JPS58175262A - Manufacture of nickel electrode for battery - Google Patents

Manufacture of nickel electrode for battery

Info

Publication number
JPS58175262A
JPS58175262A JP57057518A JP5751882A JPS58175262A JP S58175262 A JPS58175262 A JP S58175262A JP 57057518 A JP57057518 A JP 57057518A JP 5751882 A JP5751882 A JP 5751882A JP S58175262 A JPS58175262 A JP S58175262A
Authority
JP
Japan
Prior art keywords
cobalt
nickel
solution
active material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57057518A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Hiroshi Kawano
川野 博志
Mieko Watanabe
渡辺 美栄子
Takashi Ishikawa
石川 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57057518A priority Critical patent/JPS58175262A/en
Publication of JPS58175262A publication Critical patent/JPS58175262A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance the utilization rate of a nickel electrode and extend the life of the electrode by manufacturing moistened cobalt oxide or cobalt hydroxide which is then added to an active material. CONSTITUTION:Cobalt oxide (hydroxide) is prepared from an aqueous cobalt- acetate solution and an aqueous caustic-potash solution For instance, after 250g of cobalt acetate is dissolved in 2l of water, an excessive amount of 10wt% caustic-potash solution is added to the solution so as to make precipitates. Thus obtained precipitates are washed with water by the usual filtration until almost no alkali remains. Next, the above moistened precipitates are added to an active material mixture so as to make a paste. After that, a sealed nickel-cadmium battery of the single-2 type is constituted by using the convertional cadmium electrode, a non-woven polyamide fabric used as a separator, and a solution prepared by dissolving 20g of lithium hydroxide in 1l of 20wt% aqueous caustic- potash solution as electrolyte.

Description

【発明の詳細な説明】 本発明は、アルカリ電池に用いる非焼結式ニッケル電極
の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing non-sintered nickel electrodes for use in alkaline batteries.

各種の電源として用いられている電池において、電解液
としてアルカリ水溶液を用いる系では、正極としてニッ
ケル極、酸化銀極、二酸化マンガン極、空気極などがあ
り、負極には、カドミウム極。
In batteries used as various power sources, in systems that use alkaline aqueous solutions as electrolytes, there are nickel electrodes, silver oxide electrodes, manganese dioxide electrodes, air electrodes, etc. as positive electrodes, and cadmium electrodes as negative electrodes.

鉄極、水素極などがある。正極のうち、ニッケル極は、
とくにアルカリ水溶液中で安定であり、充放電の可逆性
にも優れていて長寿命が期待できること、さらには利用
率の点でも優れているなどの理由で最もよく使われてい
る。とくにニッケルーカドミウム電池は、二次電池とし
て鉛電池についで実用化されていて、今後も大きな需要
の伸びが予測されている。また、ニッケルー亜鉛電池や
ニッケルー鉄電池がとくに電気自動車用として開発が進
められ、また、ニッケルー水素電池が主に宇宙用など特
殊な用途に対して実用段階に入っている。
There are iron electrodes, hydrogen electrodes, etc. Among the positive electrodes, the nickel electrode is
It is most commonly used because it is particularly stable in alkaline aqueous solutions, has excellent charge/discharge reversibility, can be expected to have a long life, and is also excellent in terms of utilization rate. In particular, nickel-cadmium batteries have been put into practical use as secondary batteries next to lead batteries, and demand is expected to continue to grow significantly in the future. Further, nickel-zinc batteries and nickel-iron batteries are being developed particularly for use in electric vehicles, and nickel-hydrogen batteries have entered the practical stage for special uses, mainly for space use.

このようにニッケル極は広く用いられていて、その電極
構造としては、かってはポケット式、最近は焼結式が主
流を占めている。ポケット式はよく知られているように
、孔を多く設けた鋼製の容器に水酸化ニッケルを黒鉛な
どの導電材とともに機械的に充てんして得られている。
As described above, nickel electrodes are widely used, and the electrode structure used to be a pocket type, but recently the sintered type has become mainstream. As is well known, the pocket type is obtained by mechanically filling a steel container with many holes with nickel hydroxide and a conductive material such as graphite.

