JPH11273670A - Nickel positive electrode plate for alkaline storage battery and its manufacture - Google Patents
Nickel positive electrode plate for alkaline storage battery and its manufactureInfo
- Publication number
- JPH11273670A JPH11273670A JP10074655A JP7465598A JPH11273670A JP H11273670 A JPH11273670 A JP H11273670A JP 10074655 A JP10074655 A JP 10074655A JP 7465598 A JP7465598 A JP 7465598A JP H11273670 A JPH11273670 A JP H11273670A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- nickel
- cadmium
- electrode plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はニッケル・水素蓄電
池、ニッケル・カドミウム蓄電池、ニッケル・亜鉛蓄電
池などのアルカリ蓄電池に係り、特に、この種のアルカ
リ蓄電池に用いるニッケル正極板およびこのニッケル正
極板の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery such as a nickel-hydrogen storage battery, a nickel-cadmium storage battery, and a nickel-zinc storage battery, and more particularly to a nickel positive electrode plate used for such an alkaline storage battery and the production of the nickel positive electrode plate. About the method.
【0002】[0002]
【従来の技術】従来、アルカリ蓄電池に用いられるニッ
ケル正極板は、活物質保持体としての多孔性ニッケル焼
結板を硝酸ニッケル等の酸性ニッケル塩水溶液に浸漬し
て、その基板中に酸性ニッケル塩を含浸した後、この酸
性ニッケル塩をアルカリ溶液中で水酸化ニッケルに置換
する工程を繰り返して、酸性ニッケル塩を水酸化ニッケ
ル活物質にする活物質充填操作を行って製造していた。2. Description of the Related Art Conventionally, a nickel positive electrode plate used for an alkaline storage battery is prepared by immersing a porous nickel sintered plate as an active material holding member in an aqueous solution of an acidic nickel salt such as nickel nitrate, and placing the acid nickel salt in the substrate. After that, the step of replacing the acidic nickel salt with nickel hydroxide in an alkaline solution is repeated to perform an active material filling operation to convert the acidic nickel salt into a nickel hydroxide active material.
【0003】この種のニッケル正極板の充電反応は酸素
発生反応と競合しており、このようなニッケル正極板の
充電効率を決定する要因としては、充電電流密度、充電
温度、電解液の種類、活物質の酸素過電圧等が上げられ
る。とりわけ常温より高い温度(例えば、35℃〜65
℃)での充電においては、ニッケル正極板での酸素過電
圧が低下して酸素ガスが発生するため、ニッケル正極板
の充電が進まず、充分に充電できないために放電容量が
低下するという問題があった。The charging reaction of this type of nickel positive electrode plate competes with the oxygen generation reaction. Factors that determine the charging efficiency of such a nickel positive electrode plate include charging current density, charging temperature, type of electrolyte, The oxygen overpotential of the active material is increased. In particular, a temperature higher than normal temperature (for example, 35 ° C to 65 ° C)
C), the oxygen overvoltage at the nickel positive electrode plate is reduced and oxygen gas is generated, so that charging of the nickel positive electrode plate does not proceed, and there is a problem that the discharge capacity is reduced due to insufficient charging. Was.
【0004】このような問題を解決するために、ニッケ
ル正極板に充填される正極活物質中にカドミウム化合物
を添加するようになった。これは、正極活物質中にカド
ミウム化合物を添加すると、酸素発生電位が貴になるこ
とにより、ニッケル正極板からの酸素ガスの発生を抑制
する効果を狙ったものである。このカドミウム化合物の
正極活物質中への添加方法としては、酸性ニッケル塩水
溶液中にカドミウム化合物を添加して、カドミウム化合
物を正極活物質中に固溶体として存在させる方法と、正
極活物質を充填した極板をカドミウム化合物を含有する
水溶液中に浸漬して、カドミウム化合物を含浸させる方
法が知られている。In order to solve such a problem, a cadmium compound has been added to a positive electrode active material filled in a nickel positive electrode plate. This aims at suppressing the generation of oxygen gas from the nickel positive electrode plate by adding a cadmium compound to the positive electrode active material, thereby making the oxygen generation potential noble. As a method of adding the cadmium compound to the positive electrode active material, a method of adding a cadmium compound to an acidic nickel salt aqueous solution to cause the cadmium compound to exist as a solid solution in the positive electrode active material, and a method of adding the cadmium compound to the positive electrode active material. A method is known in which a plate is immersed in an aqueous solution containing a cadmium compound to impregnate the cadmium compound.
【0005】例えば、特開昭56−143669号公報
においては、正極活物質を充填したニッケル正極板を硝
酸カドミウム水溶液中に浸漬し、カドミウム化合物を含
浸させる方法が提案されている。この特開昭56−14
3669号公報において提案される方法にあっては、カ
ドミウム化合物が正極活物質粒子の表面を覆うがごとく
ニッケル正極板の表面近傍に分布するようになるので、
カドミウム化合物を正極活物質中に固溶体として存在さ
せるよりは、酸素ガスの発生を抑制する効果が大きくな
るというものである。For example, JP-A-56-143669 proposes a method in which a nickel positive electrode plate filled with a positive electrode active material is immersed in a cadmium nitrate aqueous solution to impregnate a cadmium compound. JP-A-56-14
In the method proposed in Japanese Patent No. 3669, the cadmium compound is distributed near the surface of the nickel positive electrode plate as if it covers the surface of the positive electrode active material particles.
The effect of suppressing the generation of oxygen gas is increased as compared with the case where the cadmium compound is present as a solid solution in the positive electrode active material.
