JPS5932865B2 - Manufacturing method of positive electrode for alkaline storage batteries - Google Patents

Manufacturing method of positive electrode for alkaline storage batteries

Info

Publication number
JPS5932865B2
JPS5932865B2 JP53137585A JP13758578A JPS5932865B2 JP S5932865 B2 JPS5932865 B2 JP S5932865B2 JP 53137585 A JP53137585 A JP 53137585A JP 13758578 A JP13758578 A JP 13758578A JP S5932865 B2 JPS5932865 B2 JP S5932865B2
Authority
JP
Japan
Prior art keywords
nickel
electrode plate
positive electrode
active material
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53137585A
Other languages
Japanese (ja)
Other versions
JPS5564375A (en
Inventor
実 山賀
加一 岡見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP53137585A priority Critical patent/JPS5932865B2/en
Publication of JPS5564375A publication Critical patent/JPS5564375A/en
Publication of JPS5932865B2 publication Critical patent/JPS5932865B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明はアルカリ蓄電池用正極の製造法の改良に係り、
安価で放電特性に優れ、かつ長寿命の極板を提供するこ
とを目的とする。
[Detailed Description of the Invention] The present invention relates to an improvement in the manufacturing method of a positive electrode for an alkaline storage battery.
The purpose is to provide an electrode plate that is inexpensive, has excellent discharge characteristics, and has a long life.

従来、アルカリ蓄電池用正極であるニッケル正極の製造
法は大別して次の4種がある。
Conventionally, methods for producing nickel positive electrodes, which are positive electrodes for alkaline storage batteries, can be broadly classified into the following four types.

第1は、ニッケル粉を焼結して得た多孔性焼結ニッケル
基板の細孔中に、化学的または電気化学的操作により活
物質を充填してなる焼結式と云われる極板である。この
極板は高率放電特性やサイクル寿命に優れているという
長所を有するが、反面焼結基板が高価であることおよび
活物質の充填工程が煩雑であるという欠点がある。第2
は、ポケット式と呼ばれるもので、活物質である水酸化
ニッケルを導電剤とともに加圧成形し、成形体を多孔性
金属からなるポケット容器内に挿入したものである。こ
れは安価につくれるが、反面高率放電特性が悪いという
欠点を有する。第3は、近年開発が試みられている三次
元の網状構造を有する発泡金属と呼ばれる多孔体を使用
するもので、この多孔体中に活物質粉末を充填、加圧し
た極板とするものである。これは放電特性は比較的良好
であるが、発泡金属自体力塙価であるという欠点を有す
る。第4は、活物質粉末を結着剤とともに多孔性芯金に
固着してなるモールド式と呼ばれるものである。この極
板は安価という長所はあるが、活物質利用率が悪く、ま
たサイクル寿命も短いという欠点を有する。本発明は前
記従来の製造法、とくに第4のモールド式製造法の改良
に係り、活物質利用率を大幅に向上させ、焼結式とほゞ
同等の放電特性およびサイクル寿命特性を有し、かつ安
価に作製できることを特徴とする。
The first type is a sintered electrode plate, which is made by chemically or electrochemically filling the pores of a porous sintered nickel substrate obtained by sintering nickel powder with an active material. . This electrode plate has the advantage of being excellent in high rate discharge characteristics and cycle life, but has the disadvantages that the sintered substrate is expensive and the active material filling process is complicated. Second
This is called a pocket type, in which the active material nickel hydroxide is pressure-molded together with a conductive agent, and the molded body is inserted into a pocket container made of porous metal. Although this can be produced at low cost, it has the disadvantage of poor high rate discharge characteristics. The third method uses a porous material called foamed metal, which has a three-dimensional network structure and has been developed in recent years.The porous material is filled with active material powder and pressurized to form an electrode plate. be. Although this has relatively good discharge characteristics, it has the disadvantage that the foamed metal itself has poor performance. The fourth type is a so-called mold type in which active material powder is fixed to a porous metal core together with a binder. Although this electrode plate has the advantage of being inexpensive, it has the disadvantages of poor active material utilization and short cycle life. The present invention relates to an improvement of the conventional manufacturing method, particularly the fourth mold type manufacturing method, which greatly improves the active material utilization rate, and has discharge characteristics and cycle life characteristics that are almost the same as the sintering type. It is also characterized by being able to be manufactured at low cost.

