319762A (en) * 1986-07-11 1988-01-27 Matsushita Electric Ind Co Ltd Nickel positive electrode for alkaline storage battery
JPS63216268A (en) * 1987-03-03 1988-09-08 Sanyo Electric Co Ltd Manufacture of nickel hydroxide electrode for alkaline storage battery

Also Published As

Publication number Publication date
JPS6237875A (en) 1987-02-18

Similar Documents

Publication Publication Date Title
JPH0550099B2 (en)
JP3412451B2 (en) Nickel sintered substrate for positive electrode of alkaline storage battery, method for producing the same, and alkaline storage battery
JPH0410178B2 (en)
JPH0410177B2 (en)
JPH0570907B2 (en)
JPH0410179B2 (en)
JP2639916B2 (en) Method for producing sintered nickel electrode for alkaline storage battery
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPH0475255A (en) Manufacture of nickel hydroxide electrode for alkaline storage battery
JPS5932865B2 (en) Manufacturing method of positive electrode for alkaline storage batteries
JP2865391B2 (en) Method for producing nickel hydroxide electrode for alkaline storage battery
JPH0589876A (en) Manufacture of ni electrode for alkaline storage battery
JP2898421B2 (en) Method for producing sintered nickel electrode for alkaline secondary battery
JP4356119B2 (en) Sintered nickel electrode for alkaline storage battery
JP3275594B2 (en) Manufacturing method of positive electrode for alkaline storage battery
JP3606123B2 (en) Manufacturing method of nickel positive electrode plate for alkaline storage battery
JP3097238B2 (en) Anode plate for alkaline storage battery
JP3272009B2 (en) Method for producing nickel electrode for alkaline storage battery
JP2001351619A (en) Nickel positive electrode plate and alkaline battery
JPH0241865B2 (en)
JP2000277105A (en) Manufacture of sintered nickel electrode for alkaline storage battery
JPH041992B2 (en)
JPH05242886A (en) Nickel sintered type electrode for alkaline storage battery
JPS62105370A (en) Manufacture of cathode plate for alkaline storage battery
JPS6266572A (en) Manufacture of sintered substrate for alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term