【0006】一方、特開昭59−68168号公報にお
いては、正極活物質を充填したニッケル正極板を硝酸カ
ドミウム水溶液中に浸漬した後、水酸化ナトリウム水溶
液中で電解還元法により水酸化カドミウムにしてニッケ
ル正極板に充填する方法が提案されている。この特開昭
59−68168号公報において提案される方法にあっ
ては、特開昭56−143669号公報において提案さ
れた方法と同様に、カドミウム化合物が正極活物質粒子
の表面を覆ってニッケル正極板の表面近傍に分布するよ
うになるので、カドミウム化合物を正極活物質中に固溶
体として存在させるよりは、酸素ガスの発生を抑制する
効果が大きくなるというものである。On the other hand, in JP-A-59-68168, a nickel positive electrode plate filled with a positive electrode active material is immersed in an aqueous solution of cadmium nitrate, and then converted into cadmium hydroxide by an electrolytic reduction method in an aqueous solution of sodium hydroxide. A method of filling a nickel positive electrode plate has been proposed. In the method proposed in JP-A-59-68168, a cadmium compound covers the surface of the positive electrode active material particles in the same manner as the method proposed in JP-A-56-143669. Since the cadmium compound is distributed in the vicinity of the surface of the plate, the effect of suppressing the generation of oxygen gas is greater than the presence of the cadmium compound as a solid solution in the positive electrode active material.
【0007】[0007]
【発明が解決しようとする課題】ところで、上述した特
開昭56−143669号公報あるいは特開昭59−6
8168号公報にて提案された各方法により、カドミウ
ム化合物を正極活物質中に添加して酸素ガスの発生を抑
制して、高温充電時の充電受入性を改善するためには、
カドミウム化合物の添加量を多くする必要がある。Incidentally, the above-mentioned Japanese Patent Application Laid-Open No. 56-143669 or Japanese Patent Application Laid-Open No.
According to the respective methods proposed in Japanese Patent No. 8168, in order to suppress the generation of oxygen gas by adding a cadmium compound to the positive electrode active material, and to improve the charge acceptability during high-temperature charging,
It is necessary to increase the amount of the cadmium compound added.
【0008】しかしながら、カドミウム化合物の添加量
を多くすると、相対的に正極活物質の充填量が減少する
ため、ニッケル正極板の容量が減少するという問題を生
じる。そこで、本発明は上記問題点に鑑みてなされたも
のであり、カドミウム化合物を正極活物質中に添加して
酸素過電圧を向上させるとともに、その添加量を最小限
に制限してニッケル正極板の容量を増大させることにあ
る。However, when the amount of the cadmium compound is increased, the amount of the positive electrode active material is relatively reduced, which causes a problem that the capacity of the nickel positive electrode plate is reduced. In view of the above, the present invention has been made in view of the above-described problems, and a cadmium compound has been added to a positive electrode active material to improve oxygen overvoltage, and the amount of addition has been minimized to reduce the capacity of a nickel positive electrode plate. Is to increase.
【0009】[0009]
【課題を解決するための手段およびその作用・効果】上
記課題を解決するために、本発明のアルカリ蓄電池用ニ
ッケル正極板は、焼結基板に水酸化ニッケルを主成分と
する正極活物質が充填された極板の導電性が高い部分に
重点的に水酸化カドミウムを主成分とする化合物を析出
させている。アルカリ蓄電池用ニッケル正極板は、その
極板の形態が化学的には完全に均一ではないため、ニッ
ケル正極板の表面における導電性の分布にばらつきを生
じる。導電性の分布にばらつきを生じると、導電性が高
い部分は電気化学的反応が進行しやすくなるために電流
密度が大きくなり、導電性が低い部分は電気化学的反応
が進行しにくくなるために電流密度が小さくなる。Means for Solving the Problems and Their Functions / Effects To solve the above problems, a nickel positive electrode plate for an alkaline storage battery according to the present invention comprises a sintered substrate filled with a positive electrode active material mainly composed of nickel hydroxide. A compound containing cadmium hydroxide as a main component is mainly deposited on a portion of the electrode plate having high conductivity. The nickel positive electrode plate for an alkaline storage battery has a variation in conductivity distribution on the surface of the nickel positive electrode plate because the shape of the electrode plate is not completely uniform chemically. When a variation occurs in the distribution of the conductivity, a portion having high conductivity has a high current density because an electrochemical reaction easily proceeds, and a portion having low conductivity has a difficulty in progressing the electrochemical reaction. The current density decreases.
【0010】このため、導電性が高い部分は電流密度が
大きくて充電反応が急速に進行し、導電性が低い部分は
電流密度が小さくて充電反応があまり進まないこととな
る。充電反応が急速に進行する部分は早期に酸素過電圧
に達するようになって、早期に酸素ガスを発生するよう
になると考えられる。そこで、本発明のように、ニッケ
ル正極板の導電性が高い部分に重点的に水酸化カドミウ
ムを主成分とする化合物を析出させるようにすると、こ
の導電性が高い部分には酸素過電圧を向上させる水酸化
カドミウムを主成分とする化合物が析出されているた
め、早期に酸素ガスが発生することが防止できるように
なる。For this reason, a portion having high conductivity has a large current density and the charging reaction proceeds rapidly, and a portion having low conductivity has a small current density and the charging reaction does not progress very much. It is considered that the portion where the charging reaction proceeds rapidly reaches the oxygen overvoltage early and generates oxygen gas early. Therefore, as in the present invention, when a compound containing cadmium hydroxide as a main component is mainly deposited on a portion having high conductivity of the nickel positive electrode plate, the oxygen overvoltage is improved on the portion having high conductivity. Since the compound containing cadmium hydroxide as a main component is precipitated, generation of oxygen gas at an early stage can be prevented.
