JPS5937659A - Manufacturing method for nickel electrode - Google Patents

Manufacturing method for nickel electrode

Info

Publication number
JPS5937659A
JPS5937659A JP57148022A JP14802282A JPS5937659A JP S5937659 A JPS5937659 A JP S5937659A JP 57148022 A JP57148022 A JP 57148022A JP 14802282 A JP14802282 A JP 14802282A JP S5937659 A JPS5937659 A JP S5937659A
Authority
JP
Japan
Prior art keywords
nickel
nickel hydroxide
electrode
water
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57148022A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Hiroshi Kawano
川野 博志
Takashi Ishikawa
石川 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57148022A priority Critical patent/JPS5937659A/en
Publication of JPS5937659A publication Critical patent/JPS5937659A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the rate of utilization and the reproducibility of an effect of the improvement of life span when such a process is applied, where nickel hydroxide is left alone under the coexistence of water together with nickel and cobalt and obtain an electrode with fixed quality, by using the nickel hydroxide cleaned by neutral or weak alkaline cleaner as the electrode. CONSTITUTION:Nickel hydroxide cleaned by alkaline or neutral cleaner is left alone under the coexistence of nickel, cobalt, and water. The desirable range of the alkaline amount that is made to adhere to nickel hydroxide and is left alone is some 7-8.5 in the pH of water after the amount of water twice as heavy is added to nickel hydroxide and is fully agitated. As a result, nickel hydroxide is cleaned until it becomes neutral or weak alkaline.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ電池に用いるニッケル電極の製造法
に関するもので、さらに詳しくは、水酸化ニッケルを主
とする活物質混合物をポケットや穴あき板、スポンジ状
金属多孔体に充填するニッケル電極の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a nickel electrode for use in alkaline batteries. This invention relates to a method for manufacturing a nickel electrode to be filled into a sponge-like porous metal body.

従来例の構成とその問題点 各種のポータプル機器用、車載用、−7−備用、僻地独
立用などの電源として用いられる電池にと゛いて、電解
液としてアルカリ水溶液を用いる系には、正極として、
ニッケル極、酸化銀柘、二酸化マンガン極、空気極など
があり、負極にはカドミウム椿、鉄極、水素極などがあ
る。正極のうちニッケル極は、とくにアルカリ水溶液中
で安定であり、充放電の可逆性にも優れていて長寿命が
期待できること、さらには利用率の点でも優れているな
どの理由で最もよく使われている。とくにニッケルーカ
ドミウム電池は、二次電池として鉛電池についで実用化
されていて、今後も大きな需要の伸びが予測されている
。また、ニッケルー亜鉛電池やニッケルー鉄電池がとく
に電気自動車用として開発が進められ、寸だ、ニッケル
ー水素電池が主に宇宙用など特殊な用途に対して実用段
階に入っている。
Structures of conventional examples and their problems Regarding batteries used as power sources for various portable devices, in-vehicle use, -7- equipment, independent use in remote areas, etc., systems that use alkaline aqueous solutions as electrolytes have a positive electrode.
There are nickel electrodes, silver oxide electrodes, manganese dioxide electrodes, air electrodes, etc., and negative electrodes include cadmium camellia, iron electrodes, hydrogen electrodes, etc. Among positive electrodes, nickel electrodes are the most commonly used because they are particularly stable in alkaline aqueous solutions, have excellent charge/discharge reversibility, can be expected to have a long life, and are also excellent in terms of utilization. ing. In particular, nickel-cadmium batteries have been put into practical use as secondary batteries next to lead batteries, and demand is expected to continue to grow significantly in the future. In addition, nickel-zinc batteries and nickel-iron batteries are being developed especially for use in electric vehicles, and nickel-metal hydride batteries have entered the practical stage for special uses, mainly for space use.

