JPS5951464A - Production method of positive electrode for alkaline cell - Google Patents

Production method of positive electrode for alkaline cell

Info

Publication number
JPS5951464A
JPS5951464A JP57162493A JP16249382A JPS5951464A JP S5951464 A JPS5951464 A JP S5951464A JP 57162493 A JP57162493 A JP 57162493A JP 16249382 A JP16249382 A JP 16249382A JP S5951464 A JPS5951464 A JP S5951464A
Authority
JP
Japan
Prior art keywords
powder
cobalt
nickel
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57162493A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakamitsu
中満 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Nihon Denchi KK
Original Assignee
Japan Storage Battery Co Ltd
Nihon Denchi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd, Nihon Denchi KK filed Critical Japan Storage Battery Co Ltd
Priority to JP57162493A priority Critical patent/JPS5951464A/en
Publication of JPS5951464A publication Critical patent/JPS5951464A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the strength of an electrode by adding cobalt to active material mixed powder when coating a support body made of a porous steel plate, etc. with mixed powder mainly composed of nickel hydroxide to form a positive electrode. CONSTITUTION:Cobalt powder is added to the mixed powder of nickel hydroxide powder and nickel powder serving as a conductive material, and it is made into a paste status by use of a carboxymethyl-cellulose aqueous solution, then polytetrafluoroethylene powder is added to make it into a clay status. It is coated on both faces of a nickel net serving as a core material, which is then molded by pressure to form a positive electrode for an alkaline cell. Accordingly, cobalt improves the binding feature between grains of nickel hydroxide powder and between grains and a support body when cobalt is oxidized to generate cobalt hydroxide or cobalt oxyhydroxide during charging, thereby the strength of the electrode is increased and the discharge performance can be improved.

Description

【発明の詳細な説明】 本発明は多孔性鋼板等の活物質支持体に水酸化ニッケル
を生体とする混合粉末を塗着する正1に仮の製造方法に
関するもので、活物質混合粉末にコバルトを添加するこ
とにより一板の強度を向上させて放電性能のすぐt′I
だ正111Nを得ることを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temporary manufacturing method in which a mixed powder containing nickel hydroxide as a living body is applied to an active material support such as a porous steel plate. By adding
The purpose is to obtain a total of 111N.

アルカリ電池のIE!1ili教の11m法としては、
通常減田含浸法とよばれろ方法、fなわち硝酸ニッケル
や硫酸ニッケル等のニッケル塩の水溶液を焼結ニッケJ
L4tliFにIIIE含浸したのち、アルカリ水溶液
で処理し、さらに湯洗、乾燥するという操作を繰り返す
方法がとられている。しかしながら、1回の操作によっ
て充填される活物質の量は少なく、しかも2回目から充
填される量は次第に減少してくるので通常4〜10回の
操作を繰り返す必聾がある。そのTコめ製造工程が複雑
で経済的コストが高くなるという欠点があった。また、
基板の多孔度が80%程度であるためにエネルギー効率
が低く不利であった。
Alkaline battery IE! The 11m method of the 1ili religion is:
This method is usually called the reduced field impregnation method.
A method is used in which L4tliF is impregnated with IIIE, treated with an alkaline aqueous solution, and then washed with hot water and dried, which are repeated. However, the amount of active material filled in one operation is small, and the amount filled gradually decreases from the second operation onwards, so it is usually necessary to repeat the operation 4 to 10 times. The drawback is that the process for manufacturing T rice is complicated and the economic cost is high. Also,
Since the porosity of the substrate was about 80%, the energy efficiency was low and disadvantageous.

そこで近年、三次元的に連続した構造を有するニッケル
金属よりなるスポンジ状多孔体に、ペースト状にした正
−活物質を直接充填する方法が注目されてきている。
Therefore, in recent years, attention has been paid to a method in which a sponge-like porous body made of nickel metal having a three-dimensionally continuous structure is directly filled with a positive active material in the form of a paste.

三次元的に連続した構造を有するスポソジ状ニッケル多
孔体は、その多孔度が90〜98%と高く、しかも機械
的強度が大きい。そのうえ孔径が大きいのでこの多孔体
に活物IJ5充填すると正−板の高mt化をはかること
ができるとともに充填方法が簡便になり連続工程が可能
で経済的にも有利となる。しかしなから、スポンジ状ニ
ッケル多孔体の孔径が大きすぎると集電体であるニッケ
ル多孔体と活物質粉末との間および活物質粒子間の電気
的な接鴫性が充分に得られない1こめに利用率が低くな
り、逆に多孔体の孔径が小さすぎろと活物質の充填に長
時間を要するという欠点がある。
A porous nickel porous material having a three-dimensional continuous structure has a high porosity of 90 to 98% and high mechanical strength. Moreover, since the pore diameter is large, filling this porous body with active material IJ5 makes it possible to increase the mt of the positive plate, and the filling method is simple, allowing a continuous process, which is economically advantageous. However, if the pore diameter of the sponge-like porous nickel material is too large, sufficient electrical bonding properties between the porous nickel material as a current collector and the active material powder and between the active material particles may not be obtained. However, if the pore diameter of the porous body is too small, it will take a long time to fill the active material.