以下本発明を実施例をもつて一説明する。実施例 水酸化ニッケル粉末100重量部と、ニッケル粉末15
重量部と、コバルト粉末7重量部とからなι混合粉末を
混合し、この混合粉にポリビニルアルコールの2%水溶
液を加えて練合し、ペースト状とする。
The present invention will be explained below using examples. Example 100 parts by weight of nickel hydroxide powder and 15 parts by weight of nickel powder
A 2% aqueous solution of polyvinyl alcohol is added to this mixed powder and kneaded to form a paste.

このペーストを厚さO、06mのニッケルめつき穿孔鋼
板の両面に塗布し、必要であればこの後乾操して固着さ
せ、厚さ約0.9U1の多孔性半完成極板とする。この
ときの半完成極板の多孔度は約70%であつた。次にこ
の多孔性半完成極板をPH約2の2モル濃度の硫酸ニツ
ケル溶液中でニツケル板を陽極として10mA/dの電
流密度で陰電解し、極板内の空孔にニツケルを電着させ
る。電着されるニツケル量は極板中に含まれる水酸化ニ
ツケル量の20重量%とした。この電着終了後、水洗、
乾燥し、次に5(Fbの弗素樹脂分散液1ポリフロンデ
イスパージヨンD−1゛(ダイキン工業製)を含浸させ
た後乾燥し、加圧して厚さを約0.711、多孔度約4
3%の完成極板を得た。ここで得た極板の特性を把握す
るために、30%の苛性カリ水溶液中で、放電率試験お
よびサイクル寿命テストを行なつた。
This paste is applied to both sides of a nickel-plated perforated steel plate with a thickness of 0.06 m, and if necessary, is then dried and fixed to form a porous semi-finished electrode plate with a thickness of about 0.9 U1. The porosity of the semi-finished electrode plate at this time was about 70%. Next, this porous semi-finished electrode plate was subjected to negative electrolysis at a current density of 10 mA/d with the nickel plate as an anode in a 2 molar nickel sulfate solution with a pH of approximately 2, and nickel was electrodeposited into the pores within the electrode plate. let The amount of nickel electrodeposited was 20% by weight of the amount of nickel hydroxide contained in the electrode plate. After completing this electrodeposition, wash with water,
It is dried, and then impregnated with 5 (Fb fluororesin dispersion 1 Polyflon Dispersion D-1 (manufactured by Daikin Industries), dried, and pressurized to a thickness of about 0.711 and a porosity of about 4
A 3% finished plate was obtained. In order to understand the characteristics of the electrode plate obtained here, a discharge rate test and a cycle life test were conducted in a 30% caustic potassium aqueous solution.

放電率は5時間率、1時間率、20分間率の3種とした
。この各放電率での活物質利用率を次表に示す。なお、
従来品である焼結式およびモールド式と本発明品は極板
厚さおよび活物質量は同一とした。次に充電を5時間率
で8時間、放電を5時間率としたサイクル寿命試験を前
表と同じ3種類の極板を用いて行なつた。
Three discharge rates were used: a 5-hour rate, a 1-hour rate, and a 20-minute rate. The active material utilization rate at each discharge rate is shown in the following table. In addition,
The electrode plate thickness and the amount of active material were the same between the conventional sintered type and molded type and the present invention. Next, a cycle life test was conducted using the same three types of electrode plates as in the previous table, with charging at a 5-hour rate for 8 hours and discharging at a 5-hour rate.

その結果は図に示すように本発明品は焼結式とほマ同等
のサイクル寿命を有し、モールド式にくらべすぐれてい
ることが明らかとなつた。図中Aは本発明品、Bは焼結
式、Cはモールド式である。本発明品は前表から明らか
なように活物質利用率が従来のモールド式にくらべ大幅
に向上し、焼結式とほゾ同等になつている。
As shown in the figure, the results revealed that the product of the present invention had a cycle life almost equivalent to that of the sintered type, and was superior to the molded type. In the figure, A is a product of the present invention, B is a sintered type, and C is a molded type. As is clear from the table above, the active material utilization rate of the product of the present invention is significantly improved compared to the conventional mold type, and is comparable to that of the sintered type.