したがって電極は外観上は堅牢に出来ているが、活物質
は導電材や容器(ポケット)とは接触して存在している
のみであるから、大電流放電での分極が大きく、利用率
も低くなる。また、急充電などの苛酷な条件では寿命が
短くなるなどの問題点があった。
Therefore, although the electrode has a robust appearance, the active material exists only in contact with the conductive material and the container (pocket), so polarization during large current discharge is large and the utilization rate is low. Become. Furthermore, there are problems such as shortened lifespan under harsh conditions such as rapid charging.

これに対して焼結式では、微孔を有する焼結体中に活物
質が強固に付着、内蔵された形で充てんされているので
、上記ポケット式にみられるような問題は少なく、大電
流放電特性、急充電特性。
On the other hand, in the sintered type, the active material is firmly attached and embedded in the sintered body with micropores, so there are fewer problems like the pocket type described above, and it is difficult to handle large currents. Discharge characteristics, rapid charge characteristics.

寿命いずれの点でも大きな改良がはかられている。Significant improvements have been made in all aspects of lifespan.

したがって特性のみからみれば、焼結式はかなり理想の
段階に達しているといえよう。ところが、焼結体の製造
、活物質の充てんいずれにおいても工程は複雑であって
、ポケット式に比べればかなり高価になる問題がある。
Therefore, from the viewpoint of characteristics alone, it can be said that the sintered type has reached a fairly ideal stage. However, the steps involved in manufacturing the sintered body and filling it with the active material are complicated, and the cost is considerably higher than in the pocket type.

焼結式に代えて孔径。Pore size instead of sintering type.

多孔度とも大きいスポンジ状金属多孔体を活物質支持体
として用い、これにペースト状にした活物質、すなわち
水酸化ニッケルを直接光てんする方法が開発され、少な
くとも活物質の充てん工程の簡易化がはかられている。
A method has been developed in which a sponge-like porous metal material with high porosity is used as an active material support, and a paste-like active material, that is, nickel hydroxide, is directly injected into the material, which at least simplifies the process of filling the active material. It's being measured.

さらに簡単な方゛法がいわゆるペースト式であって、芯
材としてネット、孔あき板、エキスバンドメタルなどの
二次元的な多孔体を用い、これに活物質と結着剤を混合
してペースト状にしたものを塗着し、これをスリットあ
るいはローラ間を通すことにより平滑化して、乾燥後、
必要に応じて加圧するものである1、この方法は、芯材
が極めて安価であり、また活物質の九てんも容易である
ので製法としては理想的であり、多くの提案がされてい
る。ペースト式電極の歴史は古く、製汽はやや異なるが
ペースト式鉛極板は極めて広く用いられている。1また
、カドミウム極についても実用化されている。
An even simpler method is the so-called paste method, in which a two-dimensional porous material such as a net, perforated plate, expanded metal, etc. is used as the core material, and an active material and a binder are mixed with this to paste. Apply a shaped material, smooth it by passing it through slits or between rollers, and after drying,
Pressure is applied as necessary.1 This method is ideal as a manufacturing method because the core material is extremely inexpensive and the active material can be easily prepared, and many proposals have been made. Paste-type electrodes have a long history, and although steam production is slightly different, paste-type lead electrode plates are extremely widely used. 1 Cadmium electrodes have also been put into practical use.

これらに対してニッケル極についても多くの提案がある
にもかかわらず実用化ができない理由としては、次のよ
うな点が挙げられる。
The following are the reasons why nickel electrodes have not been put into practical use despite many proposals.

(1)ニッケルつまり活物質としての充電時でのオキシ
水酸化ニッケル、放電時の水酸化ニッケルいずれもすぐ
れた導電体ではない。したがって導電材を別に加える必
要があり、加えても利用率が向上し難い。また、加えす
ぎると絶対容置か小さくなってしまう。
(1) Nickel, that is, neither nickel oxyhydroxide as an active material during charging nor nickel hydroxide during discharging are excellent conductors. Therefore, it is necessary to separately add a conductive material, and even if it is added, it is difficult to improve the utilization rate. Also, if you add too much, the absolute capacity will become smaller.