【0011】このように、導電性が高い部分に重点的に
水酸化カドミウムを主成分とする化合物を析出させるよ
うにすると、水酸化カドミウムを主成分とする化合物の
添加量を必要最小限にすることができるようになるた
め、酸素過電圧を向上させるとともに、そのニッケル正
極板の容量を増大させることが可能になる。As described above, when the compound containing cadmium hydroxide as the main component is deposited mainly on the portion having high conductivity, the amount of the compound containing cadmium hydroxide as the main component is minimized. Therefore, the oxygen overvoltage can be improved, and the capacity of the nickel positive plate can be increased.
【0012】そして、導電性が高い部分に重点的に水酸
化カドミウムを主成分とする化合物を析出させるには、
本発明のように、活物質充填工程により正極活物質が充
填された焼結基板を硝酸カドミウムを主成分として含有
する水溶液中で通電処理を行う通電処理工程を備えるよ
うにすればよい。In order to deposit a compound mainly composed of cadmium hydroxide mainly on a portion having high conductivity,
As in the present invention, an energization treatment step of subjecting the sintered substrate filled with the positive electrode active material in the active material filling step to an energization treatment in an aqueous solution containing cadmium nitrate as a main component may be provided.
【0013】このように、正極活物質が充填されたニッ
ケル正極板を硝酸カドミウムを主成分ととして含有する
水溶液中で通電処理を行うと、ニッケル正極板の導電性
が高い部分の電流密度が高くなる。すると、この導電性
が高い部分に集中して水酸化カドミウムが集まるように
なるため、導電性が高い部分に重点的に水酸化カドミウ
ムを主成分とする化合物を析出させることができるよう
になる。この結果、ニッケル正極板の導電性が高い部分
に重点的に水酸化カドミウムを主成分とする化合物を析
出させることができるようになる。As described above, when the nickel positive electrode plate filled with the positive electrode active material is subjected to the energization treatment in an aqueous solution containing cadmium nitrate as a main component, the current density in the highly conductive portion of the nickel positive electrode plate is increased. Become. Then, since cadmium hydroxide is concentrated on the high conductivity portion, a compound containing cadmium hydroxide as a main component can be deposited mainly on the high conductivity portion. As a result, a compound containing cadmium hydroxide as a main component can be deposited mainly on a highly conductive portion of the nickel positive electrode plate.
【0014】[0014]
【発明の実施の形態】1.焼結基板の作製 ニッケル粉末にカルボキシメチルセルロース等の増粘剤
および水を混練してスラリーを調整し、このスラリーを
鉄にニッケルメッキを施したパンチングメタルからなる
導電性芯体に塗着する。この後、スラリーを塗着した導
電性芯体を還元性雰囲気下で焼結し、多孔度80%の焼
結基板を作製する。BEST MODE FOR CARRYING OUT THE INVENTION Preparation of Sintered Substrate A slurry is prepared by kneading a thickener such as carboxymethylcellulose and water into nickel powder, and this slurry is applied to a conductive core made of a punched metal in which nickel is plated on iron. Thereafter, the conductive core coated with the slurry is sintered in a reducing atmosphere to produce a sintered substrate having a porosity of 80%.
【0015】2.ニッケル正極板の作製 実施例 上述のように作製した多孔度80%の焼結基板を、80
℃で比重1.75の硝酸ニッケルを主体とする水溶液に
浸漬して、焼結基板の細孔内に硝酸ニッケルを主体とす
る水溶液を含浸させた後、乾燥させて硝酸ニッケルを析
出させる。ついで、硝酸ニッケルを析出させた焼結基板
を25重量%の水酸化ナトリウム水溶液中に浸漬して、
析出させた硝酸ニッケルを水酸化ニッケルに置換する。
その後、再び焼結基板を硝酸ニッケルを主体とする水溶
液に浸漬する処理操作に戻り、上記と同様な処理操作を
所定回数(例えば5回)繰り返して焼結基板の細孔内に
水酸化ニッケルを充填する。このようにして焼結基板の
細孔内に水酸化ニッケルを充填された基板を活物質充填
基板という。2. Production of Nickel Positive Electrode Example The sintered substrate having a porosity of 80% produced as described above was
It is immersed in an aqueous solution mainly composed of nickel nitrate having a specific gravity of 1.75 at a temperature of ° C. to impregnate the aqueous solution mainly composed of nickel nitrate into the pores of the sintered substrate and then dried to deposit nickel nitrate. Then, the sintered substrate on which nickel nitrate was deposited was immersed in a 25% by weight aqueous sodium hydroxide solution,
The precipitated nickel nitrate is replaced with nickel hydroxide.
Thereafter, the operation returns to the operation of immersing the sintered substrate again in an aqueous solution mainly composed of nickel nitrate, and the same operation as described above is repeated a predetermined number of times (for example, five times) to deposit nickel hydroxide in the pores of the sintered substrate. Fill. The substrate in which the pores of the sintered substrate are filled with nickel hydroxide in this manner is called an active material-filled substrate.