これは水酸化ニツケルを主体とする活物質が多孔性芯金
に固着されたのち、ニツケル塩溶液中での電着ニツケル
により、活物質近傍にニツケルが存在するために電導性
が向上し、活物質の反応性を良好にならしめているもの
と考えられる。この電着ニツケルは極板内部まで存在さ
せる必要があるので、電着操作開始前の半完成極板は一
定以上の多孔度を確保する必要がある。この多孔度は電
着操作時の電流密度とも関連し、多孔度が大きいほど電
流密度を上げても極板内部までニツケルの電着が行なわ
れる。すなわち電着操作前の多孔度は50%以上とする
必要があり、通常は60〜80(:!)に保つことが好
ましい。また電着効果をあげるために、主活物質である
水酸化ニツケルに予め電導剤を加えておく必要があり、
実施例のようにニツケル粉末を加えると効果がある。こ
のニツケル粉末の添加は水酸化ニツケル100重量部に
対し、少くとも約10重量部あれば良いことを確認した
。本発明の要点は、前記のように半完成極板の多孔度お
よびニツケル添加の効果の他に、電着ニツケル量がある
This is because after the active material mainly composed of nickel hydroxide is fixed to the porous core metal, nickel is electrodeposited in the nickel salt solution, and the presence of nickel near the active material improves the conductivity and makes it active. This is thought to improve the reactivity of the substance. Since this electrodeposited nickel must be present inside the electrode plate, the semi-finished electrode plate must have a certain level of porosity before the electrodeposition operation begins. This porosity is also related to the current density during the electrodeposition operation, and the greater the porosity, the more nickel will be electrodeposited inside the electrode plate even if the current density is increased. That is, the porosity before the electrodeposition operation needs to be 50% or more, and is usually preferably kept at 60 to 80 (:!). In addition, in order to improve the electrodeposition effect, it is necessary to add a conductive agent to the main active material, nickel hydroxide, in advance.
Adding nickel powder as in the example is effective. It was confirmed that at least about 10 parts by weight of the nickel powder should be added to 100 parts by weight of nickel hydroxide. The key point of the present invention is the amount of electrodeposited nickel in addition to the porosity of the semi-finished electrode plate and the effect of adding nickel as described above.

この電着ニツケル量は活物質利用率と関連があり、種々
の実験の結果、活物質利用率を5時間率で90%以上を
確保するためには電着ニツケル量は水酸化ニツケルに対
し約15重量%以上必要であることを確認した。この電
着時のニツケル塩溶液は硫酸ニツケルのごとき陰電解に
よつて陰極にニツケルを析出させるものでなくてはなら
ず、硝酸ニツケルのように硝酸イオンの還元反応が生じ
てニツケルの電着が阻害されるものは使用できない。本
発明はまた、ニツケル電着後に、弗素樹脂分散液を含浸
させ、ついで加圧することが必要である。
The amount of electrodeposited nickel is related to the active material utilization rate, and as a result of various experiments, in order to ensure the active material utilization rate of 90% or more at a 5-hour rate, the amount of electrodeposited nickel must be approximately It was confirmed that 15% by weight or more is required. The nickel salt solution used for electrodeposition must be one that deposits nickel on the cathode by negative electrolysis, such as nickel sulfate, and as with nickel nitrate, a reduction reaction of nitrate ions occurs to cause the electrodeposition of nickel. Those that are inhibited cannot be used. The present invention also requires impregnation with a fluororesin dispersion and subsequent pressurization after nickel electrodeposition.