このようにニッケル極は広く用いられていて、その電極
構造としては、かってはポケット式、最近は焼結式が主
流を占めている。ポケット式はよく知られているように
、孔を多く設けた鋼製の容器に水酸化ニッケルを黒鉛な
どの導電材とともに機械的に充てんして得られる。した
がって電極は外観上は堅牢に出来ているが、活物質は導
電材や容器(ポケット)とは接触して存在しているのみ
であるから、大電流放電での分極が大きく、利用率も低
い。また、急充電などの苛酷な条件では寿命が短くなる
などの問題点がある。
As described above, nickel electrodes are widely used, and the electrode structure used to be a pocket type, but recently the sintered type has become mainstream. As is well known, the pocket type is obtained by mechanically filling a steel container with many holes with nickel hydroxide and a conductive material such as graphite. Therefore, although the electrode has a robust appearance, the active material exists only in contact with the conductive material and the container (pocket), so polarization during large current discharge is large and the utilization rate is low. . In addition, there are problems such as a shortened lifespan under harsh conditions such as rapid charging.

これに対して焼結式では、微孔を有する焼結体中に活物
質が強固に付着、内蔵された形で充てんされているので
、上記ポケット式にみられるような問題は少なく、大電
流放電特性、急充電特性、寿命いずれの点でも大きな改
良がはかられている。
On the other hand, in the sintered type, the active material is firmly attached and embedded in the sintered body with micropores, so there are fewer problems like the pocket type described above, and it is difficult to handle large currents. Significant improvements have been made in terms of discharge characteristics, rapid charging characteristics, and lifespan.

したがって特性のみからみれば焼結式はかなり理想の段
階に達しているといえよう。ところが、焼結体の製造、
活物質の充てんいずれにおいても工程は複雑であって、
ポケット式に比べればかなり高価になる問題がある。焼
結式に代えて孔径、多孔度とも大きいスポンジ状金属多
孔体を活物質支持体として用い、これにペースト状にし
た活物質すなわち水酸化ニッケルを直接光てんする方法
が開発され、少なくとも活物質の充てん工程の簡易化が
はかられている。
Therefore, it can be said that the sintered type has reached the ideal stage from the viewpoint of characteristics alone. However, the production of sintered bodies,
The process for filling active materials is complicated.
The problem is that it is considerably more expensive than the pocket type. Instead of the sintering method, a method has been developed in which a sponge-like porous metal material with large pore size and porosity is used as an active material support, and a paste-like active material, that is, nickel hydroxide, is directly exposed to light. The filling process has been simplified.

さらに簡単な方法がいわゆるペースト式であって、芯材
としてネット、孔あき板、エキスバンドメタルなどの二
次元的な多孔体を用い、これに活物質と結着剤を混合し
てペースト状にしだものを塗着し、これをスリットある
いはローラー間を通すことにより平滑化して、乾燥後、
必要に応じて加圧するものである。この方法は、芯材が
極めて安価であり、まだ活物質の充てんも容易であるの
で製法としては理想的であり、多くの提案がされている
。ペースト式電極の歴史は古く、製法はやや異々るが、
ペースト式鉛極板は広く用いられている。また、カドミ
ウム極についても実用化されている。
An even simpler method is the so-called paste method, which uses a two-dimensional porous material such as a net, perforated plate, or expanded metal as the core material, and mixes the active material and binder with it to form a paste. Apply a layer of paint, smooth it by passing it through slits or between rollers, and after drying,
Pressure is applied as necessary. This method is ideal as a manufacturing method because the core material is extremely inexpensive and filling with the active material is easy, and many proposals have been made. Paste electrodes have a long history, and the manufacturing method is slightly different, but
Pasted lead plates are widely used. Cadmium electrodes have also been put into practical use.

これらに対してニッケル極についても多くの提案がある
にもかかわらず実用化ができない理由としては、次のよ
うな点が挙げられる。
The following are the reasons why nickel electrodes have not been put into practical use despite many proposals.