【0016】ついで、この活物質充填基板を10重量%
の硝酸カドミウム水溶液中に浸漬して、この活物質充填
基板を負極として、正極としてカドミウム棒を用いて
0.5C(なお、Cは定電流で1時間電流を流した際に
極板の理論容量となる電流値)の電流で通電し、活物質
充填基板に活物質質量に対して1重量%の水酸化カドミ
ウムを析出させたニッケル正極板を作製する。このニッ
ケル正極板を実施例のニッケル正極板a1とする。Next, the active material-filled substrate is added in an amount of 10% by weight.
Cadmium nitrate aqueous solution, and the active material-filled substrate was used as a negative electrode, and a cadmium rod was used as a positive electrode using a cadmium rod at 0.5 C (where C is the theoretical capacity of the electrode plate when a constant current was applied for 1 hour). Is supplied with a current having a current value of 1% to produce a nickel positive electrode plate in which 1% by weight of cadmium hydroxide is deposited on the active material-filled substrate with respect to the mass of the active material. This nickel positive plate is referred to as a nickel positive plate a1 of the embodiment.
【0017】同様に、活物質充填基板に活物質質量に対
して2重量%の水酸化カドミウムを析出させたニッケル
正極板を実施例のニッケル正極板a2とする。同様に、
活物質充填基板に活物質質量に対して4重量%の水酸化
カドミウムを析出させたニッケル正極板を実施例のニッ
ケル正極板a3とする。なお、水酸化カドミウムの析出
量は通電時間を調整することにより変化させた。Similarly, a nickel positive electrode plate obtained by depositing 2% by weight of cadmium hydroxide based on the mass of the active material on the active material-filled substrate is referred to as a nickel positive electrode plate a2 of the embodiment. Similarly,
A nickel positive electrode plate obtained by depositing 4% by weight of cadmium hydroxide based on the mass of the active material on the active material-filled substrate is referred to as a nickel positive electrode plate a3 of the example. The amount of cadmium hydroxide deposited was changed by adjusting the energization time.
【0018】比較例1 実施例と同様の活物質充填基板を用い、この活物質充填
基板を硝酸カドミウム水溶液中に浸漬し、乾燥させた
後、アルカリ水溶液(水酸化ナトリウム水溶液)に浸漬
して、水酸化ニッケル活物質の表面に水酸化カドミウム
を活物質質量に対して1重量%析出させたニッケル正極
板を作製する。このニッケル正極板を比較例1のニッケ
ル正極板b1とする。同様に、活物質充填基板に活物質
質量に対して2重量%の水酸化カドミウムを析出させた
ニッケル正極板を比較例1のニッケル正極板b2とす
る。同様に、活物質充填基板に活物質質量に対して4重
量%の水酸化カドミウムを析出させたニッケル正極板を
比較例1のニッケル正極板b3とする。なお、水酸化カ
ドミウムの析出量は硝酸カドミウム水溶液の濃度と活物
質充填基板の浸漬時間を調整することにより変化させ
た。Comparative Example 1 Using the same active material-filled substrate as in the example, this active material-filled substrate was immersed in an aqueous cadmium nitrate solution, dried, and then immersed in an alkaline aqueous solution (aqueous sodium hydroxide solution). A nickel positive electrode plate is prepared in which cadmium hydroxide is precipitated on the surface of the nickel hydroxide active material by 1% by weight based on the mass of the active material. This nickel positive plate is referred to as a nickel positive plate b1 of Comparative Example 1. Similarly, a nickel positive electrode plate obtained by depositing 2% by weight of cadmium hydroxide based on the mass of the active material on the active material-filled substrate is referred to as a nickel positive electrode plate b2 of Comparative Example 1. Similarly, a nickel positive electrode plate obtained by depositing 4% by weight of cadmium hydroxide with respect to the mass of the active material on the active material-filled substrate is referred to as a nickel positive electrode plate b3 of Comparative Example 1. The amount of cadmium hydroxide deposited was changed by adjusting the concentration of the cadmium nitrate aqueous solution and the immersion time of the active material-filled substrate.
【0019】比較例2 実施例と同様の活物質充填基板を用い、この活物質充填
基板をの硝酸カドミウム水溶液中に浸漬し、乾燥させた
後、水酸化ナトリウム水溶液中で電解還元法を行い、水
酸化ニッケル活物質の表面に水酸化カドミウムを活物質
質量に対して1重量%析出させたニッケル正極板を作製
する。このニッケル正極板を比較例2のニッケル正極板
c1とする。同様に、活物質充填基板に活物質質量に対
して2重量%の水酸化カドミウムを析出させたニッケル
正極板を比較例2のニッケル正極板c2とする。同様
に、活物質充填基板に活物質質量に対して4重量%の水
酸化カドミウムを析出させたニッケル正極板を比較例2
のニッケル正極板c3とする。Comparative Example 2 Using the same active material-filled substrate as in the example, the active material-filled substrate was immersed in a cadmium nitrate aqueous solution, dried, and then subjected to electrolytic reduction in a sodium hydroxide aqueous solution. A nickel positive electrode plate is prepared in which cadmium hydroxide is precipitated on the surface of the nickel hydroxide active material by 1% by weight based on the mass of the active material. This nickel positive plate is referred to as a nickel positive plate c1 of Comparative Example 2. Similarly, a nickel positive electrode plate obtained by depositing 2% by weight of cadmium hydroxide with respect to the mass of the active material on the active material-filled substrate is referred to as a nickel positive electrode plate c2 of Comparative Example 2. Similarly, a nickel positive electrode plate in which 4% by weight of cadmium hydroxide based on the mass of the active material was deposited on the active material-filled substrate was used in Comparative Example 2
Of the nickel positive electrode plate c3.