すなわち、電着終了後に水洗してニツケル塩溶液を除去
したのち、乾燥し、これに弗素樹脂分散液を含浸させて
加圧すると、加圧により弗素樹脂同士の網目状の絡み合
いにより活物質、電着ニツケルおよび薄い金属シートか
らなる多孔性芯金が強固に固着される。従つて、焼結基
板や発泡金属のようにそれ自体に活物質保持容器的機能
をもたない薄い金属シートからなる多孔性芯金であつて
も十分集電体及び芯材として利用できるものである。こ
うして極板強度が向上するとともに、柔軟性も確保され
るので、渦巻状に極板を巻回する場合でも活物質の脱落
などは生じない。なお、上記の加圧は、弗素樹脂分散液
の含浸後の未乾燥状態でも、あるいは乾燥状態のいずれ
でもよい。本発明では電着ニツケルにより水酸化ニツケ
ルの活物質利用率を向上させるが、この活物質利用率の
向上は、コバルト又はコバルト化合物の添加により更に
上積される。すなわち、水酸化ニツケルにコバルト又は
水酸化コバルト、酢酸コバルトのごときコバルト化合物
を添加しておくと、電着ニツケルは水酸化ニツケルとコ
バルト又はコバルト化合物の近傍に析出するため、コバ
ルト又はコバルト化合物が水酸化ニツケルの反応性を一
段と高めるものと考えられ、水酸化ニツケル単独の場合
にくらべ約5〜7%の利用率向上がみられる。本発明の
製造法ではまず水酸化ニツケルを主体とするペーストを
多孔性芯金に固着させるが、ペースト状態に保つために
高粘度を有する結着剤が必要であり、実施例で述べたポ
リビニルアルコールの他にカルボキシメチルセルロース
などの繊維素誘導体物質の水溶液や、ポリエチレンなど
を有機溶媒に溶解させて使用することができる。なお、
このペーストを芯金に固着させたのち、電着によりニツ
ケルを極板内部迄析出させるため、結着剤を多量に使用
すると析出が十分行なわれなくなるので、結着剤量は適
切に設定する必要がある。以上のように、本発明の製造
法によるニツケル正極は、従来のモールド式極板にくら
べ性能向上が図られ、かつ焼結式のごとく煩雑な工程を
必要とせずに安価につくることが可能である。
That is, after the electrodeposition is completed, the nickel salt solution is removed by washing with water, and then dried. When this is impregnated with a fluororesin dispersion and pressurized, the active material and the electrode are entangled due to the mesh-like entanglement of the fluororesin. A porous core made of nickel and a thin metal sheet is firmly fixed. Therefore, even a porous core made of a thin metal sheet that does not itself have the function of an active material holding container, such as a sintered substrate or foamed metal, can be sufficiently used as a current collector and core material. be. In this way, the strength of the electrode plate is improved and flexibility is ensured, so even when the electrode plate is wound in a spiral, the active material does not fall off. Note that the above pressure may be applied either in the undried state after impregnation with the fluororesin dispersion or in the dry state. In the present invention, the active material utilization rate of nickel hydroxide is improved by electrodeposition of nickel, but this improvement in the active material utilization rate is further enhanced by the addition of cobalt or a cobalt compound. In other words, if cobalt or a cobalt compound such as cobalt hydroxide or cobalt acetate is added to nickel hydroxide, the electrodeposited nickel will precipitate near the nickel hydroxide and the cobalt or cobalt compound. It is thought that the reactivity of nickel oxide is further increased, and the utilization rate is improved by about 5 to 7% compared to the case of using nickel hydroxide alone. In the manufacturing method of the present invention, a paste mainly composed of nickel hydroxide is first fixed to a porous core metal, but a binder with high viscosity is required to maintain the paste state, and polyvinyl alcohol In addition, an aqueous solution of a cellulose derivative substance such as carboxymethyl cellulose, or polyethylene dissolved in an organic solvent can be used. In addition,
After fixing this paste to the core metal, nickel is deposited inside the electrode plate by electrodeposition. If too much binder is used, the deposition will not be sufficient, so the amount of binder must be set appropriately. There is. As described above, the nickel positive electrode manufactured by the manufacturing method of the present invention has improved performance compared to conventional molded electrode plates, and can be manufactured at a low cost without the need for complicated processes like the sintering method. be.

【図面の簡単な説明】[Brief explanation of drawings]

図は極板のサイクル寿命特性を示す。 A・・・・・・本発明の極板、B・・・・・・従来の焼
結式極板、C・・・・・・従来のモールド式極板。
The figure shows the cycle life characteristics of the electrode plate. A: Electrode plate of the present invention, B: Conventional sintered electrode plate, C: Conventional molded electrode plate.