(1)ニッケルつ捷り活物質としての充電時でのオキシ
水酸化ニッケル、放電時の水酸化ニッケルいずれもすぐ
れた導電体ではない。したがつて導電材を別に加える必
要があり、加えても利用率が向上し難い。また、加えす
ぎると絶対容量が小さくなってしまう。
(1) Neither nickel oxyhydroxide during charging nor nickel hydroxide during discharging as a nickel thin active material is an excellent conductor. Therefore, it is necessary to separately add a conductive material, and even if it is added, it is difficult to improve the utilization rate. Moreover, if too much is added, the absolute capacity will become small.

(2)充放電の繰り返しにより活物質の体積変化は当然
あるが、ニッケル極では膨潤が激しく生じる0 主に上記の要因がペースト式ニッケル極の広範囲な実用
化を阻害しているのである。つまり、まず強度をあげて
(2)のような膨潤、またこれに伴う活物質の脱落を防
ぐ方法として、従来は種々の結着剤が考えられてきた。
(2) Although the volume of the active material naturally changes due to repeated charging and discharging, nickel electrodes undergo severe swelling.The above-mentioned factors mainly prevent the widespread practical use of paste-type nickel electrodes. In other words, various binders have been considered in the past as a method of first increasing the strength and preventing the swelling as described in (2) and the accompanying shedding of the active material.

結着剤としては、絶縁性は大きいが強度も期待できるポ
リエチレン、ポリプロピレン、ポリ塩化ビニル、ポリス
チレン、フッ素樹脂などのグループや、絶縁性は小さい
が強度もそれほど期待できないポリビニルアルコール。
As a binder, there are groups such as polyethylene, polypropylene, polyvinyl chloride, polystyrene, and fluororesins, which have high insulating properties but are expected to be strong, and polyvinyl alcohol, which has low insulating properties but is not expected to have much strength.

カルボキシメチルセルロース、エチルセルロースなどの
グループがある。耐電解液性、耐酸化性の点では勿論前
者のグループがすぐれているが、強度を向上させるため
に大量に加えれば、電圧特性は劣り、利用率も低下して
しまう。これを抑制するだめにニッケル粉末や黒鉛など
が加えられたが、多量に加えると活物質の占める割合が
減少するし、少ないと利用率が小さい点で問題があった
There are groups such as carboxymethyl cellulose and ethyl cellulose. Of course, the former group is superior in terms of electrolyte resistance and oxidation resistance, but if a large amount is added to improve strength, the voltage characteristics will be inferior and the utilization rate will decrease. To suppress this, nickel powder and graphite were added, but if too much was added, the proportion of active material would decrease, and if too little was added, the utilization rate would be low.

以上の結着剤の添加やその他の耐電解液性の繊維は、ペ
ースト式あるいは加圧式のニッケル極、いわゆる非焼結
式ニッケル極の特性や寿命をある程度向上させることが
できるが、従来の焼結式に比べるとはるかに劣るだめに
実用上広く用いられるには至っていない。
The addition of binders and other electrolyte-resistant fibers can improve the properties and lifespan of pasted or pressurized nickel electrodes, so-called non-sintered nickel electrodes, to some extent; It is far inferior to keishiki, so it has not been widely used in practice.

そこで、本発明者らは、先に、ポケット式電極。Therefore, the present inventors first developed a pocket-type electrode.

スポンジ状金属多孔体を活物質支持体に用いる電極ある
いは上記ペースト式電極を改良して、容易に活物質の充
てんができる長所をそのまま残して、放電特性や寿命を
焼結式に近づけるすぐれた一つの製造法を提案した。す
なわち、活物質の水酸化ニッケルにニッケルとコバルト
を混合し、これを水との共存下で放置する工程を有する
方法である。
An excellent method that improves the electrode using a sponge-like porous metal material as the active material support or the paste-type electrode described above to bring the discharge characteristics and life close to those of the sintered type while retaining the advantage of being easily filled with active material. We proposed two manufacturing methods. That is, the method includes a step of mixing nickel and cobalt with nickel hydroxide, which is an active material, and leaving the mixture in the coexistence with water.