【0020】3.活物質利用率の測定 上述のように作製した実施例のニッケル正極板a1〜a
3ならびに比較例1のニッケル正極板b1〜b3および
比較例2のニッケル正極板c1〜c3を用い、これらの
各ニッケル正極板a1〜a3、b1〜b3、c1〜c3
を、それぞれ比重1.2の水酸化カリウム水溶液中でニ
ッケル板を対極として、25℃の温度条件で充電した
後、25℃の温度条件で放電させたものの活物質利用率
X(%)の測定と、45℃の温度条件で充電した後、2
5℃の温度条件で放電させたものの活物質利用率Y
(%)の測定を行った。3. Measurement of Active Material Utilization Nickel Positive Electrodes a1-a of Examples Prepared as Above
3 and the nickel positive plates b1 to b3 of Comparative Example 1 and the nickel positive plates c1 to c3 of Comparative Example 2, and these nickel positive plates a1 to a3, b1 to b3, and c1 to c3 were used.
Was charged in a potassium hydroxide aqueous solution having a specific gravity of 1.2 using a nickel plate as a counter electrode under a temperature condition of 25 ° C., and then discharged under a temperature condition of 25 ° C., and the active material utilization rate X (%) was measured. After charging under the temperature condition of 45 ° C., 2
Active material utilization rate Y after discharge at temperature condition of 5 ° C
(%) Was measured.
【0021】なお、各温度条件で0.1C(なお、Cは
定電流で1時間電流を流した際に極板の理論容量となる
電流値)の電流で16時間充電した後、25℃で1/3
Cで放電させるという充・放電条件で行い、放電時間か
ら放電容量を求める。このようにして求めた各放電容量
と、全正極活物質量から求めた理論放電容量との比を求
めて、活物質利用率を算出すると下記の表1に示すよう
な結果となった。The battery was charged for 16 hours with a current of 0.1 C (where C is a theoretical value of the electrode plate when a constant current was applied for 1 hour) at each temperature condition, and then charged at 25 ° C. 1/3
The discharge is performed under charging and discharging conditions of discharging at C, and the discharge capacity is determined from the discharge time. The ratio of each of the discharge capacities thus obtained to the theoretical discharge capacity obtained from the total amount of the positive electrode active material was obtained, and the active material utilization was calculated. The results shown in Table 1 below were obtained.
【0022】[0022]
【表1】 [Table 1]
【0023】上記表1より明らかなように、水酸化カド
ミウムの添加量を全活物質質量に対して2重量%添加し
た比較例1のニッケル正極板b2および比較例2のニッ
ケル正極板c2と、これらよりも添加量が少ない(1重
量%)実施例のニッケル正極板a1とは高温で充電した
場合の活物質利用率が同等になる。また、水酸化カドミ
ウムの添加量を全活物質質量に対して4重量%添加した
比較例1のニッケル正極板b3および比較例2のニッケ
ル正極板c3と、これらよりも添加量が少ない(2重量
%)実施例のニッケル正極板a2とは高温で充電した場
合の活物質利用率が同等になる。このことから、本発明
による電解析出による水酸化カドミウムの添加は少量の
添加で活物質利用率が向上するということができる。As is apparent from Table 1, the nickel positive electrode plate b2 of Comparative Example 1 and the nickel positive electrode plate c2 of Comparative Example 2 in which the amount of cadmium hydroxide added was 2% by weight based on the total mass of the active material, The active material utilization rate when charged at a high temperature is equivalent to that of the nickel positive electrode plate a1 of the example in which the amount of addition is smaller than that (1% by weight). Further, the nickel positive electrode plate b3 of Comparative Example 1 and the nickel positive electrode plate c3 of Comparative Example 2 in which the amount of cadmium hydroxide added was 4% by weight based on the total mass of the active material, and the amount of addition was smaller (2% by weight). %) The active material utilization rate when charged at a high temperature is equal to that of the nickel positive electrode plate a2 of the example. From this, it can be said that the addition of cadmium hydroxide by electrolytic deposition according to the present invention can improve the active material utilization rate by adding a small amount.
【0024】これは、正極活物質が充填されたニッケル
正極板を硝酸カドミウムを主成分とする水溶液中で通電
を行うと、ニッケル正極板の導電性が高い部分の電流密
度が大きくなり、この導電性が高い部分に集中して水酸
化カドミウムが集まるようになって析出するためと考え
られる。このように、導電性が高い部分に重点的に水酸
化カドミウムを析出させると、水酸化カドミウムを析出
させたい部位のみに選択的に析出させることが可能とな
るので、少量の添加であっても充分に酸素過電圧を向上
させることが可能になる。This is because, when a nickel positive electrode plate filled with a positive electrode active material is energized in an aqueous solution containing cadmium nitrate as a main component, the current density in a highly conductive portion of the nickel positive electrode plate increases, This is probably because cadmium hydroxide collects and concentrates on the high-potential portion. As described above, when cadmium hydroxide is mainly deposited on a portion having high conductivity, it becomes possible to selectively deposit only cadmium hydroxide only at a site where the cadmium hydroxide is to be deposited. It is possible to sufficiently improve the oxygen overvoltage.