まTこスポンジ状ニッケル多孔体が高価であるという欠
点もある。
Another drawback is that the sponge-like porous nickel material is expensive.

そこで、多孔性鋼板等の支持体の両面にペースト状にし
fこ活物質を塗着する方法が考えられる。
Therefore, a method can be considered in which the active material is applied in the form of a paste to both sides of a support such as a porous steel plate.

この場合、製造工程は龜めて簡便で、経済的にも有利で
あり、ま1こエネルギー効率ももめて高いが、その反面
活物質が脱落しやすく場合によっては支持体から活物質
が剥離してしまうという欠点がある。これは、ペースト
中の結着材だけでは活物質粒子間の結着力が充分に得ら
れないことによるものと考えられろ。
In this case, the manufacturing process is extremely simple and economically advantageous, and the energy efficiency is also extremely high, but on the other hand, the active material tends to fall off easily, and in some cases, the active material may peel off from the support. It has the disadvantage of being This is thought to be due to the fact that the binder in the paste alone does not provide sufficient binding force between the active material particles.

この欠点を解消するTこめに活物質を塗着し1こlI+
I仮を結着剤の水m液に浸漬して結着力を増す試みがお
こなわれているが充分な効果があるとはいえなかつtこ
To solve this drawback, apply an active material to the T.
Attempts have been made to increase the binding force by immersing the adhesive in an aqueous binder solution, but this has not been found to be sufficiently effective.

不発明は、活物質にコバルトを添加するとfhviの強
度および活物質の結着力が増加して活物質の剥離が鑞め
て少なくなり、さらに放電性能が著しく向上することを
見い出しTこことに基づくものである。
The invention is based on the discovery that when cobalt is added to the active material, the strength of FHVI and the binding force of the active material are increased, the peeling of the active material is greatly reduced, and the discharge performance is significantly improved. It is something.

以下、本発明の実施例ならびにその効果を詳述する。本
発明による正慟仮はつぎのようにして製作しγこ。まず
、水酸化ニッケル粉末80部と導電材としてのニッケル
粉末20 部との混合粉末にコバルト粉末を添加し1こ
ものを0.61Jカルボキシメチルセルロース水溶液で
ペースト状にしfこ。さらにこのペーストにポリテトラ
フルオロエチレン粉末を活物質全体に対して4重竜%に
なるように添加して粘土状にしfコ。この粘土状の活物
質を線径0.2m、20メツシユのニッケル網の両面か
ら厚さが約11111になるように塗着しγこ後、80
℃で1時間乾燥し、厚さが0.68℃1mlになるよう
に加圧成形して不発明裔こよる正陶板を得1こ。この正
−板1枚と、焼結式カドミウム負vU仮2枚と、電解液
に8.0.1.250(20’C)水酸化カリウム水l
11g液とを用いてフラツデッドタイプの電池を製作し
、0.1OAで16 時間充電しTコのち、l、QOA
で酸化第二水銀電1に対してOvまで放電して活物質利
用率を求め1こ。
Examples of the present invention and its effects will be described in detail below. The formal mask according to the present invention was manufactured as follows. First, cobalt powder was added to a mixed powder of 80 parts of nickel hydroxide powder and 20 parts of nickel powder as a conductive material, and one powder was made into a paste with 0.61 J carboxymethylcellulose aqueous solution. Further, polytetrafluoroethylene powder was added to this paste in an amount of 4% based on the total active material to form a clay-like material. This clay-like active material was applied to both sides of a 20-mesh nickel net with a wire diameter of 0.2 m to a thickness of about 11111 mm.
It was dried at ℃ for 1 hour and then pressure-molded to a thickness of 0.68 ℃ and 1 ml to obtain a porcelain board. One of this positive plate, two sintered cadmium negative VU temporary plates, and 8.0.1.250 (20'C) potassium hydroxide water solution as electrolyte.
A flattened type battery was made using 11g of liquid and charged at 0.1OA for 16 hours.
Discharge the mercuric oxide electrode to 1 Ov to find the active material utilization rate.