この方法によって活物質の利用率が向上し、したがって
一定の負荷での充放電で長寿命にすることができる。
This method improves the utilization of the active material and therefore allows a long life with charging and discharging at a constant load.

この方法について、工業的な規模で生産された各材料を
用いて検討を加えたところ、これら利用率や寿命の向上
に対する効果が一定でなく、再現性に乏しい場合がある
ことが明らかになった。
When this method was investigated using various materials produced on an industrial scale, it became clear that the effectiveness of these methods in improving utilization rate and lifespan was inconsistent and that reproducibility was poor in some cases. .

発明の目的 本発明は、上記のように、水酸化ニッケルをニッケルと
コバルトとともに水との共存下で放置する工程を採る場
合の利用率や寿命の向上に対する効果の再現性をよくし
、一定品質の電極を得ることを目的とする。
Purpose of the Invention As described above, the present invention improves the reproducibility of the effect of improving the utilization rate and life when adopting a process in which nickel hydroxide is left in the coexistence of nickel and cobalt with water, and achieves a constant quality. The aim is to obtain electrodes of

発明の構成 本発明は、中性ないし弱アルカリ性に壕で洗浄された水
酸化ニッケルを用いることを特徴とする。
Structure of the Invention The present invention is characterized by using nickel hydroxide that has been washed in a neutral or slightly alkaline trench.

ここで、水酸化ニッケルに付着残存しているアルカリの
量の好ましい範囲としては、たとえば水酸化ニッケルに
2倍重量程度の水を加え、十分かくはん後の水のpHで
7から8.5程度である。
Here, the preferable range of the amount of alkali remaining attached to nickel hydroxide is, for example, when about twice the weight of water is added to nickel hydroxide, and the pH of the water after stirring is about 7 to 8.5. be.

水酸化ニッケルは、一般には硫酸ニッケルと苛性ソーダ
とから沈澱して製造しているので、残存アルカリは、苛
性ソーダである。水洗を相当十分しても沈澱が微粒子に
なっていることもあって、この残存アルカリはある程度
止むを得ないのである。なお、実際には空気中で使用す
るので、苛性ソーダの大部分は炭酸ソーダに変化してい
る。
Since nickel hydroxide is generally produced by precipitation from nickel sulfate and caustic soda, the remaining alkali is caustic soda. This residual alkali is unavoidable to some extent, as the precipitate remains in the form of fine particles even after thorough water washing. Note that since it is actually used in the air, most of the caustic soda is converted to soda carbonate.

いずれにしても、コバルト、ニッケル及び水酸化ニッケ
ルに水を加えて放置した場合に、pHが非常に影響を与
え、pH7以下の酸性や11以上のアルカリになること
が利用率や寿命の向上の再現性を悪くすることがわかっ
た。したがって中性あるいは弱アルカリになるまで水酸
化ニッケルを洗浄することが基本である。
In any case, when water is added to cobalt, nickel, and nickel hydroxide and left, the pH has a great effect, and the pH becomes acidic (below 7) or alkaline (pH 11 or more), which can lead to improvements in utilization rate and lifespan. It was found that reproducibility deteriorated. Therefore, it is essential to wash nickel hydroxide until it becomes neutral or weakly alkaline.