【0025】4.ニッケル・カドミウム電池の作製 ついで、上述のように作製した実施例のニッケル正極板
a1と周知の非焼結式カドミウム負極板を用い、これら
をポリプロピレン製不織布からなるセパレータを介して
渦巻状に卷回して渦巻状電極体を形成する。この渦巻状
電極体の上下端部にそれぞれ集電体を各極板にそれぞれ
接続し、これらを金属製外装缶に収納した後、各集電体
から延出するリード板を各端子に接続し、水酸化カリウ
ムからなる電解液を外装缶内に充填するとともに、封口
体を外装缶の開口部に装着して密封することにより、A
サイズの公称容量1200mAhの実施例のニッケル・
カドミウム蓄電池A1を作製する。4. Production of Nickel-Cadmium Battery Next, using the nickel positive electrode plate a1 of the example produced as described above and a well-known non-sintered cadmium negative electrode plate, these were spirally wound through a separator made of nonwoven fabric made of polypropylene. To form a spiral electrode body. A current collector is connected to each electrode plate at each of the upper and lower ends of the spiral electrode body, and after these are housed in a metal outer can, a lead plate extending from each current collector is connected to each terminal. By filling the outer can with an electrolyte solution comprising potassium hydroxide, and attaching a sealing body to the opening of the outer can to seal the outer can.
Example nickel capacity of 1200 mAh nominal capacity
A cadmium storage battery A1 is manufactured.
【0026】同様に、実施例のニッケル正極板a2と周
知の非焼結式カドミウム負極板を用いて、Aサイズの公
称容量1200mAhの実施例のニッケル・カドミウム
蓄電池A2を、実施例のニッケル正極板a3と周知の非
焼結式カドミウム負極板を用いて、Aサイズの公称容量
1200mAhの実施例のニッケル・カドミウム蓄電池
A3をそれぞれ作製する。Similarly, by using the nickel positive electrode plate a2 of the embodiment and the well-known non-sintering type cadmium negative electrode plate, the nickel-cadmium storage battery A2 of the embodiment having a nominal capacity of 1200 mAh of A size is connected to the nickel positive electrode plate of the embodiment. The nickel-cadmium storage battery A3 of the example having the nominal capacity of 1200 mAh of the A size is manufactured using the a3 and the well-known non-sintered cadmium negative electrode plate.
【0027】同様に、比較例1のニッケル正極板b1と
周知の非焼結式カドミウム負極板を用いて、Aサイズの
公称容量1200mAhの比較例1のニッケル・カドミ
ウム蓄電池B1を、比較例1のニッケル正極板b2と周
知の非焼結式カドミウム負極板を用いて、Aサイズの公
称容量1200mAhの比較例1のニッケル・カドミウ
ム蓄電池B2を、比較例1のニッケル正極板b3と周知
の非焼結式カドミウム負極板を用いて、Aサイズの公称
容量1200mAhの比較例1のニッケル・カドミウム
蓄電池B3をそれぞれ作製する。Similarly, by using the nickel positive electrode plate b1 of Comparative Example 1 and a well-known non-sintered cadmium negative electrode plate, the nickel-cadmium storage battery B1 of Comparative Example 1 having a nominal size of 1200 mAh was replaced with the nickel cadmium storage battery B1 of Comparative Example 1. Using a nickel positive electrode plate b2 and a well-known non-sintered cadmium negative electrode plate, a nickel-cadmium storage battery B2 of Comparative Example 1 having a nominal size of 1200 mAh and an A-size nickel cadmium storage plate B3 and a well-known non-sintered nickel cadmium battery b3 of Comparative Example 1 A nickel-cadmium storage battery B3 of Comparative Example 1 having a nominal capacity of 1200 mAh is manufactured using a cadmium negative electrode plate.
【0028】同様に、比較例2のニッケル正極板c1と
周知の非焼結式カドミウム負極板を用いて、Aサイズの
公称容量1200mAhの比較例2のニッケル・カドミ
ウム蓄電池C1を、比較例2のニッケル正極板c2と周
知の非焼結式カドミウム負極板を用いて、Aサイズの公
称容量1200mAhの比較例2のニッケル・カドミウ
ム蓄電池C2を、比較例2のニッケル正極板c3と周知
の非焼結式カドミウム負極板を用いて、Aサイズの公称
容量1200mAhの比較例2のニッケル・カドミウム
蓄電池C3をそれぞれ作製する。Similarly, by using the nickel positive electrode plate c1 of Comparative Example 2 and the well-known non-sintered cadmium negative electrode plate, the nickel-cadmium storage battery C1 of Comparative Example 2 having a nominal size of 1200 mAh was replaced with the nickel cadmium storage battery C1 of Comparative Example 2. Using a nickel positive electrode plate c2 and a well-known non-sintering type cadmium negative electrode plate, an A-size nickel-cadmium storage battery C2 of Comparative Example 2 having a nominal capacity of 1200 mAh was replaced with a nickel positive electrode plate c3 of Comparative Example 2 and a well-known non-sintering method. A nickel-cadmium storage battery C3 of Comparative Example 2 having a nominal capacity of 1200 mAh and an A-size was manufactured using the cadmium negative electrode plate.