(2)充放電の繰り返しにより活物質の体積変化は当然
あるが、ニッケル極では膨潤が激しく生じる。
(2) Although the volume of the active material naturally changes due to repeated charging and discharging, severe swelling occurs in the nickel electrode.

主に上記の要因がペースト式ニッケル極の広範囲な実用
化を阻害しているのである。つまり、まず強度をあげて
(2)のような膨潤、またこれに伴う活物質の脱落を防
ぐ方法として、従来は種々の結着剤が考えられてきた。
The above-mentioned factors mainly prevent the widespread practical application of paste-type nickel electrodes. In other words, various binders have been considered in the past as a method of first increasing the strength and preventing the swelling as described in (2) and the accompanying shedding of the active material.

結着剤としては、ポリエチレン、ポリプロピレン、ポリ
塩化ビニル、ポリスチレン、フッ素樹脂などや、ポリビ
ニルアルコール、カルボキシメチルセルロース、エチル
セルロースなどがある。耐電解液性、耐酸化性の点では
勿論前者がすぐれているが、強度を向上させるために大
量に加えれば、電圧特性は劣り、利用率も低下し°てし
壕う。これを抑制するためにニッケル粉末や黒鉛などが
加えられたが、多量に加えると活物質め占める割合が減
少するし、少ないと利用率が小さい点で問題があった。
Examples of the binder include polyethylene, polypropylene, polyvinyl chloride, polystyrene, fluororesin, polyvinyl alcohol, carboxymethyl cellulose, and ethyl cellulose. Of course, the former is superior in terms of electrolyte resistance and oxidation resistance, but if a large amount is added to improve strength, the voltage characteristics will be inferior and the utilization rate will decrease. To suppress this, nickel powder, graphite, etc. were added, but if too much was added, the proportion of the active material would decrease, and if too little was added, the utilization rate would be low.

以上の結着剤の添加やその他の耐電解液性の繊維は、ペ
ースト式あるいは加圧式のニッケル極、いわゆる非焼結
式ニッケル極の特性や寿命をある程度向上させることが
できるが、従来の焼結式に比べるとはるかに劣るために
実用上広く用いられるに至っていない。
The addition of binders and other electrolyte-resistant fibers can improve the properties and lifespan of pasted or pressurized nickel electrodes, so-called non-sintered nickel electrodes, to some extent; It has not been widely used in practice because it is far inferior to the keishiki.

本発明は、ポケット式電極、スポンジ状金属多孔体を活
物質支持体とする電極、二次元的な芯材を用いるペース
ト式電極などの非焼結式電極を改良して、容易に活物質
の充てんができる長所をそのまま残して、とくに利用率
、さらに寿命を向上する製造法を提供するものである。
The present invention improves non-sintered electrodes such as pocket electrodes, electrodes using a sponge-like porous metal material as an active material support, and paste-type electrodes using a two-dimensional core material to easily transfer active materials. The purpose is to provide a manufacturing method that maintains the advantage of being able to be filled and improves the utilization rate and lifespan.

この種のニッケル極の利用率を向上させる手段としては
、ニッケル活物質に導電材としてニッケルや黒鉛の粉末
を添加する方法、電解液に水酸化カリウムの他に水酸化
リチウムを加えるなどがあり、それにコバルトの添加が
ある。本発明はこのコバルト添加の方法を改良するもの
である。従来より、コバルトの添加については多くの提
案がされている。一般的には、金属コバルト、さらに酸
化コバルト、それに水酸化コバルトなどの活物質への直
接添加、コバルト塩溶液を含浸してアルカリで酸化コバ
ルトないし水酸化コバルトに転化するなどの方法がある
。さらにコバールトの添加も活物質と混合したシ、別に
加えるなど添加方法にも改良がはかられている。
There are ways to improve the utilization rate of this type of nickel electrode, such as adding nickel or graphite powder as a conductive material to the nickel active material, and adding lithium hydroxide in addition to potassium hydroxide to the electrolyte. There is an addition of cobalt to it. The present invention improves this method of adding cobalt. Conventionally, many proposals have been made regarding the addition of cobalt. Generally, there are methods such as directly adding metal cobalt, cobalt oxide, and cobalt hydroxide to an active material, or impregnating a cobalt salt solution and converting it into cobalt oxide or cobalt hydroxide with an alkali. Furthermore, improvements have been made to the method of adding cobalt, such as mixing it with the active material or adding it separately.