Claims (1)

【特許請求の範囲】 1 水酸化ニッケル粉末を主体とし、この水酸化ニッケ
ル粉末100重量部当り少なくとも10重量部のニッケ
ル粉末を含むペーストを多孔性芯金の両面に固着させて
多孔性半完成極板とし、ついでこれをニッケル塩溶液中
で陰電解して金属ニッケルを電着させた後、水洗、乾燥
し、この極板に弗素樹脂分散液を含浸させ加圧すること
を特徴としたアルカリ蓄電池用正極の製造法。 2 ペーストが、水酸化ニッケルを主体とし、これにニ
ッケルと、コバルトまたはコバルト化合物および結着剤
を含有している特許請求の範囲第1項記載のアルカリ蓄
電池用正極の製造法。
[Claims] 1. A porous semi-finished electrode is produced by fixing a paste mainly composed of nickel hydroxide powder and containing at least 10 parts by weight of nickel powder per 100 parts by weight of the nickel hydroxide powder to both sides of a porous core metal. For use in alkaline storage batteries, the plate is then electrolyzed in a nickel salt solution to electrodeposit metallic nickel, washed with water, dried, impregnated with a fluororesin dispersion, and pressurized. Manufacturing method of positive electrode. 2. The method for producing a positive electrode for an alkaline storage battery according to claim 1, wherein the paste is mainly composed of nickel hydroxide and contains nickel, cobalt or a cobalt compound, and a binder.
JP53137585A 1978-11-07 1978-11-07 Manufacturing method of positive electrode for alkaline storage batteries Expired JPS5932865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53137585A JPS5932865B2 (en) 1978-11-07 1978-11-07 Manufacturing method of positive electrode for alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53137585A JPS5932865B2 (en) 1978-11-07 1978-11-07 Manufacturing method of positive electrode for alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPS5564375A JPS5564375A (en) 1980-05-15
JPS5932865B2 true JPS5932865B2 (en) 1984-08-11

Family

ID=15202145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53137585A Expired JPS5932865B2 (en) 1978-11-07 1978-11-07 Manufacturing method of positive electrode for alkaline storage batteries

Country Status (1)

Country Link
JP (1) JPS5932865B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053900Y2 (en) * 1985-12-25 1993-01-29

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57189458A (en) * 1981-05-19 1982-11-20 Sanyo Electric Co Ltd Positive plate for alkaline storage battery
JPS5875767A (en) * 1981-10-29 1983-05-07 Matsushita Electric Ind Co Ltd Manufacture of nickel electrode for battery
JPS5897265A (en) * 1981-12-04 1983-06-09 Matsushita Electric Ind Co Ltd Manufacture of nickel electrode for battery
JPS5951464A (en) * 1982-09-18 1984-03-24 Japan Storage Battery Co Ltd Production method of positive electrode for alkaline cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053900Y2 (en) * 1985-12-25 1993-01-29

Also Published As

Publication number Publication date
JPS5564375A (en) 1980-05-15

Similar Documents

Publication Publication Date Title
JPS6327823B2 (en)
JPS5932865B2 (en) Manufacturing method of positive electrode for alkaline storage batteries
JPS6161227B2 (en)
JP3414184B2 (en) Method for producing positive electrode plate for alkaline storage battery
JPS5851669B2 (en) Manufacturing method of battery electrode substrate
JP2000311680A (en) Sintered type positive electrode plate for nickel- hydrogen battery, its manufacture and nickel-hydrogen battery
JP2898421B2 (en) Method for producing sintered nickel electrode for alkaline secondary battery
JP3708350B2 (en) Sintered nickel positive electrode for alkaline storage battery
JP3408047B2 (en) Alkaline storage battery
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JP2810460B2 (en) Positive plate for alkaline storage battery
JP2567672B2 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JPH0410181B2 (en)
JP3606123B2 (en) Manufacturing method of nickel positive electrode plate for alkaline storage battery
JPH0560222B2 (en)
JPS58126671A (en) Manufacture of cathode plate for alkaline storage battery
JP2786902B2 (en) Manufacturing method of non-sintered cadmium electrode
JP2000306576A (en) Sintered nickel electrode for alkaline storage battery
JPS59151758A (en) Manufacture of nickel electrode
JPH0451944B2 (en)
JPS5832363A (en) Manufacture of negative cadmium electrode for alkaline storage battery
JPS59128766A (en) Positive plate for alkaline battery
JPS58175262A (en) Manufacture of nickel electrode for battery
JPH0828237B2 (en) Manufacturing method of sealed alkaline storage battery
JPS5897265A (en) Manufacture of nickel electrode for battery