実施例の説明 性能比較のだめの電池として、単2サイズの密閉形ニッ
ケルーカドミウム蓄電池を用いた。カドミウム負極は以
下のようにして製造したものを用いた。まず、酸化カド
ミウムを主体とするペーストをニッケルメッキした鉄製
のパンチングメタルの両面に塗着し、所定の厚さに設定
されたスリット間を通過・させ、乾燥工程を経て、厚さ
0.7mmの極板を得た。その後、苛性カリの10重量
%水溶液中で部分充電して酸化カドミウムの一部を金属
カドミウムに変化させ、さらに、水洗、乾燥後、加圧し
て厚さ0.65mmにした。
Description of Examples A AA size sealed nickel-cadmium storage battery was used as a battery for performance comparison. The cadmium negative electrode manufactured as follows was used. First, a paste mainly composed of cadmium oxide is applied to both sides of a nickel-plated iron punching metal, passed between slits set to a predetermined thickness, and then dried to a thickness of 0.7 mm. Obtained the electrode plate. Thereafter, it was partially charged in a 10% by weight aqueous solution of caustic potassium to change some of the cadmium oxide into metal cadmium, and after washing and drying, it was pressurized to a thickness of 0.65 mm.

セパレータにはポリアミドの不織布を用い、電解液には
苛性カリの25重量係水溶液−に少量の水酸化リチウム
を溶解したものを1セル当たり6.6cc用いた。ニッ
ケル電極としてはペースト式を実施例とする。壕ずペー
ストの材料として、200メツシユのふるいを通過する
粒度の水酸化ニッケル1にりとカーボニルニッケル粉末
10g1黒鉛25g、直径0.1mm、長さ3〜5配の
アクリロニトリル−塩化ビニル共重合体20g、ポリエ
チレン粉末26g、カーボニル金属コバルト粉末6゜1
1およびカルボキシメチルセルロースの3重量%水溶液
1Kgとした、。
A non-woven polyamide fabric was used as the separator, and 6.6 cc of an electrolyte prepared by dissolving a small amount of lithium hydroxide in a 25% by weight aqueous solution of caustic potash was used per cell. In this embodiment, a paste type nickel electrode is used. As materials for trench paste, nickel hydroxide with a particle size that passes through a 200-mesh sieve, 10 g of carbonyl nickel powder, 1 25 g of graphite, 20 g of acrylonitrile-vinyl chloride copolymer with a diameter of 0.1 mm and a length of 3 to 5 layers. , polyethylene powder 26g, carbonyl metal cobalt powder 6゜1
1 and a 3% by weight aqueous solution of carboxymethyl cellulose (1 kg).

このペーストに用いる水酸化ニッケルとしては、市販の
水酸化ニッケルをさらに煮沸水で洗浄−濾過を3回くり
返して用いた。水酸化ニッケル1oogに水2ooCC
を加えて十分かくはん後に調べたpHは市販品入手直後
では10.2であったのが、この処軛1にJす8.3に
なった0 上記のペーストは定温(約23℃)で2日間放置した。
As the nickel hydroxide used in this paste, commercially available nickel hydroxide was further washed with boiled water and filtered three times. 1oog of nickel hydroxide to 2oocc of water
After stirring thoroughly, the pH was 10.2 immediately after obtaining the commercially available product, but it became 8.3 when the above paste was heated at constant temperature (about 23°C). I left it for days.

芯材には厚さ0.1m+nの鉄板に穴径2配、中心間ピ
ッチ3胴で開孔したバンチングメタルにニッケルメッキ
を施したものを使用した。この芯材の両面に上記ペース
トを塗着し、スリットを通過させ、乾燥後の厚さを1.
○±0.06調にしだ。その後酢酸コバルトの2oOg
/l水溶液中に浸漬し、乾燥後、苛性カリの水溶液中に
浸漬し、酢酸コノ(ルトを水酸化コバルトに変化させる
方法により水酸化コバルトを添加した。
The core material used was a bunching metal plated with nickel, which was made of a steel plate with a thickness of 0.1 m + n, with holes of two diameters and three center-to-center pitches. The above paste is applied to both sides of this core material, passed through a slit, and the thickness after drying is 1.
○±0.06 key. Then 2oOg of cobalt acetate
After drying, the sample was immersed in a caustic potash aqueous solution, and cobalt hydroxide was added by a method of converting acetic acid into cobalt hydroxide.