本発明は、このコバルトとして、コバルト塩、たとえば
硝酸コバルト、硫酸コバルト、酢酸コバルトなどの水溶
液とか性アルカリとから酸化コバルトないし水酸化コバ
ルトを製造し、これを水でぬれた状態のまま活物質材料
に加えるものである。
The present invention produces cobalt oxide or cobalt hydroxide from a cobalt salt such as an aqueous solution or a caustic alkali such as cobalt salt, cobalt nitrate, cobalt sulfate, or cobalt acetate. It is added to.

勿論、加える前に水洗しておくことは好ましい。Of course, it is preferable to wash it with water before adding it.

すなわち、従来のように水酸化コバルトを粉末状にして
から加えるのではなく、その沈澱を乾燥させずにそのま
ま水酸化ニッケル粉末や導電材に加える。
That is, instead of adding cobalt hydroxide after powdering it as in the past, the precipitate is added to the nickel hydroxide powder or conductive material as it is without drying it.

このような方法でなぜ利用率が向上するかの原因につい
てはあまり明らかではないが、コバルト塩とか性アルカ
リ水溶液でつくった(ホ)酸化コバルトは、粒子自身は
小さく、シかも嵩の高い状態であり、これを乾燥すると
粒子は凝集し、また嵩も小さくなる。したがって、この
ように凝集する前で嵩の高い状態で活物質材料に加える
ことにより、均一な混合が期待できることによると推定
される。
The reason why the utilization rate improves with this method is not very clear, but the particles of (e)cobalt oxide made from cobalt salt or alkaline aqueous solution are small and bulky. When dried, the particles aggregate and their bulk decreases. Therefore, it is presumed that uniform mixing can be expected by adding the active material in a bulk state before agglomeration.

以下、本発明をペースト式電極に適用した実施例により
説明する。
Hereinafter, the present invention will be explained using an example in which the present invention is applied to a paste type electrode.

まず、酢酸コバルト水溶液とか性カリ水溶液とから@酸
化コバルトをつくる。たとえば、酢酸コバルト260y
を水22に溶解し、これにか性カリの10重量%水溶液
を過剰に加えて沈澱をつくる。これを通常のろ過により
アルカリがほとんど認められなくなるまで水洗する。水
洗終了後水を含んだ状態で以下の活物質混合物に加えペ
ーストにした。
First, make @cobalt oxide from an aqueous cobalt acetate solution or an aqueous potassium solution. For example, cobalt acetate 260y
is dissolved in water 22, and a 10% by weight aqueous solution of caustic potash is added in excess to form a precipitate. This is washed with water through normal filtration until almost no alkali is detected. After washing with water, it was added to the following active material mixture in a water-containing state to form a paste.

すなわち、水酸化ニッケル2.6Kg、カーボニルニッ
ケルeoy、金属コバルト1ooy、リン状黒鉛230
p 、アクリロニトリル−塩化ビニル共重合体繊維(径
o、1MR9長さ3〜5mm)505F 。
That is, 2.6 kg of nickel hydroxide, eoy of carbonyl nickel, 1 ooy of metallic cobalt, and 230 kg of phosphorous graphite.
p, acrylonitrile-vinyl chloride copolymer fiber (diameter o, 1MR9 length 3-5 mm) 505F.