コバルトの添加量と活物質利用率との関係を第1図に示
す。図からコバルト添加量が5%以上で著しい効果があ
られれることがわかる。
FIG. 1 shows the relationship between the amount of cobalt added and the active material utilization rate. It can be seen from the figure that significant effects can be obtained when the amount of cobalt added is 5% or more.

c、ノ場合、コバルトの電が多いほど陰板の強度が大キ
かった。なお、コバルトを含まない正廟板は光電終期に
活物質が支持体から剥離したために放電ができなかった
In cases c and 2, the strength of the negative plate increased as the cobalt charge increased. In addition, in the case of the Jeongmyo board that did not contain cobalt, the active material was peeled off from the support at the end of the photovoltaic period, so that discharge could not be performed.

つぎにコバルトの添加量を10%として製作しπ本発明
による正PII仮1枚と、従来から公知のペースト式カ
ドミウム負−仮1枚とをナイロン不織布のセパレータを
介して渦巻状に巻き、電解液に8.G。
Next, one positive PII temporary sheet according to the present invention and one conventionally known paste-type cadmium negative temporary sheet were manufactured with the amount of cobalt added at 10%, and were spirally wound through a nylon nonwoven fabric separator, and electrolyzed. 8. into the liquid. G.

1.800(20“C)水酸化カリウム水溶液を用いて
公称W12.5AhO本発明による密閉形ニッケル・カ
ドミウム電池(勾を製作した。tた比較のため町ζコ 
5 − バルトを含まない正−板を用いた従来の方法による電池
IBIを製作Lfこ。これらの電池を0.IOAで16
時間元光電γこのち、l、QCAでt、OVまで放電し
た時の放電特性を第2図に示す。図から本発明による電
池(41は従来の方法による電池(IJに比べて、放電
性能が著しく向上していることがわかる。
A sealed nickel-cadmium battery according to the present invention with a nominal W12.5AhO was fabricated using a 1.800 (20"C) potassium hydroxide aqueous solution.
5 - Manufacture a battery IBI using a conventional method using a positive plate that does not contain balt. These batteries are 0. 16 in IOA
Figure 2 shows the discharge characteristics when the time-based photoelectric γ is discharged to t, OV with l, QCA. From the figure, it can be seen that the battery according to the present invention (41 is a battery manufactured by a conventional method (IJ) has significantly improved discharge performance.

まfこ、同種の電池を20個ずつ製作して上記と同様の
条件で充放電サイクルをくり返した時の放電容量の範囲
の変化を第8図に示す。図から本発明による電atAl
は寿命性能に関してもすぐれていることがわかる。
FIG. 8 shows the change in the range of discharge capacity when 20 batteries of the same type were manufactured and repeated charging and discharging cycles under the same conditions as above. From the figure, the electrode according to the present invention
It can be seen that it is also excellent in terms of life performance.

何故、コバルトを添加すると1仮の強度が向上してlI
I板性能が向上するのか定かではないが、つぎのような
理由によるものと考えられる。すなわち、従来の方法に
よる正陽板はペースト状の活物質に添加したフッ素樹脂
の微粉末のみによって活物質粒子間および活物質−と支
持体との結着力を得るために充電時に生じる活物質の膨
潤やガスの発生によって活物質が容易に脱落し、最悪の
場合には支持体から剥離してしまう。しかしながら、活
物 6− 質にコバルトを添加し1こ本発明による正晩坂は、充電
中にコバルトが酸化して水酸化コバルトやオキシ水酸化
コバルトが生成する際に、それが、1[化ニッケル粉末
やニッケル粉末の粒子間およびそれらの粒子と支持体と
の間の結合性を向上させる1こめに強度が向ヒするもの
と考えられろ。
Why does adding cobalt improve temporary strength?
Although it is not certain whether the I-plate performance improves, it is thought that this is due to the following reasons. In other words, the conventional positive plate uses only fine powder of fluororesin added to a paste-like active material to obtain binding strength between the active material particles and between the active material and the support, so that the active material swells during charging. The active material easily falls off due to the generation of gas and, in the worst case, peels off from the support. However, when cobalt is added to the active substance and cobalt according to the present invention is oxidized during charging and cobalt hydroxide or cobalt oxyhydroxide is produced, it becomes oxidized. It is believed that the strength is improved by improving the bonding properties between the particles of the nickel powder and between the particles and the support.

以上述べ1こように、本発明は活物質fζコバルトを添
加することによって多孔性鋼板等の支持体に活物質を塾
着して製作する正自板の1仮の強1を向上させて放電性
能を著しく改善することができろ。
As stated above, the present invention improves the temporary strength of a self-contained plate produced by adhering the active material to a support such as a porous steel plate by adding the active material fζ cobalt, and discharges It can significantly improve performance.