こうして得た極板をまず幅120慟、長さ680咽に裁
断した。ついでローラー間を通して加圧し、ポリ4フフ
化エチレンの水性ディスツク−ジョン(樹脂分6重量係
)を加えた後乾燥した。電極の厚さは0.7咽であった
。この電極をさらに単2の大きさに裁断した。この場合
は幅38咽で長さを2.20咽にした。
The electrode plate thus obtained was first cut into pieces of 120 mm wide and 680 mm long. Then, pressure was applied between rollers, and an aqueous polytetrafluoroethylene disc (resin content: 6 parts by weight) was added, followed by drying. The thickness of the electrode was 0.7 mm. This electrode was further cut into 2 AA size pieces. In this case, the width was 38 mm and the length was 2.20 mm.

、ξれを前記のカドミウム極と七ノくレータと組み合わ
せて電池を構成した。この電池を八とする。
. Let's call this battery 8.

捷だ、比較のために、市販の水酸化ニッケルをそのまま
用いてペーストを調整し、以後は(8)と同じ製法で得
られた電極を用いた電池を(B)とする。
For comparison, a paste was prepared using commercially available nickel hydroxide as is, and a battery using an electrode obtained by the same manufacturing method as (8) will be referred to as (B).

電池(へおよび(B)に用いたペーストを放置中に外観
を調べると、(5)では放置により乾燥あるいは半乾燥
した部分が褐色化しているのに対して、(B)ではその
ような色の変化はほとんど認められなかった。
When examining the external appearance of the paste used in battery (B) and (B), it was found that in (5), the dry or semi-dry areas turned brown due to being left, whereas in (B), such coloration Almost no changes were observed.

さらに比較として、市販の水酸化ニッケルを用いてペー
ストを調整してただちに電極を作製した。
As a further comparison, a paste was prepared using commercially available nickel hydroxide and electrodes were immediately prepared.

この電極を用いた電池を(C1,(8)と同様に水洗し
た水酸化ニッケルを用いてペーストを調整し、ただちに
電極としたものを用いた電池をqとする。
A battery using this electrode (C1, as in (8), prepare a paste using water-washed nickel hydroxide and immediately use it as an electrode) is designated as q.

これら電池(5)〜p)の充てん容量と各放電時での利
用率、それに充電は0.15C,放電は0.50の条件
で充放電し、初期容量の65係まで低下した場合を寿命
としたサイクル寿命を次表に示す。
The charging capacity of these batteries (5) to p), the utilization rate at each discharge, and the charging and discharging conditions of 0.15C and 0.50C, and the life when the initial capacity decreases to 65% is the lifespan. The table below shows the cycle life.

以下余白 本発明によるニッケル極を用いた電池は、利用率、寿命
ともすぐれていることがわかる。なお、ニッケルとコバ
ルトとの異存下、とくにコバルトとの共存下で水でぬら
しだ袂態で放置することに対しては、水酸化ニッケルの
水洗を十分行う効果があるが、このような放置を行わな
い場合には、(qとp)のように特性に大差がないこと
がわかる。
It can be seen from the following margin that the battery using the nickel electrode according to the present invention has excellent utilization rate and life. Furthermore, in the presence of coexistence of nickel and cobalt, especially in the coexistence of cobalt, it is effective to wash the nickel hydroxide sufficiently with water. If it is not performed, it can be seen that there is no significant difference in the characteristics as shown in (q and p).

なお、実施例では室温(約23℃)で放置する例を示し
たが、これ以上の温度の場合には乾燥の速度を押えるこ
とが必要であり、時間は数時間でよく、また2o℃以下
の場合は放置は6〜7日間程度が最適である。また、常
時攪はんを行う場合には放置の時間は短縮できて常温で
は数時間〜1日間程度でよい。また、このように金属コ
バルトを十分水洗した水酸化ニッケルの一部に加えて放
置することが効果があるのであって、はじめから酸化コ
バルトを加えることは、このような効果を期待する上で
は好ましいとはいえない。
In addition, in the example, an example of leaving at room temperature (approximately 23°C) was shown, but if the temperature is higher than this, it is necessary to slow down the drying speed, and the drying time may be several hours, or below 2o°C. In this case, it is best to leave it for about 6 to 7 days. In addition, when constant stirring is performed, the time for standing can be shortened, and may be from several hours to one day at room temperature. In addition, it is effective to add metallic cobalt to a portion of nickel hydroxide that has been thoroughly washed with water and leave it to stand, but it is preferable to add cobalt oxide from the beginning in order to expect such an effect. I can't say that.