ポリエチレン粉末70y、水は前記(ト)酸化コバルト
に含まれている水を含めて2.3Ilとし、これにカル
ボキシメチルセルロースが2.8重量%になるように加
えてペーストとした。つまり、本実施例では、コバルト
として金属コバルトと前記の乾燥を経ていないい酸化コ
バルトを併用し、全体としてコバルト相当で水酸化ニッ
ケル対して約6.4重量%とした。
Polyethylene powder 70y, water was 2.3Il including the water contained in the (t)cobalt oxide, and carboxymethyl cellulose was added to this to make a paste at 2.8% by weight. That is, in this example, metallic cobalt and the above-mentioned undried cobalt oxide were used together as cobalt, and the total cobalt equivalent was about 6.4% by weight based on nickel hydroxide.

芯材には厚さ0.1mの鉄板に孔径2111+、中心間
ピッチ3mlで開孔したパンチングメタルにニッケルメ
ッキしたものを用いた。この両面に上記ペーストをスリ
ット間を通しつつ塗着した。ついでポリエチレンが溶解
する温度140℃で20分間加熱した。最後に加圧して
、はじめの厚さ1.1■を0.63m+にした。
As the core material, a punched metal plated with nickel was used, with holes made in a 0.1 m thick iron plate with a hole diameter of 2111+ and a center-to-center pitch of 3 ml. The above paste was applied to both sides of the plate while passing it through the slits. Then, it was heated for 20 minutes at 140° C., a temperature at which polyethylene melts. Finally, pressure was applied to reduce the initial thickness of 1.1 square meters to 0.63 m+.

この電極をAとし、これに公知のカドミウム極およびボ
リアミド不織布をセパレータ、か性カリの20重量%水
溶液に20f/Qの水酸化リチウムを溶解した溶液を電
解液として単2形のニッケルーカドミウム密閉電池を構
成した。
This electrode is designated as A, and a known cadmium electrode and polyamide non-woven fabric are used as a separator, and a solution of 20f/Q lithium hydroxide dissolved in a 20% by weight aqueous solution of caustic potash is used as an electrolyte to seal the nickel-cadmium AA. The battery was configured.

同様にしてニッケル正極として、金属コバルトを省略し
て、全体に前記α水酸化コバルトをコバルト和書で水酸
化ニッケルに対して6.4重量%添加した電極を用いた
電池を・Bとする。また、比較例として、コバルト相当
では上記と同じ割合であるが、金属コバルトを加えた電
極及び酸化コバルトを加えた電極を用いた電池をそれぞ
れC及びDとする。
Similarly, as a nickel positive electrode, a battery using an electrode in which metallic cobalt was omitted and 6.4% by weight of the above-mentioned α cobalt hydroxide was added to nickel hydroxide according to Cobalt Japanese Book was designated as B. Further, as a comparative example, batteries using electrodes containing metallic cobalt and electrodes containing cobalt oxide were designated as C and D, respectively, although the cobalt equivalent ratio was the same as above.

これらの電池A−Dの充てん容量と各放電時でのeo%
iで容量が低下するまでのサイクル数で表した。
Charging capacity of these batteries A-D and eo% at each discharge
It is expressed as the number of cycles until the capacity decreases with i.

表から明らかなように、コノζルト塩とか性アルカリか
ら製造し、水を含んだ状態のい酸化コノ(ルトを用いる
ことにより、金属コノ(ルトや乾燥工程を経ているd酸
化コバルトより唱利用率が高く、したがって公称容量の
eo%以下になるまでのサイクル寿命も長いすぐれたニ
ッケル極を製造することができるのである。
As is clear from the table, by using cobalt oxide produced from cobalt salt or alkali and containing water, it is possible to use cobalt oxide rather than metal cobalt or dcobalt oxide which has undergone a drying process. This makes it possible to produce superior nickel electrodes that have a high yield and therefore a long cycle life until they fall below eo% of their nominal capacity.

なお、コバルト塩としては、実施例のように残存した陰
イオンが悪影響を与えないものが好ましいが、硝酸塩を
用いてもよい。また、その添加量イヒ は、コバルト相当で水酸ニッケルに対して2〜10ハ 重量%程度が適当である。
It should be noted that the cobalt salt is preferably one in which the remaining anions do not have an adverse effect as in the examples, but nitrates may also be used. The appropriate amount of addition is about 2 to 10% by weight of nickel hydroxide, equivalent to cobalt.

また、上記の例では、水を含んだ状態の(ト)酸化コバ
ルトを用い、そのままペーストにして用いたが、この(
ホ)酸化コバルトを水酸化ニッケルなどペースト材料と
混合した後は乾燥してもよいので、加圧式やポケット式
では乾燥して用いてもよい。
In addition, in the above example, cobalt (t)oxide containing water was used as a paste, but this (
e) After cobalt oxide is mixed with a paste material such as nickel hydroxide, it may be dried, so in a pressurized type or a pocket type, it may be dried before use.

以上のように、本発明によれば、簡単な方法でニッケル
極の利用率を向上し、寿命を延長することができる。
As described above, according to the present invention, it is possible to improve the utilization rate of the nickel electrode and extend its life using a simple method.

Claims (1)

【特許請求の範囲】[Claims] コバルト塩とアルカリ水溶液とからなる生成させた酸化
コバルトないし水酸化コバルトを湿潤状態において水酸
化ニッケル粉末S主とする合剤に添加して活物質混合物
を調整する工程を有する電池用ニッケル電極の製造法。
Manufacture of a nickel electrode for a battery, which includes the step of preparing an active material mixture by adding cobalt oxide or cobalt hydroxide produced from a cobalt salt and an aqueous alkali solution to a mixture mainly consisting of nickel hydroxide powder S in a wet state. Law.
JP57057518A 1982-04-06 1982-04-06 Manufacture of nickel electrode for battery Pending JPS58175262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57057518A JPS58175262A (en) 1982-04-06 1982-04-06 Manufacture of nickel electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57057518A JPS58175262A (en) 1982-04-06 1982-04-06 Manufacture of nickel electrode for battery

Publications (1)

Publication Number Publication Date
JPS58175262A true JPS58175262A (en) 1983-10-14

Family

ID=13057952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57057518A Pending JPS58175262A (en) 1982-04-06 1982-04-06 Manufacture of nickel electrode for battery

Country Status (1)

Country Link
JP (1) JPS58175262A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124061A (en) * 1984-11-20 1986-06-11 Yuasa Battery Co Ltd Nickel positive pole plate for alkaline storage battery
JPS6266570A (en) * 1985-09-19 1987-03-26 Sanyo Electric Co Ltd Cathode for alkaline storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124061A (en) * 1984-11-20 1986-06-11 Yuasa Battery Co Ltd Nickel positive pole plate for alkaline storage battery
JPS6266570A (en) * 1985-09-19 1987-03-26 Sanyo Electric Co Ltd Cathode for alkaline storage battery
JPH06101332B2 (en) * 1985-09-19 1994-12-12 三洋電機株式会社 Anode for alkaline storage battery

Similar Documents

Publication Publication Date Title
JPS58175262A (en) Manufacture of nickel electrode for battery
JPS59163754A (en) Pasted positive plate for alkaline storage battery
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JPH0243308B2 (en)
JP3263603B2 (en) Alkaline storage battery
JPS5875767A (en) Manufacture of nickel electrode for battery
JP4049484B2 (en) Sealed alkaline storage battery
JPS5960966A (en) Manufacture of nickel electrode for battery
JPS6048868B2 (en) Manufacturing method of electrode substrate
JPS5937659A (en) Manufacturing method for nickel electrode
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS5897267A (en) Manufacture of nickel electrode for battery
JPS58206055A (en) Manufacture of nickel electrode for battery
JPS5951463A (en) Production method of cell with nickel electrode
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPS6097560A (en) Sealed type alkaline storage battery
JPS58137965A (en) Manufacture of nickel electrode for battery
JPS59151758A (en) Manufacture of nickel electrode
JPS5897266A (en) Manufacture of nickel electrode for battery
JPS5897265A (en) Manufacture of nickel electrode for battery
JPS5875768A (en) Manufacture of pasted electrode for battery
JPS5916268A (en) Manufacture of battery using nickel electrode
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS58121557A (en) Manufacture of nickel electrode for battery
JPH0690923B2 (en) Manufacturing method of hydrogen storage electrode