4、図面)@ m r、r 説明 第1附はコバルトの添加量と活物質利用率との関係を示
しTこ図、第2図および第3図はそれぞれ本発明による
t/IIIと従来の方法による電池の1OA放電特性の
比較図および充放電サイクルに伴う放tg量の範囲の変
化の比較図である。
4. Drawings) @ m r, r Explanation The first appendix shows the relationship between the amount of cobalt added and the active material utilization rate. FIG. 2 is a comparison diagram of 1OA discharge characteristics of batteries according to the method and a comparison diagram of changes in the range of the amount of tg released with charge/discharge cycles.

A・・・・・・本発明による電池、 B・・・・・・従
来の方法に7− 笑 1  凹 ρ      5       to       /
A      2゜コベ°ルト博む−! (%) 丼 Z  図 θ          /、Oz、Q 武 畿  容 量 (Ah)
A... Battery according to the present invention, B... Conventional method 7- lol 1 concave ρ 5 to /
A 2゜Kobelt Expansion-! (%) Bowl Z Figure θ /, Oz, Q Capacity (Ah)

Claims (1)

【特許請求の範囲】[Claims] 活物質としての水酸化ニッケル粉末、導電材として例え
ばニッケル粉末および結着剤として例えばポリテトラフ
ルオロエチレン粉末とコバルト粉末とを混合し、該混合
粉末にカルボキシメチルセルロース水溶液等の練液を加
えてペースト状にして導電性支持体、例えば多孔性鋼板
あるいはdフケル網等にv11胃した後、乾燥すること
を特徴とするアルカリ電池用1ETo板の製造法。
Nickel hydroxide powder as an active material, nickel powder as a conductive material, and polytetrafluoroethylene powder and cobalt powder as a binder are mixed, and a paste such as a carboxymethylcellulose aqueous solution is added to the mixed powder to form a paste. 1. A method for producing a 1ETo plate for an alkaline battery, which is characterized in that it is coated on a conductive support such as a porous steel plate or a wire mesh, and then dried.
JP57162493A 1982-09-18 1982-09-18 Production method of positive electrode for alkaline cell Pending JPS5951464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57162493A JPS5951464A (en) 1982-09-18 1982-09-18 Production method of positive electrode for alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57162493A JPS5951464A (en) 1982-09-18 1982-09-18 Production method of positive electrode for alkaline cell

Publications (1)

Publication Number Publication Date
JPS5951464A true JPS5951464A (en) 1984-03-24

Family

ID=15755662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57162493A Pending JPS5951464A (en) 1982-09-18 1982-09-18 Production method of positive electrode for alkaline cell

Country Status (1)

Country Link
JP (1) JPS5951464A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564375A (en) * 1978-11-07 1980-05-15 Matsushita Electric Ind Co Ltd Manufacturing method of positive pole for alkaline storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564375A (en) * 1978-11-07 1980-05-15 Matsushita Electric Ind Co Ltd Manufacturing method of positive pole for alkaline storage battery

Similar Documents

Publication Publication Date Title
WO1992008251A1 (en) Hydrogen-storing electrode, nickel electrode, and nickel-hydrogen battery
JPH02112165A (en) Alkaline storage battery
JPH10106550A (en) Hydrogen storage alloy electrode and its manufacture
JP4824251B2 (en) Nickel metal hydride storage battery and manufacturing method thereof
JPS5951464A (en) Production method of positive electrode for alkaline cell
JP3616941B2 (en) Zinc powder for batteries and alkaline zinc secondary battery using the same
JP3136738B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPS6081777A (en) Nickel-zinc battery
JP2589750B2 (en) Nickel cadmium storage battery
JPS60143569A (en) Positive plate for alkaline battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP3384109B2 (en) Nickel plate
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JP2553780B2 (en) Hydrogen storage alloy electrode
JPH0513075A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JP2002260643A (en) Hydrogen storage alloy electrode and manufacturing method therefor, and alkaline storage battery
JP2001057212A (en) Non-sintered nickel electrode for alkaline storage battery
JPS60211770A (en) Positive electrode plate for alkaline battery
JPH10275620A (en) Positive electrode for alkaline storage battery, alkaline storage battery, and manufacture of alkaline storage battery
JPH11273670A (en) Nickel positive electrode plate for alkaline storage battery and its manufacture
JPH0251874A (en) Alkaline zinc lead-acid battery
JPS6269465A (en) Cathode plate for nickel-cadmium alkaline storage battery
JP2003317712A (en) Nickel - hydrogen storage battery
JPH04344B2 (en)