【0029】上述のようにそれぞれ作製した実施例のニ
ッケル・カドミウム蓄電池A1〜A3、比較例1のニッ
ケル・カドミウム蓄電池B1〜B3および比較例2のニ
ッケル・カドミウム蓄電池C1〜C3を、それぞれ25
℃の温度条件で120mA(0.1C)の充電電流で1
6時間充電した後、25℃の温度条件で1200mA
(1C)の電流で電池電圧が1.0Vになるまで放電さ
せ、この放電時間から放電容量Xを求める。一方、上述
のようにそれぞれ作製した実施例のニッケル・カドミウ
ム蓄電池A1〜A3、比較例1のニッケル・カドミウム
蓄電池B1〜B3および比較例2のニッケル・カドミウ
ム蓄電池C1〜C3を、それぞれ45℃の温度条件で4
0mA(1/30C)の充電電流で48時間充電した
後、25℃の温度条件で1200mA(1C)の電流で
電池電圧が1.0Vになるまで放電させ、この放電時間
から放電容量Yを求める。このようにして求めた放電容
量Xおよび放電容量Yは以下の表2に示すような結果と
なった。The nickel-cadmium storage batteries A1 to A3 of the embodiment, the nickel-cadmium storage batteries B1 to B3 of the comparative example 1, and the nickel-cadmium storage batteries C1 to C3 of the comparative example 2, which were respectively manufactured as described above, were respectively 25
At a charging current of 120 mA (0.1 C)
After charging for 6 hours, 1200 mA at 25 ° C.
The battery is discharged at a current of (1C) until the battery voltage becomes 1.0 V, and a discharge capacity X is obtained from the discharge time. On the other hand, the nickel-cadmium storage batteries A1 to A3 of the example, the nickel-cadmium storage batteries B1 to B3 of the comparative example 1, and the nickel-cadmium storage batteries C1 to C3 of the comparative example 2 which were respectively manufactured as described above were respectively subjected to a temperature of 45 ° C. Condition 4
After charging for 48 hours at a charging current of 0 mA (1/30 C), the battery is discharged at a temperature of 25 ° C. at a current of 1200 mA (1 C) until the battery voltage reaches 1.0 V, and a discharge capacity Y is obtained from the discharging time. . The discharge capacity X and the discharge capacity Y obtained as described above are as shown in Table 2 below.
【0030】[0030]
【表2】 [Table 2]
【0031】上記表2より明らかなように、水酸化カド
ミウムの添加量が増加するに伴い、常温充電(25℃)
での放電容量は低下するが、高温充電(45℃)での放
電容量は増加する。そして、水酸化カドミウムの添加量
を等しくした実施例の電池A1と、比較例1の電池B1
と、比較例2の電池C1とをそれぞれ比較して分かるこ
とは、本発明のように電解析出により水酸化カドミウム
を添加すると、常温充電(25℃)での放電容量および
高温充電(45℃)での放電容量がそれぞれ増加するこ
とが分かる。同様に、水酸化カドミウムの添加量を等し
くした、実施例の電池A2と、比較例1の電池B2と、
比較例2の電池C2とをそれぞれ比較しても、あるいは
実施例の電池A3と、比較例1の電池B3と、比較例2
の電池C3とをそれぞれ比較しても、いずれもが本発明
のように電解析出により水酸化カドミウムを添加する
と、常温充電(25℃)での放電容量および高温充電
(45℃)での放電容量がそれぞれ増加することが分か
る。As is clear from Table 2, as the amount of cadmium hydroxide added increases, the battery was charged at room temperature (25 ° C.).
, The discharge capacity at high temperature charging (45 ° C.) increases. Then, the battery A1 of the example in which the addition amount of cadmium hydroxide was equal and the battery B1 of the comparative example 1
And the battery C1 of Comparative Example 2, respectively, show that when cadmium hydroxide is added by electrolytic deposition as in the present invention, the discharge capacity at normal temperature charge (25 ° C.) and the high temperature charge (45 ° C.) It can be seen that the discharge capacities in ()) increase respectively. Similarly, the battery A2 of the example and the battery B2 of the comparative example 1 in which the addition amount of cadmium hydroxide was equal,
Even when the battery C2 of the comparative example 2 is compared, or the battery A3 of the example, the battery B3 of the comparative example 1, and the battery C3 of the comparative example 2 are compared.
When cadmium hydroxide was added by electrolytic deposition as in the present invention, the discharge capacity at room temperature charge (25 ° C.) and the discharge capacity at high temperature charge (45 ° C.) It can be seen that the capacities increase respectively.
【0032】これは、正極活物質が充填されたニッケル
正極板を硝酸カドミウムを主成分とする水溶液中で通電
を行うと、ニッケル正極板の導電性が高い部分の電流密
度が大きくなり、この導電性が高い部分に集中して水酸
化カドミウムが集まるようになって析出するためと考え
られる。このように、導電性が高い部分に重点的に水酸
化カドミウムを析出させると、水酸化カドミウムを析出
させたい部位のみに選択的に析出させることが可能とな
るので、水酸化カドミウム添加量を少量にすることがで
きるので、放電容量が向上するものと考えられる。This is because, when a nickel positive electrode plate filled with a positive electrode active material is energized in an aqueous solution containing cadmium nitrate as a main component, the current density in the highly conductive portion of the nickel positive electrode plate increases, This is probably because cadmium hydroxide collects and concentrates on the high-potential portion. As described above, when cadmium hydroxide is mainly deposited on a portion having high conductivity, it is possible to selectively deposit only cadmium hydroxide at a site where the cadmium hydroxide is desired to be deposited. Therefore, it is considered that the discharge capacity is improved.
【0033】以上に説明したように、本発明によれば、
少量の水酸化カドミウムの添加量で常温特性と高温特性
の両方の特性に優れたニッケル正極板が得られるように
なる。この結果、本発明のニッケル正極板を用いた電池
の性能を飛躍的に向上させることができるようになる。As described above, according to the present invention,
With the addition of a small amount of cadmium hydroxide, a nickel positive plate excellent in both normal temperature characteristics and high temperature characteristics can be obtained. As a result, the performance of the battery using the nickel positive electrode plate of the present invention can be dramatically improved.