また実施例ではペースト式について述べたが、スポンジ
状金属多孔体を用いる場合でも同様であり、また、ポケ
ット式の場合は乾燥状態のものを用いればよい。
Further, in the embodiment, a paste type was described, but the same applies when a sponge-like metal porous body is used, and in the case of a pocket type, a dry one may be used.

発明の効果 以上のように、本発明によれば、非焼結式ニッケル電極
の利用率、寿命ともに向上することができ、しかも一定
品質のものを得ることができる。
Effects of the Invention As described above, according to the present invention, it is possible to improve both the utilization rate and the lifespan of a non-sintered nickel electrode, and moreover, it is possible to obtain a non-sintered nickel electrode of constant quality.

Claims (1)

【特許請求の範囲】[Claims] 水酸化ニッケルを主成分とし、ニッケル粉末及びコバル
ト粉末を含む混合物をペースト状にする工程を有するニ
ッケル電極の製造法であって、アルカリ性ないし中性に
まで洗浄された水酸化ニッケルをニッケル、コバルト及
び水の共存下で放置する工程を有するニッケル電極の製
造法。
A method for producing a nickel electrode, which includes the step of making a paste of a mixture containing nickel hydroxide as a main component and nickel powder and cobalt powder. A method for manufacturing nickel electrodes that involves leaving them in the presence of water.
JP57148022A 1982-08-25 1982-08-25 Manufacturing method for nickel electrode Pending JPS5937659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57148022A JPS5937659A (en) 1982-08-25 1982-08-25 Manufacturing method for nickel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57148022A JPS5937659A (en) 1982-08-25 1982-08-25 Manufacturing method for nickel electrode

Publications (1)

Publication Number Publication Date
JPS5937659A true JPS5937659A (en) 1984-03-01

Family

ID=15443350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57148022A Pending JPS5937659A (en) 1982-08-25 1982-08-25 Manufacturing method for nickel electrode

Country Status (1)

Country Link
JP (1) JPS5937659A (en)

Similar Documents

Publication Publication Date Title
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
KR100222746B1 (en) Gas-tight alkaline accumulator
JP2000077068A (en) Nickel positive electrode for alkaline secondary battery
JPS5937667A (en) Metal oxide-hydrogen battery
JPS5937659A (en) Manufacturing method for nickel electrode
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP2926732B2 (en) Alkaline secondary battery
JP2981538B2 (en) Electrodes for alkaline batteries
JPH0243308B2 (en)
JPS58175262A (en) Manufacture of nickel electrode for battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JPS5875767A (en) Manufacture of nickel electrode for battery
JPS5897267A (en) Manufacture of nickel electrode for battery
JPH0693360B2 (en) Manufacturing method of battery with nickel pole
JPS58206055A (en) Manufacture of nickel electrode for battery
JPH1021902A (en) Manufacture of paste type nickel electrode for alkaline secondary battery
JPS5875768A (en) Manufacture of pasted electrode for battery
JPS5960966A (en) Manufacture of nickel electrode for battery
JPS6097560A (en) Sealed type alkaline storage battery
JPS58137965A (en) Manufacture of nickel electrode for battery
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS5897266A (en) Manufacture of nickel electrode for battery
JPH0513075A (en) Hydrogen storage alloy electrode and manufacture thereof
JPS58121557A (en) Manufacture of nickel electrode for battery
JPS5897265A (en) Manufacture of nickel electrode for battery