【0034】なお、上述した実施形態においては、水酸
化カドミウムを電解析出させる溶液として硝酸カドミウ
ムを用いる例について説明したが、水酸化カドミウムを
電解析出させる溶液として、硝酸カドミウムを主成分と
して含有する溶液を用いても同等の効果が得られる。In the above-described embodiment, an example is described in which cadmium nitrate is used as a solution for electrolytically depositing cadmium hydroxide. However, the solution for electrolytically depositing cadmium hydroxide contains cadmium nitrate as a main component. The same effect can be obtained by using a solution having the same composition.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾崎 和昭 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kazuaki Ozaki 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.
Claims (2)
正極活物質を充填したアルカリ蓄電池用ニッケル正極板
であって、 前記焼結基板に水酸化ニッケルを主成分とする正極活物
質が充填された極板の導電性が高い部分に重点的に水酸
化カドミウムを主成分とする化合物を析出させたことを
特徴とするアルカリ蓄電池用焼結式ニッケル正極板。1. A nickel positive electrode plate for an alkaline storage battery in which a sintered substrate is filled with a positive electrode active material mainly composed of nickel hydroxide, wherein the sintered substrate is filled with a positive electrode active material mainly composed of nickel hydroxide. A sintered nickel positive electrode plate for an alkaline storage battery, characterized in that a compound containing cadmium hydroxide as a main component is mainly deposited on a portion of the electrode plate having high conductivity.
正極活物質を充填して形成するアルカリ蓄電池用ニッケ
ル正極板の製造方法であって、 前記焼結基板に水酸化ニッケルを主成分とする正極活物
質を充填する活物質充填工程と、 前記活物質充填工程により前記正極活物質が充填された
前記焼結基板を硝酸カドミウムを主成分として含有する
水溶液中で通電処理を行う通電処理工程とを備え、 前記通電処理工程により前記正極活物質の表面に水酸化
カドミウムを主成分とする化合物を電解析出させるよう
にしたことを特徴とするアルカリ蓄電池用ニッケル正極
板の製造方法。2. A method for producing a nickel positive electrode plate for an alkaline storage battery, comprising forming a sintered substrate with a positive electrode active material mainly composed of nickel hydroxide, wherein the sintered substrate contains nickel hydroxide as a main component. An active material filling step of filling the positive electrode active material, and an energization treatment step of performing an energization treatment on the sintered substrate filled with the positive electrode active material in the active material filling step in an aqueous solution containing cadmium nitrate as a main component. A method for producing a nickel positive electrode plate for an alkaline storage battery, wherein a compound containing cadmium hydroxide as a main component is electrolytically deposited on the surface of the positive electrode active material by the energization treatment step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10074655A JPH11273670A (en) | 1998-03-23 | 1998-03-23 | Nickel positive electrode plate for alkaline storage battery and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10074655A JPH11273670A (en) | 1998-03-23 | 1998-03-23 | Nickel positive electrode plate for alkaline storage battery and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11273670A true JPH11273670A (en) | 1999-10-08 |
Family
ID=13553473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10074655A Pending JPH11273670A (en) | 1998-03-23 | 1998-03-23 | Nickel positive electrode plate for alkaline storage battery and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11273670A (en) |
-
1998
- 1998-03-23 JP JP10074655A patent/JPH11273670A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5361712B2 (en) | New silver positive electrode for alkaline storage batteries | |
JPS5983347A (en) | Sealed nickel-cadmium storage battery | |
EP1116288A1 (en) | Nickel positive electrode plate for alkaline storage batteries and method for producing the same | |
JP3253476B2 (en) | Non-sintered nickel electrode for alkaline storage batteries | |
JPH11273670A (en) | Nickel positive electrode plate for alkaline storage battery and its manufacture | |
EP1229598A2 (en) | Sintered nickel electrode for alkaline storage battery, method of forming the same, and alkaline storage battery | |
JP3895984B2 (en) | Nickel / hydrogen storage battery | |
JP3619703B2 (en) | Method for producing nickel electrode for alkaline storage battery | |
JPH097591A (en) | Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy | |
JP3702107B2 (en) | Method for producing sintered nickel electrode for alkaline storage battery | |
JP4357133B2 (en) | Hydrogen storage alloy for electrode, hydrogen storage alloy electrode and alkaline storage battery | |
JP2589750B2 (en) | Nickel cadmium storage battery | |
JP4215407B2 (en) | Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery | |
JP2001283902A (en) | Alkaline battery | |
JP4458749B2 (en) | Alkaline storage battery | |
JPH08185864A (en) | Electrode plate for alkaline storage battery and its manufacture | |
US20030104278A1 (en) | Nickel electrode for alkaline storage battery, process for the production thereof, alkaline storage battery comprising same and process for the production thereof | |
JPH0410181B2 (en) | ||
JP3397216B2 (en) | Nickel plate, method of manufacturing the same, and alkaline storage battery using the same | |
JP3685704B2 (en) | Method for producing nickel electrode for alkaline storage battery | |
JP3695982B2 (en) | Method for producing sintered nickel electrode for alkaline storage battery | |
JP2024131037A (en) | Nickel-metal hydride secondary battery | |
JP3233013B2 (en) | Nickel electrode for alkaline storage battery | |
JP3789702B2 (en) | Positive electrode active material for alkaline storage battery and method for producing the same, positive electrode for alkaline storage battery and alkaline storage battery | |
JP2638055B2 (en) | Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery |